rocksdb/db/compaction/compaction.h
sdong a2b9be42b6 Try to start TTL earlier with kMinOverlappingRatio is used (#8749)
Summary:
Right now, when options.ttl is set, compactions are triggered around the time when TTL is reached. This might cause extra compactions which are often bursty. This commit tries to mitigate it by picking those files earlier in normal compaction picking process. This is only implemented using kMinOverlappingRatio with Leveled compaction as it is the default value and it is more complicated to change other styles.

When a file is aged more than ttl/2, RocksDB starts to boost the compaction priority of files in normal compaction picking process, and hope by the time TTL is reached, very few extra compaction is needed.

In order for this to work, another change is made: during a compaction, if an output level file is older than ttl/2, cut output files based on original boundary (if it is not in the last level). This is to make sure that after an old file is moved to the next level, and new data is merged from the upper level, the new data falling into this range isn't reset with old timestamp. Without this change, in many cases, most files from one level will keep having old timestamp, even if they have newer data and we stuck in it.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/8749

Test Plan: Add a unit test to test the boosting logic. Will add a unit test to test it end-to-end.

Reviewed By: jay-zhuang

Differential Revision: D30735261

fbshipit-source-id: 503c2d89250b22911eb99e72b379be154de3428e
2021-11-01 14:36:31 -07:00

416 lines
16 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#pragma once
#include "db/version_set.h"
#include "memory/arena.h"
#include "options/cf_options.h"
#include "rocksdb/sst_partitioner.h"
#include "util/autovector.h"
namespace ROCKSDB_NAMESPACE {
// The file contains class Compaction, as well as some helper functions
// and data structures used by the class.
// Utility for comparing sstable boundary keys. Returns -1 if either a or b is
// null which provides the property that a==null indicates a key that is less
// than any key and b==null indicates a key that is greater than any key. Note
// that the comparison is performed primarily on the user-key portion of the
// key. If the user-keys compare equal, an additional test is made to sort
// range tombstone sentinel keys before other keys with the same user-key. The
// result is that 2 user-keys will compare equal if they differ purely on
// their sequence number and value, but the range tombstone sentinel for that
// user-key will compare not equal. This is necessary because the range
// tombstone sentinel key is set as the largest key for an sstable even though
// that key never appears in the database. We don't want adjacent sstables to
// be considered overlapping if they are separated by the range tombstone
// sentinel.
int sstableKeyCompare(const Comparator* user_cmp, const InternalKey& a,
const InternalKey& b);
int sstableKeyCompare(const Comparator* user_cmp, const InternalKey* a,
const InternalKey& b);
int sstableKeyCompare(const Comparator* user_cmp, const InternalKey& a,
const InternalKey* b);
// An AtomicCompactionUnitBoundary represents a range of keys [smallest,
// largest] that exactly spans one ore more neighbouring SSTs on the same
// level. Every pair of SSTs in this range "overlap" (i.e., the largest
// user key of one file is the smallest user key of the next file). These
// boundaries are propagated down to RangeDelAggregator during compaction
// to provide safe truncation boundaries for range tombstones.
struct AtomicCompactionUnitBoundary {
const InternalKey* smallest = nullptr;
const InternalKey* largest = nullptr;
};
// The structure that manages compaction input files associated
// with the same physical level.
struct CompactionInputFiles {
int level;
std::vector<FileMetaData*> files;
std::vector<AtomicCompactionUnitBoundary> atomic_compaction_unit_boundaries;
inline bool empty() const { return files.empty(); }
inline size_t size() const { return files.size(); }
inline void clear() { files.clear(); }
inline FileMetaData* operator[](size_t i) const { return files[i]; }
};
class Version;
class ColumnFamilyData;
class VersionStorageInfo;
class CompactionFilter;
// A Compaction encapsulates metadata about a compaction.
class Compaction {
public:
Compaction(VersionStorageInfo* input_version,
const ImmutableOptions& immutable_options,
const MutableCFOptions& mutable_cf_options,
const MutableDBOptions& mutable_db_options,
std::vector<CompactionInputFiles> inputs, int output_level,
uint64_t target_file_size, uint64_t max_compaction_bytes,
uint32_t output_path_id, CompressionType compression,
CompressionOptions compression_opts,
Temperature output_temperature, uint32_t max_subcompactions,
std::vector<FileMetaData*> grandparents,
bool manual_compaction = false, double score = -1,
bool deletion_compaction = false,
CompactionReason compaction_reason = CompactionReason::kUnknown);
// No copying allowed
Compaction(const Compaction&) = delete;
void operator=(const Compaction&) = delete;
~Compaction();
// Returns the level associated to the specified compaction input level.
// If compaction_input_level is not specified, then input_level is set to 0.
int level(size_t compaction_input_level = 0) const {
return inputs_[compaction_input_level].level;
}
int start_level() const { return start_level_; }
// Outputs will go to this level
int output_level() const { return output_level_; }
// Returns the number of input levels in this compaction.
size_t num_input_levels() const { return inputs_.size(); }
// Return the object that holds the edits to the descriptor done
// by this compaction.
VersionEdit* edit() { return &edit_; }
// Returns the number of input files associated to the specified
// compaction input level.
// The function will return 0 if when "compaction_input_level" < 0
// or "compaction_input_level" >= "num_input_levels()".
size_t num_input_files(size_t compaction_input_level) const {
if (compaction_input_level < inputs_.size()) {
return inputs_[compaction_input_level].size();
}
return 0;
}
// Returns input version of the compaction
Version* input_version() const { return input_version_; }
// Returns the ColumnFamilyData associated with the compaction.
ColumnFamilyData* column_family_data() const { return cfd_; }
// Returns the file meta data of the 'i'th input file at the
// specified compaction input level.
// REQUIREMENT: "compaction_input_level" must be >= 0 and
// < "input_levels()"
FileMetaData* input(size_t compaction_input_level, size_t i) const {
assert(compaction_input_level < inputs_.size());
return inputs_[compaction_input_level][i];
}
const std::vector<AtomicCompactionUnitBoundary>* boundaries(
size_t compaction_input_level) const {
assert(compaction_input_level < inputs_.size());
return &inputs_[compaction_input_level].atomic_compaction_unit_boundaries;
}
// Returns the list of file meta data of the specified compaction
// input level.
// REQUIREMENT: "compaction_input_level" must be >= 0 and
// < "input_levels()"
const std::vector<FileMetaData*>* inputs(
size_t compaction_input_level) const {
assert(compaction_input_level < inputs_.size());
return &inputs_[compaction_input_level].files;
}
const std::vector<CompactionInputFiles>* inputs() { return &inputs_; }
// Returns the LevelFilesBrief of the specified compaction input level.
const LevelFilesBrief* input_levels(size_t compaction_input_level) const {
return &input_levels_[compaction_input_level];
}
// Maximum size of files to build during this compaction.
uint64_t max_output_file_size() const { return max_output_file_size_; }
// What compression for output
CompressionType output_compression() const { return output_compression_; }
// What compression options for output
const CompressionOptions& output_compression_opts() const {
return output_compression_opts_;
}
// Whether need to write output file to second DB path.
uint32_t output_path_id() const { return output_path_id_; }
// Is this a trivial compaction that can be implemented by just
// moving a single input file to the next level (no merging or splitting)
bool IsTrivialMove() const;
// If true, then the compaction can be done by simply deleting input files.
bool deletion_compaction() const { return deletion_compaction_; }
// Add all inputs to this compaction as delete operations to *edit.
void AddInputDeletions(VersionEdit* edit);
// Returns true if the available information we have guarantees that
// the input "user_key" does not exist in any level beyond "output_level()".
bool KeyNotExistsBeyondOutputLevel(const Slice& user_key,
std::vector<size_t>* level_ptrs) const;
// Clear all files to indicate that they are not being compacted
// Delete this compaction from the list of running compactions.
//
// Requirement: DB mutex held
void ReleaseCompactionFiles(Status status);
// Returns the summary of the compaction in "output" with maximum "len"
// in bytes. The caller is responsible for the memory management of
// "output".
void Summary(char* output, int len);
// Return the score that was used to pick this compaction run.
double score() const { return score_; }
// Is this compaction creating a file in the bottom most level?
bool bottommost_level() const { return bottommost_level_; }
// Does this compaction include all sst files?
bool is_full_compaction() const { return is_full_compaction_; }
// Was this compaction triggered manually by the client?
bool is_manual_compaction() const { return is_manual_compaction_; }
// Used when allow_trivial_move option is set in
// Universal compaction. If all the input files are
// non overlapping, then is_trivial_move_ variable
// will be set true, else false
void set_is_trivial_move(bool trivial_move) {
is_trivial_move_ = trivial_move;
}
// Used when allow_trivial_move option is set in
// Universal compaction. Returns true, if the input files
// are non-overlapping and can be trivially moved.
bool is_trivial_move() const { return is_trivial_move_; }
// How many total levels are there?
int number_levels() const { return number_levels_; }
// Return the ImmutableOptions that should be used throughout the compaction
// procedure
const ImmutableOptions* immutable_options() const {
return &immutable_options_;
}
// Return the MutableCFOptions that should be used throughout the compaction
// procedure
const MutableCFOptions* mutable_cf_options() const {
return &mutable_cf_options_;
}
// Returns the size in bytes that the output file should be preallocated to.
// In level compaction, that is max_file_size_. In universal compaction, that
// is the sum of all input file sizes.
uint64_t OutputFilePreallocationSize() const;
void SetInputVersion(Version* input_version);
struct InputLevelSummaryBuffer {
char buffer[128];
};
const char* InputLevelSummary(InputLevelSummaryBuffer* scratch) const;
uint64_t CalculateTotalInputSize() const;
// In case of compaction error, reset the nextIndex that is used
// to pick up the next file to be compacted from files_by_size_
void ResetNextCompactionIndex();
// Create a CompactionFilter from compaction_filter_factory
std::unique_ptr<CompactionFilter> CreateCompactionFilter() const;
// Create a SstPartitioner from sst_partitioner_factory
std::unique_ptr<SstPartitioner> CreateSstPartitioner() const;
// Is the input level corresponding to output_level_ empty?
bool IsOutputLevelEmpty() const;
// Should this compaction be broken up into smaller ones run in parallel?
bool ShouldFormSubcompactions() const;
// Returns true iff at least one input file references a blob file.
//
// PRE: input version has been set.
bool DoesInputReferenceBlobFiles() const;
// test function to validate the functionality of IsBottommostLevel()
// function -- determines if compaction with inputs and storage is bottommost
static bool TEST_IsBottommostLevel(
int output_level, VersionStorageInfo* vstorage,
const std::vector<CompactionInputFiles>& inputs);
TablePropertiesCollection GetOutputTableProperties() const {
return output_table_properties_;
}
void SetOutputTableProperties(TablePropertiesCollection tp) {
output_table_properties_ = std::move(tp);
}
Slice GetSmallestUserKey() const { return smallest_user_key_; }
Slice GetLargestUserKey() const { return largest_user_key_; }
int GetInputBaseLevel() const;
CompactionReason compaction_reason() { return compaction_reason_; }
const std::vector<FileMetaData*>& grandparents() const {
return grandparents_;
}
uint64_t max_compaction_bytes() const { return max_compaction_bytes_; }
Temperature output_temperature() const { return output_temperature_; }
uint32_t max_subcompactions() const { return max_subcompactions_; }
// start and end are sub compact range. Null if no boundary.
// This is used to filter out some input files' ancester's time range.
uint64_t MinInputFileOldestAncesterTime(const InternalKey* start,
const InternalKey* end) const;
// Called by DBImpl::NotifyOnCompactionCompleted to make sure number of
// compaction begin and compaction completion callbacks match.
void SetNotifyOnCompactionCompleted() {
notify_on_compaction_completion_ = true;
}
bool ShouldNotifyOnCompactionCompleted() const {
return notify_on_compaction_completion_;
}
private:
// mark (or clear) all files that are being compacted
void MarkFilesBeingCompacted(bool mark_as_compacted);
// get the smallest and largest key present in files to be compacted
static void GetBoundaryKeys(VersionStorageInfo* vstorage,
const std::vector<CompactionInputFiles>& inputs,
Slice* smallest_key, Slice* largest_key);
// Get the atomic file boundaries for all files in the compaction. Necessary
// in order to avoid the scenario described in
// https://github.com/facebook/rocksdb/pull/4432#discussion_r221072219 and plumb
// down appropriate key boundaries to RangeDelAggregator during compaction.
static std::vector<CompactionInputFiles> PopulateWithAtomicBoundaries(
VersionStorageInfo* vstorage, std::vector<CompactionInputFiles> inputs);
// helper function to determine if compaction with inputs and storage is
// bottommost
static bool IsBottommostLevel(
int output_level, VersionStorageInfo* vstorage,
const std::vector<CompactionInputFiles>& inputs);
static bool IsFullCompaction(VersionStorageInfo* vstorage,
const std::vector<CompactionInputFiles>& inputs);
VersionStorageInfo* input_vstorage_;
const int start_level_; // the lowest level to be compacted
const int output_level_; // levels to which output files are stored
uint64_t max_output_file_size_;
uint64_t max_compaction_bytes_;
uint32_t max_subcompactions_;
const ImmutableOptions immutable_options_;
const MutableCFOptions mutable_cf_options_;
Version* input_version_;
VersionEdit edit_;
const int number_levels_;
ColumnFamilyData* cfd_;
Arena arena_; // Arena used to allocate space for file_levels_
const uint32_t output_path_id_;
CompressionType output_compression_;
CompressionOptions output_compression_opts_;
Temperature output_temperature_;
// If true, then the compaction can be done by simply deleting input files.
const bool deletion_compaction_;
// Compaction input files organized by level. Constant after construction
const std::vector<CompactionInputFiles> inputs_;
// A copy of inputs_, organized more closely in memory
autovector<LevelFilesBrief, 2> input_levels_;
// State used to check for number of overlapping grandparent files
// (grandparent == "output_level_ + 1")
std::vector<FileMetaData*> grandparents_;
const double score_; // score that was used to pick this compaction.
// Is this compaction creating a file in the bottom most level?
const bool bottommost_level_;
// Does this compaction include all sst files?
const bool is_full_compaction_;
// Is this compaction requested by the client?
const bool is_manual_compaction_;
// True if we can do trivial move in Universal multi level
// compaction
bool is_trivial_move_;
// Does input compression match the output compression?
bool InputCompressionMatchesOutput() const;
// table properties of output files
TablePropertiesCollection output_table_properties_;
// smallest user keys in compaction
Slice smallest_user_key_;
// largest user keys in compaction
Slice largest_user_key_;
// Reason for compaction
CompactionReason compaction_reason_;
// Notify on compaction completion only if listener was notified on compaction
// begin.
bool notify_on_compaction_completion_;
};
// Return sum of sizes of all files in `files`.
extern uint64_t TotalFileSize(const std::vector<FileMetaData*>& files);
} // namespace ROCKSDB_NAMESPACE