rocksdb/util/thread_local_test.cc
Yueh-Hsuan Chiang 908100399c Fixed a dependency issue of ThreadLocalPtr
Summary:
When a child thread that uses ThreadLocalPtr, ThreadLocalPtr::OnThreadExit
will be called when that child thread is destroyed.  However,
OnThreadExit will try to access a static singleton of ThreadLocalPtr,
which will be destroyed when the main thread exit.  As a result,
when a child thread that uses ThreadLocalPtr exits AFTER the main thread
exits, illegal memory access will occur.

This diff includes a test that reproduce this legacy bug.

    ==2095206==ERROR: AddressSanitizer: heap-use-after-free on address
    0x608000007fa0 at pc 0x959b79 bp 0x7f5fa7426b60 sp 0x7f5fa7426b58
    READ of size 8 at 0x608000007fa0 thread T1

This patch fix this issue by having the thread local mutex never be deleted
(but will leak small piece of memory at the end.)   The patch also describe
a better solution (thread_local) in the comment that requires gcc 4.8.1 and
in latest clang as a future work once we agree to move toward gcc 4.8.

Test Plan:
COMPILE_WITH_ASAN=1 make thread_local_test -j32
./thread_local_test --gtest_filter="*MainThreadDiesFirst"

Reviewers: anthony, hermanlee4, sdong

Reviewed By: sdong

Subscribers: dhruba, leveldb

Differential Revision: https://reviews.facebook.net/D53013
2016-02-10 16:56:01 -08:00

510 lines
13 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
#include <pthread.h>
#include <atomic>
#include <string>
#include "rocksdb/env.h"
#include "port/port.h"
#include "util/autovector.h"
#include "util/sync_point.h"
#include "util/testharness.h"
#include "util/testutil.h"
#include "util/thread_local.h"
namespace rocksdb {
class ThreadLocalTest : public testing::Test {
public:
ThreadLocalTest() : env_(Env::Default()) {}
Env* env_;
};
namespace {
struct Params {
Params(port::Mutex* m, port::CondVar* c, int* u, int n,
UnrefHandler handler = nullptr)
: mu(m),
cv(c),
unref(u),
total(n),
started(0),
completed(0),
doWrite(false),
tls1(handler),
tls2(nullptr) {}
port::Mutex* mu;
port::CondVar* cv;
int* unref;
int total;
int started;
int completed;
bool doWrite;
ThreadLocalPtr tls1;
ThreadLocalPtr* tls2;
};
class IDChecker : public ThreadLocalPtr {
public:
static uint32_t PeekId() { return Instance()->PeekId(); }
};
} // anonymous namespace
TEST_F(ThreadLocalTest, UniqueIdTest) {
port::Mutex mu;
port::CondVar cv(&mu);
ASSERT_EQ(IDChecker::PeekId(), 0u);
// New ThreadLocal instance bumps id by 1
{
// Id used 0
Params p1(&mu, &cv, nullptr, 1u);
ASSERT_EQ(IDChecker::PeekId(), 1u);
// Id used 1
Params p2(&mu, &cv, nullptr, 1u);
ASSERT_EQ(IDChecker::PeekId(), 2u);
// Id used 2
Params p3(&mu, &cv, nullptr, 1u);
ASSERT_EQ(IDChecker::PeekId(), 3u);
// Id used 3
Params p4(&mu, &cv, nullptr, 1u);
ASSERT_EQ(IDChecker::PeekId(), 4u);
}
// id 3, 2, 1, 0 are in the free queue in order
ASSERT_EQ(IDChecker::PeekId(), 0u);
// pick up 0
Params p1(&mu, &cv, nullptr, 1u);
ASSERT_EQ(IDChecker::PeekId(), 1u);
// pick up 1
Params* p2 = new Params(&mu, &cv, nullptr, 1u);
ASSERT_EQ(IDChecker::PeekId(), 2u);
// pick up 2
Params p3(&mu, &cv, nullptr, 1u);
ASSERT_EQ(IDChecker::PeekId(), 3u);
// return up 1
delete p2;
ASSERT_EQ(IDChecker::PeekId(), 1u);
// Now we have 3, 1 in queue
// pick up 1
Params p4(&mu, &cv, nullptr, 1u);
ASSERT_EQ(IDChecker::PeekId(), 3u);
// pick up 3
Params p5(&mu, &cv, nullptr, 1u);
// next new id
ASSERT_EQ(IDChecker::PeekId(), 4u);
// After exit, id sequence in queue:
// 3, 1, 2, 0
}
TEST_F(ThreadLocalTest, SequentialReadWriteTest) {
// global id list carries over 3, 1, 2, 0
ASSERT_EQ(IDChecker::PeekId(), 0u);
port::Mutex mu;
port::CondVar cv(&mu);
Params p(&mu, &cv, nullptr, 1);
ThreadLocalPtr tls2;
p.tls2 = &tls2;
auto func = [](void* ptr) {
auto& params = *static_cast<Params*>(ptr);
ASSERT_TRUE(params.tls1.Get() == nullptr);
params.tls1.Reset(reinterpret_cast<int*>(1));
ASSERT_TRUE(params.tls1.Get() == reinterpret_cast<int*>(1));
params.tls1.Reset(reinterpret_cast<int*>(2));
ASSERT_TRUE(params.tls1.Get() == reinterpret_cast<int*>(2));
ASSERT_TRUE(params.tls2->Get() == nullptr);
params.tls2->Reset(reinterpret_cast<int*>(1));
ASSERT_TRUE(params.tls2->Get() == reinterpret_cast<int*>(1));
params.tls2->Reset(reinterpret_cast<int*>(2));
ASSERT_TRUE(params.tls2->Get() == reinterpret_cast<int*>(2));
params.mu->Lock();
++(params.completed);
params.cv->SignalAll();
params.mu->Unlock();
};
for (int iter = 0; iter < 1024; ++iter) {
ASSERT_EQ(IDChecker::PeekId(), 1u);
// Another new thread, read/write should not see value from previous thread
env_->StartThread(func, static_cast<void*>(&p));
mu.Lock();
while (p.completed != iter + 1) {
cv.Wait();
}
mu.Unlock();
ASSERT_EQ(IDChecker::PeekId(), 1u);
}
}
TEST_F(ThreadLocalTest, ConcurrentReadWriteTest) {
// global id list carries over 3, 1, 2, 0
ASSERT_EQ(IDChecker::PeekId(), 0u);
ThreadLocalPtr tls2;
port::Mutex mu1;
port::CondVar cv1(&mu1);
Params p1(&mu1, &cv1, nullptr, 16);
p1.tls2 = &tls2;
port::Mutex mu2;
port::CondVar cv2(&mu2);
Params p2(&mu2, &cv2, nullptr, 16);
p2.doWrite = true;
p2.tls2 = &tls2;
auto func = [](void* ptr) {
auto& p = *static_cast<Params*>(ptr);
p.mu->Lock();
// Size_T switches size along with the ptr size
// we want to cast to.
size_t own = ++(p.started);
p.cv->SignalAll();
while (p.started != p.total) {
p.cv->Wait();
}
p.mu->Unlock();
// Let write threads write a different value from the read threads
if (p.doWrite) {
own += 8192;
}
ASSERT_TRUE(p.tls1.Get() == nullptr);
ASSERT_TRUE(p.tls2->Get() == nullptr);
auto* env = Env::Default();
auto start = env->NowMicros();
p.tls1.Reset(reinterpret_cast<size_t*>(own));
p.tls2->Reset(reinterpret_cast<size_t*>(own + 1));
// Loop for 1 second
while (env->NowMicros() - start < 1000 * 1000) {
for (int iter = 0; iter < 100000; ++iter) {
ASSERT_TRUE(p.tls1.Get() == reinterpret_cast<size_t*>(own));
ASSERT_TRUE(p.tls2->Get() == reinterpret_cast<size_t*>(own + 1));
if (p.doWrite) {
p.tls1.Reset(reinterpret_cast<size_t*>(own));
p.tls2->Reset(reinterpret_cast<size_t*>(own + 1));
}
}
}
p.mu->Lock();
++(p.completed);
p.cv->SignalAll();
p.mu->Unlock();
};
// Initiate 2 instnaces: one keeps writing and one keeps reading.
// The read instance should not see data from the write instance.
// Each thread local copy of the value are also different from each
// other.
for (int th = 0; th < p1.total; ++th) {
env_->StartThread(func, static_cast<void*>(&p1));
}
for (int th = 0; th < p2.total; ++th) {
env_->StartThread(func, static_cast<void*>(&p2));
}
mu1.Lock();
while (p1.completed != p1.total) {
cv1.Wait();
}
mu1.Unlock();
mu2.Lock();
while (p2.completed != p2.total) {
cv2.Wait();
}
mu2.Unlock();
ASSERT_EQ(IDChecker::PeekId(), 3u);
}
TEST_F(ThreadLocalTest, Unref) {
ASSERT_EQ(IDChecker::PeekId(), 0u);
auto unref = [](void* ptr) {
auto& p = *static_cast<Params*>(ptr);
p.mu->Lock();
++(*p.unref);
p.mu->Unlock();
};
// Case 0: no unref triggered if ThreadLocalPtr is never accessed
auto func0 = [](void* ptr) {
auto& p = *static_cast<Params*>(ptr);
p.mu->Lock();
++(p.started);
p.cv->SignalAll();
while (p.started != p.total) {
p.cv->Wait();
}
p.mu->Unlock();
};
for (int th = 1; th <= 128; th += th) {
port::Mutex mu;
port::CondVar cv(&mu);
int unref_count = 0;
Params p(&mu, &cv, &unref_count, th, unref);
for (int i = 0; i < p.total; ++i) {
env_->StartThread(func0, static_cast<void*>(&p));
}
env_->WaitForJoin();
ASSERT_EQ(unref_count, 0);
}
// Case 1: unref triggered by thread exit
auto func1 = [](void* ptr) {
auto& p = *static_cast<Params*>(ptr);
p.mu->Lock();
++(p.started);
p.cv->SignalAll();
while (p.started != p.total) {
p.cv->Wait();
}
p.mu->Unlock();
ASSERT_TRUE(p.tls1.Get() == nullptr);
ASSERT_TRUE(p.tls2->Get() == nullptr);
p.tls1.Reset(ptr);
p.tls2->Reset(ptr);
p.tls1.Reset(ptr);
p.tls2->Reset(ptr);
};
for (int th = 1; th <= 128; th += th) {
port::Mutex mu;
port::CondVar cv(&mu);
int unref_count = 0;
ThreadLocalPtr tls2(unref);
Params p(&mu, &cv, &unref_count, th, unref);
p.tls2 = &tls2;
for (int i = 0; i < p.total; ++i) {
env_->StartThread(func1, static_cast<void*>(&p));
}
env_->WaitForJoin();
// N threads x 2 ThreadLocal instance cleanup on thread exit
ASSERT_EQ(unref_count, 2 * p.total);
}
// Case 2: unref triggered by ThreadLocal instance destruction
auto func2 = [](void* ptr) {
auto& p = *static_cast<Params*>(ptr);
p.mu->Lock();
++(p.started);
p.cv->SignalAll();
while (p.started != p.total) {
p.cv->Wait();
}
p.mu->Unlock();
ASSERT_TRUE(p.tls1.Get() == nullptr);
ASSERT_TRUE(p.tls2->Get() == nullptr);
p.tls1.Reset(ptr);
p.tls2->Reset(ptr);
p.tls1.Reset(ptr);
p.tls2->Reset(ptr);
p.mu->Lock();
++(p.completed);
p.cv->SignalAll();
// Waiting for instruction to exit thread
while (p.completed != 0) {
p.cv->Wait();
}
p.mu->Unlock();
};
for (int th = 1; th <= 128; th += th) {
port::Mutex mu;
port::CondVar cv(&mu);
int unref_count = 0;
Params p(&mu, &cv, &unref_count, th, unref);
p.tls2 = new ThreadLocalPtr(unref);
for (int i = 0; i < p.total; ++i) {
env_->StartThread(func2, static_cast<void*>(&p));
}
// Wait for all threads to finish using Params
mu.Lock();
while (p.completed != p.total) {
cv.Wait();
}
mu.Unlock();
// Now destroy one ThreadLocal instance
delete p.tls2;
p.tls2 = nullptr;
// instance destroy for N threads
ASSERT_EQ(unref_count, p.total);
// Signal to exit
mu.Lock();
p.completed = 0;
cv.SignalAll();
mu.Unlock();
env_->WaitForJoin();
// additional N threads exit unref for the left instance
ASSERT_EQ(unref_count, 2 * p.total);
}
}
TEST_F(ThreadLocalTest, Swap) {
ThreadLocalPtr tls;
tls.Reset(reinterpret_cast<void*>(1));
ASSERT_EQ(reinterpret_cast<int64_t>(tls.Swap(nullptr)), 1);
ASSERT_TRUE(tls.Swap(reinterpret_cast<void*>(2)) == nullptr);
ASSERT_EQ(reinterpret_cast<int64_t>(tls.Get()), 2);
ASSERT_EQ(reinterpret_cast<int64_t>(tls.Swap(reinterpret_cast<void*>(3))), 2);
}
TEST_F(ThreadLocalTest, Scrape) {
auto unref = [](void* ptr) {
auto& p = *static_cast<Params*>(ptr);
p.mu->Lock();
++(*p.unref);
p.mu->Unlock();
};
auto func = [](void* ptr) {
auto& p = *static_cast<Params*>(ptr);
ASSERT_TRUE(p.tls1.Get() == nullptr);
ASSERT_TRUE(p.tls2->Get() == nullptr);
p.tls1.Reset(ptr);
p.tls2->Reset(ptr);
p.tls1.Reset(ptr);
p.tls2->Reset(ptr);
p.mu->Lock();
++(p.completed);
p.cv->SignalAll();
// Waiting for instruction to exit thread
while (p.completed != 0) {
p.cv->Wait();
}
p.mu->Unlock();
};
for (int th = 1; th <= 128; th += th) {
port::Mutex mu;
port::CondVar cv(&mu);
int unref_count = 0;
Params p(&mu, &cv, &unref_count, th, unref);
p.tls2 = new ThreadLocalPtr(unref);
for (int i = 0; i < p.total; ++i) {
env_->StartThread(func, static_cast<void*>(&p));
}
// Wait for all threads to finish using Params
mu.Lock();
while (p.completed != p.total) {
cv.Wait();
}
mu.Unlock();
ASSERT_EQ(unref_count, 0);
// Scrape all thread local data. No unref at thread
// exit or ThreadLocalPtr destruction
autovector<void*> ptrs;
p.tls1.Scrape(&ptrs, nullptr);
p.tls2->Scrape(&ptrs, nullptr);
delete p.tls2;
// Signal to exit
mu.Lock();
p.completed = 0;
cv.SignalAll();
mu.Unlock();
env_->WaitForJoin();
ASSERT_EQ(unref_count, 0);
}
}
TEST_F(ThreadLocalTest, CompareAndSwap) {
ThreadLocalPtr tls;
ASSERT_TRUE(tls.Swap(reinterpret_cast<void*>(1)) == nullptr);
void* expected = reinterpret_cast<void*>(1);
// Swap in 2
ASSERT_TRUE(tls.CompareAndSwap(reinterpret_cast<void*>(2), expected));
expected = reinterpret_cast<void*>(100);
// Fail Swap, still 2
ASSERT_TRUE(!tls.CompareAndSwap(reinterpret_cast<void*>(2), expected));
ASSERT_EQ(expected, reinterpret_cast<void*>(2));
// Swap in 3
expected = reinterpret_cast<void*>(2);
ASSERT_TRUE(tls.CompareAndSwap(reinterpret_cast<void*>(3), expected));
ASSERT_EQ(tls.Get(), reinterpret_cast<void*>(3));
}
namespace {
void* AccessThreadLocal(void* arg) {
TEST_SYNC_POINT("AccessThreadLocal:Start");
ThreadLocalPtr tlp;
tlp.Reset(new std::string("hello RocksDB"));
TEST_SYNC_POINT("AccessThreadLocal:End");
return nullptr;
}
} // namespace
// The following test is disabled as it requires manual steps to run it
// correctly.
//
// Currently we have no way to acess SyncPoint w/o ASAN error when the
// child thread dies after the main thread dies. So if you manually enable
// this test and only see an ASAN error on SyncPoint, it means you pass the
// test.
TEST_F(ThreadLocalTest, DISABLED_MainThreadDiesFirst) {
rocksdb::SyncPoint::GetInstance()->LoadDependency(
{{"AccessThreadLocal:Start", "MainThreadDiesFirst:End"},
{"PosixEnv::~PosixEnv():End", "AccessThreadLocal:End"}});
// Triggers the initialization of singletons.
Env::Default();
pthread_t t;
pthread_create(&t, nullptr, &AccessThreadLocal, nullptr);
TEST_SYNC_POINT("MainThreadDiesFirst:End");
}
} // namespace rocksdb
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}