fdf882ded2
Summary: When dynamically linking two binaries together, different builds of RocksDB from two sources might cause errors. To provide a tool for user to solve the problem, the RocksDB namespace is changed to a flag which can be overridden in build time. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6433 Test Plan: Build release, all and jtest. Try to build with ROCKSDB_NAMESPACE with another flag. Differential Revision: D19977691 fbshipit-source-id: aa7f2d0972e1c31d75339ac48478f34f6cfcfb3e
325 lines
9.1 KiB
C++
325 lines
9.1 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
|
|
#ifndef GFLAGS
|
|
#include <cstdio>
|
|
int main() {
|
|
fprintf(stderr, "Please install gflags to run this test... Skipping...\n");
|
|
return 0;
|
|
}
|
|
#else
|
|
|
|
#include <algorithm>
|
|
#include <atomic>
|
|
#include <cinttypes>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <thread>
|
|
#include <vector>
|
|
|
|
#include "dynamic_bloom.h"
|
|
#include "logging/logging.h"
|
|
#include "memory/arena.h"
|
|
#include "port/port.h"
|
|
#include "test_util/testharness.h"
|
|
#include "test_util/testutil.h"
|
|
#include "util/gflags_compat.h"
|
|
#include "util/stop_watch.h"
|
|
|
|
using GFLAGS_NAMESPACE::ParseCommandLineFlags;
|
|
|
|
DEFINE_int32(bits_per_key, 10, "");
|
|
DEFINE_int32(num_probes, 6, "");
|
|
DEFINE_bool(enable_perf, false, "");
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
struct KeyMaker {
|
|
uint64_t a;
|
|
uint64_t b;
|
|
|
|
// Sequential, within a hash function block
|
|
inline Slice Seq(uint64_t i) {
|
|
a = i;
|
|
return Slice(reinterpret_cast<char *>(&a), sizeof(a));
|
|
}
|
|
// Not quite sequential, varies across hash function blocks
|
|
inline Slice Nonseq(uint64_t i) {
|
|
a = i;
|
|
b = i * 123;
|
|
return Slice(reinterpret_cast<char *>(this), sizeof(*this));
|
|
}
|
|
inline Slice Key(uint64_t i, bool nonseq) {
|
|
return nonseq ? Nonseq(i) : Seq(i);
|
|
}
|
|
};
|
|
|
|
class DynamicBloomTest : public testing::Test {};
|
|
|
|
TEST_F(DynamicBloomTest, EmptyFilter) {
|
|
Arena arena;
|
|
DynamicBloom bloom1(&arena, 100, 2);
|
|
ASSERT_TRUE(!bloom1.MayContain("hello"));
|
|
ASSERT_TRUE(!bloom1.MayContain("world"));
|
|
|
|
DynamicBloom bloom2(&arena, CACHE_LINE_SIZE * 8 * 2 - 1, 2);
|
|
ASSERT_TRUE(!bloom2.MayContain("hello"));
|
|
ASSERT_TRUE(!bloom2.MayContain("world"));
|
|
}
|
|
|
|
TEST_F(DynamicBloomTest, Small) {
|
|
Arena arena;
|
|
DynamicBloom bloom1(&arena, 100, 2);
|
|
bloom1.Add("hello");
|
|
bloom1.Add("world");
|
|
ASSERT_TRUE(bloom1.MayContain("hello"));
|
|
ASSERT_TRUE(bloom1.MayContain("world"));
|
|
ASSERT_TRUE(!bloom1.MayContain("x"));
|
|
ASSERT_TRUE(!bloom1.MayContain("foo"));
|
|
|
|
DynamicBloom bloom2(&arena, CACHE_LINE_SIZE * 8 * 2 - 1, 2);
|
|
bloom2.Add("hello");
|
|
bloom2.Add("world");
|
|
ASSERT_TRUE(bloom2.MayContain("hello"));
|
|
ASSERT_TRUE(bloom2.MayContain("world"));
|
|
ASSERT_TRUE(!bloom2.MayContain("x"));
|
|
ASSERT_TRUE(!bloom2.MayContain("foo"));
|
|
}
|
|
|
|
TEST_F(DynamicBloomTest, SmallConcurrentAdd) {
|
|
Arena arena;
|
|
DynamicBloom bloom1(&arena, 100, 2);
|
|
bloom1.AddConcurrently("hello");
|
|
bloom1.AddConcurrently("world");
|
|
ASSERT_TRUE(bloom1.MayContain("hello"));
|
|
ASSERT_TRUE(bloom1.MayContain("world"));
|
|
ASSERT_TRUE(!bloom1.MayContain("x"));
|
|
ASSERT_TRUE(!bloom1.MayContain("foo"));
|
|
|
|
DynamicBloom bloom2(&arena, CACHE_LINE_SIZE * 8 * 2 - 1, 2);
|
|
bloom2.AddConcurrently("hello");
|
|
bloom2.AddConcurrently("world");
|
|
ASSERT_TRUE(bloom2.MayContain("hello"));
|
|
ASSERT_TRUE(bloom2.MayContain("world"));
|
|
ASSERT_TRUE(!bloom2.MayContain("x"));
|
|
ASSERT_TRUE(!bloom2.MayContain("foo"));
|
|
}
|
|
|
|
static uint32_t NextNum(uint32_t num) {
|
|
if (num < 10) {
|
|
num += 1;
|
|
} else if (num < 100) {
|
|
num += 10;
|
|
} else if (num < 1000) {
|
|
num += 100;
|
|
} else {
|
|
num = num * 26 / 10;
|
|
}
|
|
return num;
|
|
}
|
|
|
|
TEST_F(DynamicBloomTest, VaryingLengths) {
|
|
KeyMaker km;
|
|
|
|
// Count number of filters that significantly exceed the false positive rate
|
|
int mediocre_filters = 0;
|
|
int good_filters = 0;
|
|
uint32_t num_probes = static_cast<uint32_t>(FLAGS_num_probes);
|
|
|
|
fprintf(stderr, "bits_per_key: %d num_probes: %d\n", FLAGS_bits_per_key,
|
|
num_probes);
|
|
|
|
// NB: FP rate impact of 32-bit hash is noticeable starting around 10M keys.
|
|
// But that effect is hidden if using sequential keys (unique hashes).
|
|
for (bool nonseq : {false, true}) {
|
|
const uint32_t max_num = FLAGS_enable_perf ? 40000000 : 400000;
|
|
for (uint32_t num = 1; num <= max_num; num = NextNum(num)) {
|
|
uint32_t bloom_bits = 0;
|
|
Arena arena;
|
|
bloom_bits = num * FLAGS_bits_per_key;
|
|
DynamicBloom bloom(&arena, bloom_bits, num_probes);
|
|
for (uint64_t i = 0; i < num; i++) {
|
|
bloom.Add(km.Key(i, nonseq));
|
|
ASSERT_TRUE(bloom.MayContain(km.Key(i, nonseq)));
|
|
}
|
|
|
|
// All added keys must match
|
|
for (uint64_t i = 0; i < num; i++) {
|
|
ASSERT_TRUE(bloom.MayContain(km.Key(i, nonseq)));
|
|
}
|
|
|
|
// Check false positive rate
|
|
int result = 0;
|
|
for (uint64_t i = 0; i < 30000; i++) {
|
|
if (bloom.MayContain(km.Key(i + 1000000000, nonseq))) {
|
|
result++;
|
|
}
|
|
}
|
|
double rate = result / 30000.0;
|
|
|
|
fprintf(stderr,
|
|
"False positives (%s keys): "
|
|
"%5.2f%% @ num = %6u, bloom_bits = %6u\n",
|
|
nonseq ? "nonseq" : "seq", rate * 100.0, num, bloom_bits);
|
|
|
|
if (rate > 0.0125)
|
|
mediocre_filters++; // Allowed, but not too often
|
|
else
|
|
good_filters++;
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "Filters: %d good, %d mediocre\n", good_filters,
|
|
mediocre_filters);
|
|
ASSERT_LE(mediocre_filters, good_filters / 25);
|
|
}
|
|
|
|
TEST_F(DynamicBloomTest, perf) {
|
|
KeyMaker km;
|
|
StopWatchNano timer(Env::Default());
|
|
uint32_t num_probes = static_cast<uint32_t>(FLAGS_num_probes);
|
|
|
|
if (!FLAGS_enable_perf) {
|
|
return;
|
|
}
|
|
|
|
for (uint32_t m = 1; m <= 8; ++m) {
|
|
Arena arena;
|
|
const uint32_t num_keys = m * 8 * 1024 * 1024;
|
|
fprintf(stderr, "testing %" PRIu32 "M keys\n", m * 8);
|
|
|
|
DynamicBloom std_bloom(&arena, num_keys * 10, num_probes);
|
|
|
|
timer.Start();
|
|
for (uint64_t i = 1; i <= num_keys; ++i) {
|
|
std_bloom.Add(km.Seq(i));
|
|
}
|
|
|
|
uint64_t elapsed = timer.ElapsedNanos();
|
|
fprintf(stderr, "dynamic bloom, avg add latency %3g\n",
|
|
static_cast<double>(elapsed) / num_keys);
|
|
|
|
uint32_t count = 0;
|
|
timer.Start();
|
|
for (uint64_t i = 1; i <= num_keys; ++i) {
|
|
if (std_bloom.MayContain(km.Seq(i))) {
|
|
++count;
|
|
}
|
|
}
|
|
ASSERT_EQ(count, num_keys);
|
|
elapsed = timer.ElapsedNanos();
|
|
assert(count > 0);
|
|
fprintf(stderr, "dynamic bloom, avg query latency %3g\n",
|
|
static_cast<double>(elapsed) / count);
|
|
}
|
|
}
|
|
|
|
TEST_F(DynamicBloomTest, concurrent_with_perf) {
|
|
uint32_t num_probes = static_cast<uint32_t>(FLAGS_num_probes);
|
|
|
|
uint32_t m_limit = FLAGS_enable_perf ? 8 : 1;
|
|
|
|
uint32_t num_threads = 4;
|
|
std::vector<port::Thread> threads;
|
|
|
|
// NB: Uses sequential keys for speed, but that hides the FP rate
|
|
// impact of 32-bit hash, which is noticeable starting around 10M keys
|
|
// when they vary across hashing blocks.
|
|
for (uint32_t m = 1; m <= m_limit; ++m) {
|
|
Arena arena;
|
|
const uint32_t num_keys = m * 8 * 1024 * 1024;
|
|
fprintf(stderr, "testing %" PRIu32 "M keys\n", m * 8);
|
|
|
|
DynamicBloom std_bloom(&arena, num_keys * 10, num_probes);
|
|
|
|
std::atomic<uint64_t> elapsed(0);
|
|
|
|
std::function<void(size_t)> adder([&](size_t t) {
|
|
KeyMaker km;
|
|
StopWatchNano timer(Env::Default());
|
|
timer.Start();
|
|
for (uint64_t i = 1 + t; i <= num_keys; i += num_threads) {
|
|
std_bloom.AddConcurrently(km.Seq(i));
|
|
}
|
|
elapsed += timer.ElapsedNanos();
|
|
});
|
|
for (size_t t = 0; t < num_threads; ++t) {
|
|
threads.emplace_back(adder, t);
|
|
}
|
|
while (threads.size() > 0) {
|
|
threads.back().join();
|
|
threads.pop_back();
|
|
}
|
|
|
|
fprintf(stderr,
|
|
"dynamic bloom, avg parallel add latency %3g"
|
|
" nanos/key\n",
|
|
static_cast<double>(elapsed) / num_threads / num_keys);
|
|
|
|
elapsed = 0;
|
|
std::function<void(size_t)> hitter([&](size_t t) {
|
|
KeyMaker km;
|
|
StopWatchNano timer(Env::Default());
|
|
timer.Start();
|
|
for (uint64_t i = 1 + t; i <= num_keys; i += num_threads) {
|
|
bool f = std_bloom.MayContain(km.Seq(i));
|
|
ASSERT_TRUE(f);
|
|
}
|
|
elapsed += timer.ElapsedNanos();
|
|
});
|
|
for (size_t t = 0; t < num_threads; ++t) {
|
|
threads.emplace_back(hitter, t);
|
|
}
|
|
while (threads.size() > 0) {
|
|
threads.back().join();
|
|
threads.pop_back();
|
|
}
|
|
|
|
fprintf(stderr,
|
|
"dynamic bloom, avg parallel hit latency %3g"
|
|
" nanos/key\n",
|
|
static_cast<double>(elapsed) / num_threads / num_keys);
|
|
|
|
elapsed = 0;
|
|
std::atomic<uint32_t> false_positives(0);
|
|
std::function<void(size_t)> misser([&](size_t t) {
|
|
KeyMaker km;
|
|
StopWatchNano timer(Env::Default());
|
|
timer.Start();
|
|
for (uint64_t i = num_keys + 1 + t; i <= 2 * num_keys; i += num_threads) {
|
|
bool f = std_bloom.MayContain(km.Seq(i));
|
|
if (f) {
|
|
++false_positives;
|
|
}
|
|
}
|
|
elapsed += timer.ElapsedNanos();
|
|
});
|
|
for (size_t t = 0; t < num_threads; ++t) {
|
|
threads.emplace_back(misser, t);
|
|
}
|
|
while (threads.size() > 0) {
|
|
threads.back().join();
|
|
threads.pop_back();
|
|
}
|
|
|
|
fprintf(stderr,
|
|
"dynamic bloom, avg parallel miss latency %3g"
|
|
" nanos/key, %f%% false positive rate\n",
|
|
static_cast<double>(elapsed) / num_threads / num_keys,
|
|
false_positives.load() * 100.0 / num_keys);
|
|
}
|
|
}
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|
|
|
|
int main(int argc, char** argv) {
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
ParseCommandLineFlags(&argc, &argv, true);
|
|
|
|
return RUN_ALL_TESTS();
|
|
}
|
|
|
|
#endif // GFLAGS
|