matthewvon e6e8b9e871 Correct pragma once problem with Bazel on Windows (#6321)
Summary:
This is a simple edit to have two #include file paths be consistent within range_del_aggregator.{h,cc} with everywhere else.

The impact of this inconsistency is that it actual breaks a Bazel based build on the Windows platform. The same pragma once failure occurs with both Windows Visual C++ 2019 and clang for Windows 9.0. Bazel's "sandboxing" of the builds causes both compilers to not properly recognize "rocksdb/types.h" and "include/rocksdb/types.h" to be the same file (also comparator.h). My guess is that the backslash versus forward slash mixing within path names is the underlying issue.

But, everything builds fine once the include paths in these two source files are consistent with the rest of the repository.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6321

Differential Revision: D19506585

Pulled By: ltamasi

fbshipit-source-id: 294c346607edc433ab99eaabc9c880ee7426817a
2020-01-21 16:12:43 -08:00

239 lines
6.4 KiB
C++

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
#pragma once
#ifndef ROCKSDB_LITE
#include <assert.h>
#include <list>
#include <vector>
#ifdef OS_LINUX
#include <sys/mman.h>
#endif
#include "rocksdb/env.h"
#include "util/mutexlock.h"
namespace rocksdb {
// HashTable<T, Hash, Equal>
//
// Traditional implementation of hash table with synchronization built on top
// don't perform very well in multi-core scenarios. This is an implementation
// designed for multi-core scenarios with high lock contention.
//
// |<-------- alpha ------------->|
// Buckets Collision list
// ---- +----+ +---+---+--- ...... ---+---+---+
// / | |--->| | | | | |
// / +----+ +---+---+--- ...... ---+---+---+
// / | |
// Locks/ +----+
// +--+/ . .
// | | . .
// +--+ . .
// | | . .
// +--+ . .
// | | . .
// +--+ . .
// \ +----+
// \ | |
// \ +----+
// \ | |
// \---- +----+
//
// The lock contention is spread over an array of locks. This helps improve
// concurrent access. The spine is designed for a certain capacity and load
// factor. When the capacity planning is done correctly we can expect
// O(load_factor = 1) insert, access and remove time.
//
// Micro benchmark on debug build gives about .5 Million/sec rate of insert,
// erase and lookup in parallel (total of about 1.5 Million ops/sec). If the
// blocks were of 4K, the hash table can support a virtual throughput of
// 6 GB/s.
//
// T Object type (contains both key and value)
// Hash Function that returns an hash from type T
// Equal Returns if two objects are equal
// (We need explicit equal for pointer type)
//
template <class T, class Hash, class Equal>
class HashTable {
public:
explicit HashTable(const size_t capacity = 1024 * 1024,
const float load_factor = 2.0, const uint32_t nlocks = 256)
: nbuckets_(
static_cast<uint32_t>(load_factor ? capacity / load_factor : 0)),
nlocks_(nlocks) {
// pre-conditions
assert(capacity);
assert(load_factor);
assert(nbuckets_);
assert(nlocks_);
buckets_.reset(new Bucket[nbuckets_]);
#ifdef OS_LINUX
mlock(buckets_.get(), nbuckets_ * sizeof(Bucket));
#endif
// initialize locks
locks_.reset(new port::RWMutex[nlocks_]);
#ifdef OS_LINUX
mlock(locks_.get(), nlocks_ * sizeof(port::RWMutex));
#endif
// post-conditions
assert(buckets_);
assert(locks_);
}
virtual ~HashTable() { AssertEmptyBuckets(); }
//
// Insert given record to hash table
//
bool Insert(const T& t) {
const uint64_t h = Hash()(t);
const uint32_t bucket_idx = h % nbuckets_;
const uint32_t lock_idx = bucket_idx % nlocks_;
WriteLock _(&locks_[lock_idx]);
auto& bucket = buckets_[bucket_idx];
return Insert(&bucket, t);
}
// Lookup hash table
//
// Please note that read lock should be held by the caller. This is because
// the caller owns the data, and should hold the read lock as long as he
// operates on the data.
bool Find(const T& t, T* ret, port::RWMutex** ret_lock) {
const uint64_t h = Hash()(t);
const uint32_t bucket_idx = h % nbuckets_;
const uint32_t lock_idx = bucket_idx % nlocks_;
port::RWMutex& lock = locks_[lock_idx];
lock.ReadLock();
auto& bucket = buckets_[bucket_idx];
if (Find(&bucket, t, ret)) {
*ret_lock = &lock;
return true;
}
lock.ReadUnlock();
return false;
}
//
// Erase a given key from the hash table
//
bool Erase(const T& t, T* ret) {
const uint64_t h = Hash()(t);
const uint32_t bucket_idx = h % nbuckets_;
const uint32_t lock_idx = bucket_idx % nlocks_;
WriteLock _(&locks_[lock_idx]);
auto& bucket = buckets_[bucket_idx];
return Erase(&bucket, t, ret);
}
// Fetch the mutex associated with a key
// This call is used to hold the lock for a given data for extended period of
// time.
port::RWMutex* GetMutex(const T& t) {
const uint64_t h = Hash()(t);
const uint32_t bucket_idx = h % nbuckets_;
const uint32_t lock_idx = bucket_idx % nlocks_;
return &locks_[lock_idx];
}
void Clear(void (*fn)(T)) {
for (uint32_t i = 0; i < nbuckets_; ++i) {
const uint32_t lock_idx = i % nlocks_;
WriteLock _(&locks_[lock_idx]);
for (auto& t : buckets_[i].list_) {
(*fn)(t);
}
buckets_[i].list_.clear();
}
}
protected:
// Models bucket of keys that hash to the same bucket number
struct Bucket {
std::list<T> list_;
};
// Substitute for std::find with custom comparator operator
typename std::list<T>::iterator Find(std::list<T>* list, const T& t) {
for (auto it = list->begin(); it != list->end(); ++it) {
if (Equal()(*it, t)) {
return it;
}
}
return list->end();
}
bool Insert(Bucket* bucket, const T& t) {
// Check if the key already exists
auto it = Find(&bucket->list_, t);
if (it != bucket->list_.end()) {
return false;
}
// insert to bucket
bucket->list_.push_back(t);
return true;
}
bool Find(Bucket* bucket, const T& t, T* ret) {
auto it = Find(&bucket->list_, t);
if (it != bucket->list_.end()) {
if (ret) {
*ret = *it;
}
return true;
}
return false;
}
bool Erase(Bucket* bucket, const T& t, T* ret) {
auto it = Find(&bucket->list_, t);
if (it != bucket->list_.end()) {
if (ret) {
*ret = *it;
}
bucket->list_.erase(it);
return true;
}
return false;
}
// assert that all buckets are empty
void AssertEmptyBuckets() {
#ifndef NDEBUG
for (size_t i = 0; i < nbuckets_; ++i) {
WriteLock _(&locks_[i % nlocks_]);
assert(buckets_[i].list_.empty());
}
#endif
}
const uint32_t nbuckets_; // No. of buckets in the spine
std::unique_ptr<Bucket[]> buckets_; // Spine of the hash buckets
const uint32_t nlocks_; // No. of locks
std::unique_ptr<port::RWMutex[]> locks_; // Granular locks
};
} // namespace rocksdb
#endif