rocksdb/util/dynamic_bloom_test.cc
Peter Dillinger 97f6319e22 Revert "Add a SystemClock class to capture the time functions of an Env (#7858)"
This reverts commit 12f11373554af219c519ff60a612e355508518f7.
2021-03-04 15:41:28 -08:00

324 lines
9.1 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#ifndef GFLAGS
#include <cstdio>
int main() {
fprintf(stderr, "Please install gflags to run this test... Skipping...\n");
return 0;
}
#else
#include <algorithm>
#include <atomic>
#include <cinttypes>
#include <functional>
#include <memory>
#include <thread>
#include <vector>
#include "dynamic_bloom.h"
#include "memory/arena.h"
#include "port/port.h"
#include "test_util/testharness.h"
#include "test_util/testutil.h"
#include "util/gflags_compat.h"
#include "util/stop_watch.h"
using GFLAGS_NAMESPACE::ParseCommandLineFlags;
DEFINE_int32(bits_per_key, 10, "");
DEFINE_int32(num_probes, 6, "");
DEFINE_bool(enable_perf, false, "");
namespace ROCKSDB_NAMESPACE {
struct KeyMaker {
uint64_t a;
uint64_t b;
// Sequential, within a hash function block
inline Slice Seq(uint64_t i) {
a = i;
return Slice(reinterpret_cast<char *>(&a), sizeof(a));
}
// Not quite sequential, varies across hash function blocks
inline Slice Nonseq(uint64_t i) {
a = i;
b = i * 123;
return Slice(reinterpret_cast<char *>(this), sizeof(*this));
}
inline Slice Key(uint64_t i, bool nonseq) {
return nonseq ? Nonseq(i) : Seq(i);
}
};
class DynamicBloomTest : public testing::Test {};
TEST_F(DynamicBloomTest, EmptyFilter) {
Arena arena;
DynamicBloom bloom1(&arena, 100, 2);
ASSERT_TRUE(!bloom1.MayContain("hello"));
ASSERT_TRUE(!bloom1.MayContain("world"));
DynamicBloom bloom2(&arena, CACHE_LINE_SIZE * 8 * 2 - 1, 2);
ASSERT_TRUE(!bloom2.MayContain("hello"));
ASSERT_TRUE(!bloom2.MayContain("world"));
}
TEST_F(DynamicBloomTest, Small) {
Arena arena;
DynamicBloom bloom1(&arena, 100, 2);
bloom1.Add("hello");
bloom1.Add("world");
ASSERT_TRUE(bloom1.MayContain("hello"));
ASSERT_TRUE(bloom1.MayContain("world"));
ASSERT_TRUE(!bloom1.MayContain("x"));
ASSERT_TRUE(!bloom1.MayContain("foo"));
DynamicBloom bloom2(&arena, CACHE_LINE_SIZE * 8 * 2 - 1, 2);
bloom2.Add("hello");
bloom2.Add("world");
ASSERT_TRUE(bloom2.MayContain("hello"));
ASSERT_TRUE(bloom2.MayContain("world"));
ASSERT_TRUE(!bloom2.MayContain("x"));
ASSERT_TRUE(!bloom2.MayContain("foo"));
}
TEST_F(DynamicBloomTest, SmallConcurrentAdd) {
Arena arena;
DynamicBloom bloom1(&arena, 100, 2);
bloom1.AddConcurrently("hello");
bloom1.AddConcurrently("world");
ASSERT_TRUE(bloom1.MayContain("hello"));
ASSERT_TRUE(bloom1.MayContain("world"));
ASSERT_TRUE(!bloom1.MayContain("x"));
ASSERT_TRUE(!bloom1.MayContain("foo"));
DynamicBloom bloom2(&arena, CACHE_LINE_SIZE * 8 * 2 - 1, 2);
bloom2.AddConcurrently("hello");
bloom2.AddConcurrently("world");
ASSERT_TRUE(bloom2.MayContain("hello"));
ASSERT_TRUE(bloom2.MayContain("world"));
ASSERT_TRUE(!bloom2.MayContain("x"));
ASSERT_TRUE(!bloom2.MayContain("foo"));
}
static uint32_t NextNum(uint32_t num) {
if (num < 10) {
num += 1;
} else if (num < 100) {
num += 10;
} else if (num < 1000) {
num += 100;
} else {
num = num * 26 / 10;
}
return num;
}
TEST_F(DynamicBloomTest, VaryingLengths) {
KeyMaker km;
// Count number of filters that significantly exceed the false positive rate
int mediocre_filters = 0;
int good_filters = 0;
uint32_t num_probes = static_cast<uint32_t>(FLAGS_num_probes);
fprintf(stderr, "bits_per_key: %d num_probes: %d\n", FLAGS_bits_per_key,
num_probes);
// NB: FP rate impact of 32-bit hash is noticeable starting around 10M keys.
// But that effect is hidden if using sequential keys (unique hashes).
for (bool nonseq : {false, true}) {
const uint32_t max_num = FLAGS_enable_perf ? 40000000 : 400000;
for (uint32_t num = 1; num <= max_num; num = NextNum(num)) {
uint32_t bloom_bits = 0;
Arena arena;
bloom_bits = num * FLAGS_bits_per_key;
DynamicBloom bloom(&arena, bloom_bits, num_probes);
for (uint64_t i = 0; i < num; i++) {
bloom.Add(km.Key(i, nonseq));
ASSERT_TRUE(bloom.MayContain(km.Key(i, nonseq)));
}
// All added keys must match
for (uint64_t i = 0; i < num; i++) {
ASSERT_TRUE(bloom.MayContain(km.Key(i, nonseq)));
}
// Check false positive rate
int result = 0;
for (uint64_t i = 0; i < 30000; i++) {
if (bloom.MayContain(km.Key(i + 1000000000, nonseq))) {
result++;
}
}
double rate = result / 30000.0;
fprintf(stderr,
"False positives (%s keys): "
"%5.2f%% @ num = %6u, bloom_bits = %6u\n",
nonseq ? "nonseq" : "seq", rate * 100.0, num, bloom_bits);
if (rate > 0.0125)
mediocre_filters++; // Allowed, but not too often
else
good_filters++;
}
}
fprintf(stderr, "Filters: %d good, %d mediocre\n", good_filters,
mediocre_filters);
ASSERT_LE(mediocre_filters, good_filters / 25);
}
TEST_F(DynamicBloomTest, perf) {
KeyMaker km;
StopWatchNano timer(Env::Default());
uint32_t num_probes = static_cast<uint32_t>(FLAGS_num_probes);
if (!FLAGS_enable_perf) {
return;
}
for (uint32_t m = 1; m <= 8; ++m) {
Arena arena;
const uint32_t num_keys = m * 8 * 1024 * 1024;
fprintf(stderr, "testing %" PRIu32 "M keys\n", m * 8);
DynamicBloom std_bloom(&arena, num_keys * 10, num_probes);
timer.Start();
for (uint64_t i = 1; i <= num_keys; ++i) {
std_bloom.Add(km.Seq(i));
}
uint64_t elapsed = timer.ElapsedNanos();
fprintf(stderr, "dynamic bloom, avg add latency %3g\n",
static_cast<double>(elapsed) / num_keys);
uint32_t count = 0;
timer.Start();
for (uint64_t i = 1; i <= num_keys; ++i) {
if (std_bloom.MayContain(km.Seq(i))) {
++count;
}
}
ASSERT_EQ(count, num_keys);
elapsed = timer.ElapsedNanos();
assert(count > 0);
fprintf(stderr, "dynamic bloom, avg query latency %3g\n",
static_cast<double>(elapsed) / count);
}
}
TEST_F(DynamicBloomTest, concurrent_with_perf) {
uint32_t num_probes = static_cast<uint32_t>(FLAGS_num_probes);
uint32_t m_limit = FLAGS_enable_perf ? 8 : 1;
uint32_t num_threads = 4;
std::vector<port::Thread> threads;
// NB: Uses sequential keys for speed, but that hides the FP rate
// impact of 32-bit hash, which is noticeable starting around 10M keys
// when they vary across hashing blocks.
for (uint32_t m = 1; m <= m_limit; ++m) {
Arena arena;
const uint32_t num_keys = m * 8 * 1024 * 1024;
fprintf(stderr, "testing %" PRIu32 "M keys\n", m * 8);
DynamicBloom std_bloom(&arena, num_keys * 10, num_probes);
std::atomic<uint64_t> elapsed(0);
std::function<void(size_t)> adder([&](size_t t) {
KeyMaker km;
StopWatchNano timer(Env::Default());
timer.Start();
for (uint64_t i = 1 + t; i <= num_keys; i += num_threads) {
std_bloom.AddConcurrently(km.Seq(i));
}
elapsed += timer.ElapsedNanos();
});
for (size_t t = 0; t < num_threads; ++t) {
threads.emplace_back(adder, t);
}
while (threads.size() > 0) {
threads.back().join();
threads.pop_back();
}
fprintf(stderr,
"dynamic bloom, avg parallel add latency %3g"
" nanos/key\n",
static_cast<double>(elapsed) / num_threads / num_keys);
elapsed = 0;
std::function<void(size_t)> hitter([&](size_t t) {
KeyMaker km;
StopWatchNano timer(Env::Default());
timer.Start();
for (uint64_t i = 1 + t; i <= num_keys; i += num_threads) {
bool f = std_bloom.MayContain(km.Seq(i));
ASSERT_TRUE(f);
}
elapsed += timer.ElapsedNanos();
});
for (size_t t = 0; t < num_threads; ++t) {
threads.emplace_back(hitter, t);
}
while (threads.size() > 0) {
threads.back().join();
threads.pop_back();
}
fprintf(stderr,
"dynamic bloom, avg parallel hit latency %3g"
" nanos/key\n",
static_cast<double>(elapsed) / num_threads / num_keys);
elapsed = 0;
std::atomic<uint32_t> false_positives(0);
std::function<void(size_t)> misser([&](size_t t) {
KeyMaker km;
StopWatchNano timer(Env::Default());
timer.Start();
for (uint64_t i = num_keys + 1 + t; i <= 2 * num_keys; i += num_threads) {
bool f = std_bloom.MayContain(km.Seq(i));
if (f) {
++false_positives;
}
}
elapsed += timer.ElapsedNanos();
});
for (size_t t = 0; t < num_threads; ++t) {
threads.emplace_back(misser, t);
}
while (threads.size() > 0) {
threads.back().join();
threads.pop_back();
}
fprintf(stderr,
"dynamic bloom, avg parallel miss latency %3g"
" nanos/key, %f%% false positive rate\n",
static_cast<double>(elapsed) / num_threads / num_keys,
false_positives.load() * 100.0 / num_keys);
}
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
ParseCommandLineFlags(&argc, &argv, true);
return RUN_ALL_TESTS();
}
#endif // GFLAGS