a7d4bea43a
Summary: XXH3 - latest hash function that is extremely fast on large data, easily faster than crc32c on most any x86_64 hardware. In integrating this hash function, I have handled the compression type byte in a non-standard way to avoid using the streaming API (extra data movement and active code size because of hash function complexity). This approach got a thumbs-up from Yann Collet. Existing functionality change: * reject bad ChecksumType in options with InvalidArgument This change split off from https://github.com/facebook/rocksdb/issues/9058 because context-aware checksum is likely to be handled through different configuration than ChecksumType. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9069 Test Plan: tests updated, and substantially expanded. Unit tests now check that we don't accidentally change the values generated by the checksum algorithms ("schema test") and that we properly handle invalid/unrecognized checksum types in options or in file footer. DBTestBase::ChangeOptions (etc.) updated from two to one configuration changing from default CRC32c ChecksumType. The point of this test code is to detect possible interactions among features, and the likelihood of some bad interaction being detected by including configurations other than XXH3 and CRC32c--and then not detected by stress/crash test--is extremely low. Stress/crash test also updated (manual run long enough to see it accepts new checksum type). db_bench also updated for microbenchmarking checksums. ### Performance microbenchmark (PORTABLE=0 DEBUG_LEVEL=0, Broadwell processor) ./db_bench -benchmarks=crc32c,xxhash,xxhash64,xxh3,crc32c,xxhash,xxhash64,xxh3,crc32c,xxhash,xxhash64,xxh3 crc32c : 0.200 micros/op 5005220 ops/sec; 19551.6 MB/s (4096 per op) xxhash : 0.807 micros/op 1238408 ops/sec; 4837.5 MB/s (4096 per op) xxhash64 : 0.421 micros/op 2376514 ops/sec; 9283.3 MB/s (4096 per op) xxh3 : 0.171 micros/op 5858391 ops/sec; 22884.3 MB/s (4096 per op) crc32c : 0.206 micros/op 4859566 ops/sec; 18982.7 MB/s (4096 per op) xxhash : 0.793 micros/op 1260850 ops/sec; 4925.2 MB/s (4096 per op) xxhash64 : 0.410 micros/op 2439182 ops/sec; 9528.1 MB/s (4096 per op) xxh3 : 0.161 micros/op 6202872 ops/sec; 24230.0 MB/s (4096 per op) crc32c : 0.203 micros/op 4924686 ops/sec; 19237.1 MB/s (4096 per op) xxhash : 0.839 micros/op 1192388 ops/sec; 4657.8 MB/s (4096 per op) xxhash64 : 0.424 micros/op 2357391 ops/sec; 9208.6 MB/s (4096 per op) xxh3 : 0.162 micros/op 6182678 ops/sec; 24151.1 MB/s (4096 per op) As you can see, especially once warmed up, xxh3 is fastest. ### Performance macrobenchmark (PORTABLE=0 DEBUG_LEVEL=0, Broadwell processor) Test for I in `seq 1 50`; do for CHK in 0 1 2 3 4; do TEST_TMPDIR=/dev/shm/rocksdb$CHK ./db_bench -benchmarks=fillseq -memtablerep=vector -allow_concurrent_memtable_write=false -num=30000000 -checksum_type=$CHK 2>&1 | grep 'micros/op' | tee -a results-$CHK & done; wait; done Results (ops/sec) for FILE in results*; do echo -n "$FILE "; awk '{ s += $5; c++; } END { print 1.0 * s / c; }' < $FILE; done results-0 252118 # kNoChecksum results-1 251588 # kCRC32c results-2 251863 # kxxHash results-3 252016 # kxxHash64 results-4 252038 # kXXH3 Reviewed By: mrambacher Differential Revision: D31905249 Pulled By: pdillinger fbshipit-source-id: cb9b998ebe2523fc7c400eedf62124a78bf4b4d1
8194 lines
297 KiB
C++
8194 lines
297 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#ifdef GFLAGS
|
|
#ifdef NUMA
|
|
#include <numa.h>
|
|
#endif
|
|
#ifndef OS_WIN
|
|
#include <unistd.h>
|
|
#endif
|
|
#include <fcntl.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <sys/types.h>
|
|
#ifdef __APPLE__
|
|
#include <mach/host_info.h>
|
|
#include <mach/mach_host.h>
|
|
#include <sys/sysctl.h>
|
|
#endif
|
|
#ifdef __FreeBSD__
|
|
#include <sys/sysctl.h>
|
|
#endif
|
|
#include <atomic>
|
|
#include <cinttypes>
|
|
#include <condition_variable>
|
|
#include <cstddef>
|
|
#include <memory>
|
|
#include <mutex>
|
|
#include <queue>
|
|
#include <thread>
|
|
#include <unordered_map>
|
|
|
|
#include "db/db_impl/db_impl.h"
|
|
#include "db/malloc_stats.h"
|
|
#include "db/version_set.h"
|
|
#include "hdfs/env_hdfs.h"
|
|
#include "monitoring/histogram.h"
|
|
#include "monitoring/statistics.h"
|
|
#include "options/cf_options.h"
|
|
#include "port/port.h"
|
|
#include "port/stack_trace.h"
|
|
#include "rocksdb/cache.h"
|
|
#include "rocksdb/convenience.h"
|
|
#include "rocksdb/db.h"
|
|
#include "rocksdb/env.h"
|
|
#include "rocksdb/filter_policy.h"
|
|
#include "rocksdb/memtablerep.h"
|
|
#include "rocksdb/options.h"
|
|
#include "rocksdb/perf_context.h"
|
|
#include "rocksdb/persistent_cache.h"
|
|
#include "rocksdb/rate_limiter.h"
|
|
#include "rocksdb/secondary_cache.h"
|
|
#include "rocksdb/slice.h"
|
|
#include "rocksdb/slice_transform.h"
|
|
#include "rocksdb/stats_history.h"
|
|
#include "rocksdb/table.h"
|
|
#include "rocksdb/utilities/object_registry.h"
|
|
#include "rocksdb/utilities/optimistic_transaction_db.h"
|
|
#include "rocksdb/utilities/options_type.h"
|
|
#include "rocksdb/utilities/options_util.h"
|
|
#ifndef ROCKSDB_LITE
|
|
#include "rocksdb/utilities/replayer.h"
|
|
#endif // ROCKSDB_LITE
|
|
#include "rocksdb/utilities/sim_cache.h"
|
|
#include "rocksdb/utilities/transaction.h"
|
|
#include "rocksdb/utilities/transaction_db.h"
|
|
#include "rocksdb/write_batch.h"
|
|
#include "test_util/testutil.h"
|
|
#include "test_util/transaction_test_util.h"
|
|
#include "tools/simulated_hybrid_file_system.h"
|
|
#include "util/cast_util.h"
|
|
#include "util/compression.h"
|
|
#include "util/crc32c.h"
|
|
#include "util/gflags_compat.h"
|
|
#include "util/mutexlock.h"
|
|
#include "util/random.h"
|
|
#include "util/stderr_logger.h"
|
|
#include "util/string_util.h"
|
|
#include "util/xxhash.h"
|
|
#include "utilities/blob_db/blob_db.h"
|
|
#include "utilities/merge_operators.h"
|
|
#include "utilities/merge_operators/bytesxor.h"
|
|
#include "utilities/merge_operators/sortlist.h"
|
|
#include "utilities/persistent_cache/block_cache_tier.h"
|
|
|
|
#ifdef MEMKIND
|
|
#include "memory/memkind_kmem_allocator.h"
|
|
#endif
|
|
|
|
#ifdef OS_WIN
|
|
#include <io.h> // open/close
|
|
#endif
|
|
|
|
using GFLAGS_NAMESPACE::ParseCommandLineFlags;
|
|
using GFLAGS_NAMESPACE::RegisterFlagValidator;
|
|
using GFLAGS_NAMESPACE::SetUsageMessage;
|
|
|
|
#ifdef ROCKSDB_LITE
|
|
#define IF_ROCKSDB_LITE(Then, Else) Then
|
|
#else
|
|
#define IF_ROCKSDB_LITE(Then, Else) Else
|
|
#endif
|
|
|
|
DEFINE_string(
|
|
benchmarks,
|
|
"fillseq,"
|
|
"fillseqdeterministic,"
|
|
"fillsync,"
|
|
"fillrandom,"
|
|
"filluniquerandomdeterministic,"
|
|
"overwrite,"
|
|
"readrandom,"
|
|
"newiterator,"
|
|
"newiteratorwhilewriting,"
|
|
"seekrandom,"
|
|
"seekrandomwhilewriting,"
|
|
"seekrandomwhilemerging,"
|
|
"readseq,"
|
|
"readreverse,"
|
|
"compact,"
|
|
"compactall,"
|
|
"flush,"
|
|
IF_ROCKSDB_LITE("",
|
|
"compact0,"
|
|
"compact1,"
|
|
"waitforcompaction,"
|
|
)
|
|
"multireadrandom,"
|
|
"mixgraph,"
|
|
"readseq,"
|
|
"readtorowcache,"
|
|
"readtocache,"
|
|
"readreverse,"
|
|
"readwhilewriting,"
|
|
"readwhilemerging,"
|
|
"readwhilescanning,"
|
|
"readrandomwriterandom,"
|
|
"updaterandom,"
|
|
"xorupdaterandom,"
|
|
"approximatesizerandom,"
|
|
"randomwithverify,"
|
|
"fill100K,"
|
|
"crc32c,"
|
|
"xxhash,"
|
|
"xxhash64,"
|
|
"xxh3,"
|
|
"compress,"
|
|
"uncompress,"
|
|
"acquireload,"
|
|
"fillseekseq,"
|
|
"randomtransaction,"
|
|
"randomreplacekeys,"
|
|
"timeseries,"
|
|
"getmergeoperands",
|
|
|
|
"Comma-separated list of operations to run in the specified"
|
|
" order. Available benchmarks:\n"
|
|
"\tfillseq -- write N values in sequential key"
|
|
" order in async mode\n"
|
|
"\tfillseqdeterministic -- write N values in the specified"
|
|
" key order and keep the shape of the LSM tree\n"
|
|
"\tfillrandom -- write N values in random key order in async"
|
|
" mode\n"
|
|
"\tfilluniquerandomdeterministic -- write N values in a random"
|
|
" key order and keep the shape of the LSM tree\n"
|
|
"\toverwrite -- overwrite N values in random key order in"
|
|
" async mode\n"
|
|
"\tfillsync -- write N/1000 values in random key order in "
|
|
"sync mode\n"
|
|
"\tfill100K -- write N/1000 100K values in random order in"
|
|
" async mode\n"
|
|
"\tdeleteseq -- delete N keys in sequential order\n"
|
|
"\tdeleterandom -- delete N keys in random order\n"
|
|
"\treadseq -- read N times sequentially\n"
|
|
"\treadtocache -- 1 thread reading database sequentially\n"
|
|
"\treadreverse -- read N times in reverse order\n"
|
|
"\treadrandom -- read N times in random order\n"
|
|
"\treadmissing -- read N missing keys in random order\n"
|
|
"\treadwhilewriting -- 1 writer, N threads doing random "
|
|
"reads\n"
|
|
"\treadwhilemerging -- 1 merger, N threads doing random "
|
|
"reads\n"
|
|
"\treadwhilescanning -- 1 thread doing full table scan, "
|
|
"N threads doing random reads\n"
|
|
"\treadrandomwriterandom -- N threads doing random-read, "
|
|
"random-write\n"
|
|
"\tupdaterandom -- N threads doing read-modify-write for random "
|
|
"keys\n"
|
|
"\txorupdaterandom -- N threads doing read-XOR-write for "
|
|
"random keys\n"
|
|
"\tappendrandom -- N threads doing read-modify-write with "
|
|
"growing values\n"
|
|
"\tmergerandom -- same as updaterandom/appendrandom using merge"
|
|
" operator. "
|
|
"Must be used with merge_operator\n"
|
|
"\treadrandommergerandom -- perform N random read-or-merge "
|
|
"operations. Must be used with merge_operator\n"
|
|
"\tnewiterator -- repeated iterator creation\n"
|
|
"\tseekrandom -- N random seeks, call Next seek_nexts times "
|
|
"per seek\n"
|
|
"\tseekrandomwhilewriting -- seekrandom and 1 thread doing "
|
|
"overwrite\n"
|
|
"\tseekrandomwhilemerging -- seekrandom and 1 thread doing "
|
|
"merge\n"
|
|
"\tcrc32c -- repeated crc32c of <block size> data\n"
|
|
"\txxhash -- repeated xxHash of <block size> data\n"
|
|
"\txxhash64 -- repeated xxHash64 of <block size> data\n"
|
|
"\txxh3 -- repeated XXH3 of <block size> data\n"
|
|
"\tacquireload -- load N*1000 times\n"
|
|
"\tfillseekseq -- write N values in sequential key, then read "
|
|
"them by seeking to each key\n"
|
|
"\trandomtransaction -- execute N random transactions and "
|
|
"verify correctness\n"
|
|
"\trandomreplacekeys -- randomly replaces N keys by deleting "
|
|
"the old version and putting the new version\n\n"
|
|
"\ttimeseries -- 1 writer generates time series data "
|
|
"and multiple readers doing random reads on id\n\n"
|
|
"Meta operations:\n"
|
|
"\tcompact -- Compact the entire DB; If multiple, randomly choose one\n"
|
|
"\tcompactall -- Compact the entire DB\n"
|
|
IF_ROCKSDB_LITE("",
|
|
"\tcompact0 -- compact L0 into L1\n"
|
|
"\tcompact1 -- compact L1 into L2\n"
|
|
"\twaitforcompaction - pause until compaction is (probably) done\n"
|
|
)
|
|
"\tflush - flush the memtable\n"
|
|
"\tstats -- Print DB stats\n"
|
|
"\tresetstats -- Reset DB stats\n"
|
|
"\tlevelstats -- Print the number of files and bytes per level\n"
|
|
"\tmemstats -- Print memtable stats\n"
|
|
"\tsstables -- Print sstable info\n"
|
|
"\theapprofile -- Dump a heap profile (if supported by this port)\n"
|
|
#ifndef ROCKSDB_LITE
|
|
"\treplay -- replay the trace file specified with trace_file\n"
|
|
#endif // ROCKSDB_LITE
|
|
"\tgetmergeoperands -- Insert lots of merge records which are a list of "
|
|
"sorted ints for a key and then compare performance of lookup for another "
|
|
"key "
|
|
"by doing a Get followed by binary searching in the large sorted list vs "
|
|
"doing a GetMergeOperands and binary searching in the operands which are"
|
|
"sorted sub-lists. The MergeOperator used is sortlist.h\n");
|
|
|
|
DEFINE_int64(num, 1000000, "Number of key/values to place in database");
|
|
|
|
DEFINE_int64(numdistinct, 1000,
|
|
"Number of distinct keys to use. Used in RandomWithVerify to "
|
|
"read/write on fewer keys so that gets are more likely to find the"
|
|
" key and puts are more likely to update the same key");
|
|
|
|
DEFINE_int64(merge_keys, -1,
|
|
"Number of distinct keys to use for MergeRandom and "
|
|
"ReadRandomMergeRandom. "
|
|
"If negative, there will be FLAGS_num keys.");
|
|
DEFINE_int32(num_column_families, 1, "Number of Column Families to use.");
|
|
|
|
DEFINE_int32(
|
|
num_hot_column_families, 0,
|
|
"Number of Hot Column Families. If more than 0, only write to this "
|
|
"number of column families. After finishing all the writes to them, "
|
|
"create new set of column families and insert to them. Only used "
|
|
"when num_column_families > 1.");
|
|
|
|
DEFINE_string(column_family_distribution, "",
|
|
"Comma-separated list of percentages, where the ith element "
|
|
"indicates the probability of an op using the ith column family. "
|
|
"The number of elements must be `num_hot_column_families` if "
|
|
"specified; otherwise, it must be `num_column_families`. The "
|
|
"sum of elements must be 100. E.g., if `num_column_families=4`, "
|
|
"and `num_hot_column_families=0`, a valid list could be "
|
|
"\"10,20,30,40\".");
|
|
|
|
DEFINE_int64(reads, -1, "Number of read operations to do. "
|
|
"If negative, do FLAGS_num reads.");
|
|
|
|
DEFINE_int64(deletes, -1, "Number of delete operations to do. "
|
|
"If negative, do FLAGS_num deletions.");
|
|
|
|
DEFINE_int32(bloom_locality, 0, "Control bloom filter probes locality");
|
|
|
|
DEFINE_int64(seed, 0, "Seed base for random number generators. "
|
|
"When 0 it is deterministic.");
|
|
|
|
DEFINE_int32(threads, 1, "Number of concurrent threads to run.");
|
|
|
|
DEFINE_int32(duration, 0, "Time in seconds for the random-ops tests to run."
|
|
" When 0 then num & reads determine the test duration");
|
|
|
|
DEFINE_string(value_size_distribution_type, "fixed",
|
|
"Value size distribution type: fixed, uniform, normal");
|
|
|
|
DEFINE_int32(value_size, 100, "Size of each value in fixed distribution");
|
|
static unsigned int value_size = 100;
|
|
|
|
DEFINE_int32(value_size_min, 100, "Min size of random value");
|
|
|
|
DEFINE_int32(value_size_max, 102400, "Max size of random value");
|
|
|
|
DEFINE_int32(seek_nexts, 0,
|
|
"How many times to call Next() after Seek() in "
|
|
"fillseekseq, seekrandom, seekrandomwhilewriting and "
|
|
"seekrandomwhilemerging");
|
|
|
|
DEFINE_bool(reverse_iterator, false,
|
|
"When true use Prev rather than Next for iterators that do "
|
|
"Seek and then Next");
|
|
|
|
DEFINE_int64(max_scan_distance, 0,
|
|
"Used to define iterate_upper_bound (or iterate_lower_bound "
|
|
"if FLAGS_reverse_iterator is set to true) when value is nonzero");
|
|
|
|
DEFINE_bool(use_uint64_comparator, false, "use Uint64 user comparator");
|
|
|
|
DEFINE_int64(batch_size, 1, "Batch size");
|
|
|
|
static bool ValidateKeySize(const char* /*flagname*/, int32_t /*value*/) {
|
|
return true;
|
|
}
|
|
|
|
static bool ValidateUint32Range(const char* flagname, uint64_t value) {
|
|
if (value > std::numeric_limits<uint32_t>::max()) {
|
|
fprintf(stderr, "Invalid value for --%s: %lu, overflow\n", flagname,
|
|
(unsigned long)value);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
DEFINE_int32(key_size, 16, "size of each key");
|
|
|
|
DEFINE_int32(user_timestamp_size, 0,
|
|
"number of bytes in a user-defined timestamp");
|
|
|
|
DEFINE_int32(num_multi_db, 0,
|
|
"Number of DBs used in the benchmark. 0 means single DB.");
|
|
|
|
DEFINE_double(compression_ratio, 0.5, "Arrange to generate values that shrink"
|
|
" to this fraction of their original size after compression");
|
|
|
|
DEFINE_double(
|
|
overwrite_probability, 0.0,
|
|
"Used in 'filluniquerandom' benchmark: for each write operation, "
|
|
"we give a probability to perform an overwrite instead. The key used for "
|
|
"the overwrite is randomly chosen from the last 'overwrite_window_size' "
|
|
"keys "
|
|
"previously inserted into the DB. "
|
|
"Valid overwrite_probability values: [0.0, 1.0].");
|
|
|
|
DEFINE_uint32(overwrite_window_size, 1,
|
|
"Used in 'filluniquerandom' benchmark. For each write "
|
|
"operation, when "
|
|
"the overwrite_probability flag is set by the user, the key used "
|
|
"to perform "
|
|
"an overwrite is randomly chosen from the last "
|
|
"'overwrite_window_size' keys "
|
|
"previously inserted into the DB. "
|
|
"Warning: large values can affect throughput. "
|
|
"Valid overwrite_window_size values: [1, kMaxUint32].");
|
|
|
|
DEFINE_uint64(
|
|
disposable_entries_delete_delay, 0,
|
|
"Minimum delay in microseconds for the series of Deletes "
|
|
"to be issued. When 0 the insertion of the last disposable entry is "
|
|
"immediately followed by the issuance of the Deletes. "
|
|
"(only compatible with fillanddeleteuniquerandom benchmark).");
|
|
|
|
DEFINE_uint64(disposable_entries_batch_size, 0,
|
|
"Number of consecutively inserted disposable KV entries "
|
|
"that will be deleted after 'delete_delay' microseconds. "
|
|
"A series of Deletes is always issued once all the "
|
|
"disposable KV entries it targets have been inserted "
|
|
"into the DB. When 0 no deletes are issued and a "
|
|
"regular 'filluniquerandom' benchmark occurs. "
|
|
"(only compatible with fillanddeleteuniquerandom benchmark)");
|
|
|
|
DEFINE_int32(disposable_entries_value_size, 64,
|
|
"Size of the values (in bytes) of the entries targeted by "
|
|
"selective deletes. "
|
|
"(only compatible with fillanddeleteuniquerandom benchmark)");
|
|
|
|
DEFINE_uint64(
|
|
persistent_entries_batch_size, 0,
|
|
"Number of KV entries being inserted right before the deletes "
|
|
"targeting the disposable KV entries are issued. These "
|
|
"persistent keys are not targeted by the deletes, and will always "
|
|
"remain valid in the DB. (only compatible with "
|
|
"--benchmarks='fillanddeleteuniquerandom' "
|
|
"and used when--disposable_entries_batch_size is > 0).");
|
|
|
|
DEFINE_int32(persistent_entries_value_size, 64,
|
|
"Size of the values (in bytes) of the entries not targeted by "
|
|
"deletes. (only compatible with "
|
|
"--benchmarks='fillanddeleteuniquerandom' "
|
|
"and used when--disposable_entries_batch_size is > 0).");
|
|
|
|
DEFINE_double(read_random_exp_range, 0.0,
|
|
"Read random's key will be generated using distribution of "
|
|
"num * exp(-r) where r is uniform number from 0 to this value. "
|
|
"The larger the number is, the more skewed the reads are. "
|
|
"Only used in readrandom and multireadrandom benchmarks.");
|
|
|
|
DEFINE_bool(histogram, false, "Print histogram of operation timings");
|
|
|
|
DEFINE_bool(enable_numa, false,
|
|
"Make operations aware of NUMA architecture and bind memory "
|
|
"and cpus corresponding to nodes together. In NUMA, memory "
|
|
"in same node as CPUs are closer when compared to memory in "
|
|
"other nodes. Reads can be faster when the process is bound to "
|
|
"CPU and memory of same node. Use \"$numactl --hardware\" command "
|
|
"to see NUMA memory architecture.");
|
|
|
|
DEFINE_int64(db_write_buffer_size,
|
|
ROCKSDB_NAMESPACE::Options().db_write_buffer_size,
|
|
"Number of bytes to buffer in all memtables before compacting");
|
|
|
|
DEFINE_bool(cost_write_buffer_to_cache, false,
|
|
"The usage of memtable is costed to the block cache");
|
|
|
|
DEFINE_int64(arena_block_size, ROCKSDB_NAMESPACE::Options().arena_block_size,
|
|
"The size, in bytes, of one block in arena memory allocation.");
|
|
|
|
DEFINE_int64(write_buffer_size, ROCKSDB_NAMESPACE::Options().write_buffer_size,
|
|
"Number of bytes to buffer in memtable before compacting");
|
|
|
|
DEFINE_int32(max_write_buffer_number,
|
|
ROCKSDB_NAMESPACE::Options().max_write_buffer_number,
|
|
"The number of in-memory memtables. Each memtable is of size"
|
|
" write_buffer_size bytes.");
|
|
|
|
DEFINE_int32(min_write_buffer_number_to_merge,
|
|
ROCKSDB_NAMESPACE::Options().min_write_buffer_number_to_merge,
|
|
"The minimum number of write buffers that will be merged together"
|
|
"before writing to storage. This is cheap because it is an"
|
|
"in-memory merge. If this feature is not enabled, then all these"
|
|
"write buffers are flushed to L0 as separate files and this "
|
|
"increases read amplification because a get request has to check"
|
|
" in all of these files. Also, an in-memory merge may result in"
|
|
" writing less data to storage if there are duplicate records "
|
|
" in each of these individual write buffers.");
|
|
|
|
DEFINE_int32(max_write_buffer_number_to_maintain,
|
|
ROCKSDB_NAMESPACE::Options().max_write_buffer_number_to_maintain,
|
|
"The total maximum number of write buffers to maintain in memory "
|
|
"including copies of buffers that have already been flushed. "
|
|
"Unlike max_write_buffer_number, this parameter does not affect "
|
|
"flushing. This controls the minimum amount of write history "
|
|
"that will be available in memory for conflict checking when "
|
|
"Transactions are used. If this value is too low, some "
|
|
"transactions may fail at commit time due to not being able to "
|
|
"determine whether there were any write conflicts. Setting this "
|
|
"value to 0 will cause write buffers to be freed immediately "
|
|
"after they are flushed. If this value is set to -1, "
|
|
"'max_write_buffer_number' will be used.");
|
|
|
|
DEFINE_int64(max_write_buffer_size_to_maintain,
|
|
ROCKSDB_NAMESPACE::Options().max_write_buffer_size_to_maintain,
|
|
"The total maximum size of write buffers to maintain in memory "
|
|
"including copies of buffers that have already been flushed. "
|
|
"Unlike max_write_buffer_number, this parameter does not affect "
|
|
"flushing. This controls the minimum amount of write history "
|
|
"that will be available in memory for conflict checking when "
|
|
"Transactions are used. If this value is too low, some "
|
|
"transactions may fail at commit time due to not being able to "
|
|
"determine whether there were any write conflicts. Setting this "
|
|
"value to 0 will cause write buffers to be freed immediately "
|
|
"after they are flushed. If this value is set to -1, "
|
|
"'max_write_buffer_number' will be used.");
|
|
|
|
DEFINE_int32(max_background_jobs,
|
|
ROCKSDB_NAMESPACE::Options().max_background_jobs,
|
|
"The maximum number of concurrent background jobs that can occur "
|
|
"in parallel.");
|
|
|
|
DEFINE_int32(num_bottom_pri_threads, 0,
|
|
"The number of threads in the bottom-priority thread pool (used "
|
|
"by universal compaction only).");
|
|
|
|
DEFINE_int32(num_high_pri_threads, 0,
|
|
"The maximum number of concurrent background compactions"
|
|
" that can occur in parallel.");
|
|
|
|
DEFINE_int32(num_low_pri_threads, 0,
|
|
"The maximum number of concurrent background compactions"
|
|
" that can occur in parallel.");
|
|
|
|
DEFINE_int32(max_background_compactions,
|
|
ROCKSDB_NAMESPACE::Options().max_background_compactions,
|
|
"The maximum number of concurrent background compactions"
|
|
" that can occur in parallel.");
|
|
|
|
DEFINE_int32(base_background_compactions, -1, "DEPRECATED");
|
|
|
|
DEFINE_uint64(subcompactions, 1,
|
|
"Maximum number of subcompactions to divide L0-L1 compactions "
|
|
"into.");
|
|
static const bool FLAGS_subcompactions_dummy
|
|
__attribute__((__unused__)) = RegisterFlagValidator(&FLAGS_subcompactions,
|
|
&ValidateUint32Range);
|
|
|
|
DEFINE_int32(max_background_flushes,
|
|
ROCKSDB_NAMESPACE::Options().max_background_flushes,
|
|
"The maximum number of concurrent background flushes"
|
|
" that can occur in parallel.");
|
|
|
|
static ROCKSDB_NAMESPACE::CompactionStyle FLAGS_compaction_style_e;
|
|
DEFINE_int32(compaction_style,
|
|
(int32_t)ROCKSDB_NAMESPACE::Options().compaction_style,
|
|
"style of compaction: level-based, universal and fifo");
|
|
|
|
static ROCKSDB_NAMESPACE::CompactionPri FLAGS_compaction_pri_e;
|
|
DEFINE_int32(compaction_pri,
|
|
(int32_t)ROCKSDB_NAMESPACE::Options().compaction_pri,
|
|
"priority of files to compaction: by size or by data age");
|
|
|
|
DEFINE_int32(universal_size_ratio, 0,
|
|
"Percentage flexibility while comparing file size"
|
|
" (for universal compaction only).");
|
|
|
|
DEFINE_int32(universal_min_merge_width, 0, "The minimum number of files in a"
|
|
" single compaction run (for universal compaction only).");
|
|
|
|
DEFINE_int32(universal_max_merge_width, 0, "The max number of files to compact"
|
|
" in universal style compaction");
|
|
|
|
DEFINE_int32(universal_max_size_amplification_percent, 0,
|
|
"The max size amplification for universal style compaction");
|
|
|
|
DEFINE_int32(universal_compression_size_percent, -1,
|
|
"The percentage of the database to compress for universal "
|
|
"compaction. -1 means compress everything.");
|
|
|
|
DEFINE_bool(universal_allow_trivial_move, false,
|
|
"Allow trivial move in universal compaction.");
|
|
|
|
DEFINE_bool(universal_incremental, false,
|
|
"Enable incremental compactions in universal compaction.");
|
|
|
|
DEFINE_int64(cache_size, 8 << 20, // 8MB
|
|
"Number of bytes to use as a cache of uncompressed data");
|
|
|
|
DEFINE_int32(cache_numshardbits, 6,
|
|
"Number of shards for the block cache"
|
|
" is 2 ** cache_numshardbits. Negative means use default settings."
|
|
" This is applied only if FLAGS_cache_size is non-negative.");
|
|
|
|
DEFINE_double(cache_high_pri_pool_ratio, 0.0,
|
|
"Ratio of block cache reserve for high pri blocks. "
|
|
"If > 0.0, we also enable "
|
|
"cache_index_and_filter_blocks_with_high_priority.");
|
|
|
|
DEFINE_bool(use_clock_cache, false,
|
|
"Replace default LRU block cache with clock cache.");
|
|
|
|
DEFINE_int64(simcache_size, -1,
|
|
"Number of bytes to use as a simcache of "
|
|
"uncompressed data. Nagative value disables simcache.");
|
|
|
|
DEFINE_bool(cache_index_and_filter_blocks, false,
|
|
"Cache index/filter blocks in block cache.");
|
|
|
|
DEFINE_bool(use_cache_memkind_kmem_allocator, false,
|
|
"Use memkind kmem allocator for block cache.");
|
|
|
|
DEFINE_bool(partition_index_and_filters, false,
|
|
"Partition index and filter blocks.");
|
|
|
|
DEFINE_bool(partition_index, false, "Partition index blocks");
|
|
|
|
DEFINE_bool(index_with_first_key, false, "Include first key in the index");
|
|
|
|
DEFINE_bool(
|
|
optimize_filters_for_memory,
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().optimize_filters_for_memory,
|
|
"Minimize memory footprint of filters");
|
|
|
|
DEFINE_int64(
|
|
index_shortening_mode, 2,
|
|
"mode to shorten index: 0 for no shortening; 1 for only shortening "
|
|
"separaters; 2 for shortening shortening and successor");
|
|
|
|
DEFINE_int64(metadata_block_size,
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().metadata_block_size,
|
|
"Max partition size when partitioning index/filters");
|
|
|
|
// The default reduces the overhead of reading time with flash. With HDD, which
|
|
// offers much less throughput, however, this number better to be set to 1.
|
|
DEFINE_int32(ops_between_duration_checks, 1000,
|
|
"Check duration limit every x ops");
|
|
|
|
DEFINE_bool(pin_l0_filter_and_index_blocks_in_cache, false,
|
|
"Pin index/filter blocks of L0 files in block cache.");
|
|
|
|
DEFINE_bool(
|
|
pin_top_level_index_and_filter, false,
|
|
"Pin top-level index of partitioned index/filter blocks in block cache.");
|
|
|
|
DEFINE_int32(block_size,
|
|
static_cast<int32_t>(
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().block_size),
|
|
"Number of bytes in a block.");
|
|
|
|
DEFINE_int32(format_version,
|
|
static_cast<int32_t>(
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().format_version),
|
|
"Format version of SST files.");
|
|
|
|
DEFINE_int32(block_restart_interval,
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().block_restart_interval,
|
|
"Number of keys between restart points "
|
|
"for delta encoding of keys in data block.");
|
|
|
|
DEFINE_int32(
|
|
index_block_restart_interval,
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().index_block_restart_interval,
|
|
"Number of keys between restart points "
|
|
"for delta encoding of keys in index block.");
|
|
|
|
DEFINE_int32(read_amp_bytes_per_bit,
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().read_amp_bytes_per_bit,
|
|
"Number of bytes per bit to be used in block read-amp bitmap");
|
|
|
|
DEFINE_bool(
|
|
enable_index_compression,
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().enable_index_compression,
|
|
"Compress the index block");
|
|
|
|
DEFINE_bool(block_align,
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().block_align,
|
|
"Align data blocks on page size");
|
|
|
|
DEFINE_int64(prepopulate_block_cache, 0,
|
|
"Pre-populate hot/warm blocks in block cache. 0 to disable and 1 "
|
|
"to insert during flush");
|
|
|
|
DEFINE_bool(use_data_block_hash_index, false,
|
|
"if use kDataBlockBinaryAndHash "
|
|
"instead of kDataBlockBinarySearch. "
|
|
"This is valid if only we use BlockTable");
|
|
|
|
DEFINE_double(data_block_hash_table_util_ratio, 0.75,
|
|
"util ratio for data block hash index table. "
|
|
"This is only valid if use_data_block_hash_index is "
|
|
"set to true");
|
|
|
|
DEFINE_int64(compressed_cache_size, -1,
|
|
"Number of bytes to use as a cache of compressed data.");
|
|
|
|
DEFINE_int64(row_cache_size, 0,
|
|
"Number of bytes to use as a cache of individual rows"
|
|
" (0 = disabled).");
|
|
|
|
DEFINE_int32(open_files, ROCKSDB_NAMESPACE::Options().max_open_files,
|
|
"Maximum number of files to keep open at the same time"
|
|
" (use default if == 0)");
|
|
|
|
DEFINE_int32(file_opening_threads,
|
|
ROCKSDB_NAMESPACE::Options().max_file_opening_threads,
|
|
"If open_files is set to -1, this option set the number of "
|
|
"threads that will be used to open files during DB::Open()");
|
|
|
|
DEFINE_bool(new_table_reader_for_compaction_inputs, true,
|
|
"If true, uses a separate file handle for compaction inputs");
|
|
|
|
DEFINE_int32(compaction_readahead_size, 0, "Compaction readahead size");
|
|
|
|
DEFINE_int32(log_readahead_size, 0, "WAL and manifest readahead size");
|
|
|
|
DEFINE_int32(random_access_max_buffer_size, 1024 * 1024,
|
|
"Maximum windows randomaccess buffer size");
|
|
|
|
DEFINE_int32(writable_file_max_buffer_size, 1024 * 1024,
|
|
"Maximum write buffer for Writable File");
|
|
|
|
DEFINE_int32(bloom_bits, -1,
|
|
"Bloom filter bits per key. Negative means use default."
|
|
"Zero disables.");
|
|
|
|
DEFINE_bool(use_ribbon_filter, false, "Use Ribbon instead of Bloom filter");
|
|
|
|
DEFINE_double(memtable_bloom_size_ratio, 0,
|
|
"Ratio of memtable size used for bloom filter. 0 means no bloom "
|
|
"filter.");
|
|
DEFINE_bool(memtable_whole_key_filtering, false,
|
|
"Try to use whole key bloom filter in memtables.");
|
|
DEFINE_bool(memtable_use_huge_page, false,
|
|
"Try to use huge page in memtables.");
|
|
|
|
DEFINE_bool(use_existing_db, false, "If true, do not destroy the existing"
|
|
" database. If you set this flag and also specify a benchmark that"
|
|
" wants a fresh database, that benchmark will fail.");
|
|
|
|
DEFINE_bool(use_existing_keys, false,
|
|
"If true, uses existing keys in the DB, "
|
|
"rather than generating new ones. This involves some startup "
|
|
"latency to load all keys into memory. It is supported for the "
|
|
"same read/overwrite benchmarks as `-use_existing_db=true`, which "
|
|
"must also be set for this flag to be enabled. When this flag is "
|
|
"set, the value for `-num` will be ignored.");
|
|
|
|
DEFINE_bool(show_table_properties, false,
|
|
"If true, then per-level table"
|
|
" properties will be printed on every stats-interval when"
|
|
" stats_interval is set and stats_per_interval is on.");
|
|
|
|
DEFINE_string(db, "", "Use the db with the following name.");
|
|
|
|
// Read cache flags
|
|
|
|
DEFINE_string(read_cache_path, "",
|
|
"If not empty string, a read cache will be used in this path");
|
|
|
|
DEFINE_int64(read_cache_size, 4LL * 1024 * 1024 * 1024,
|
|
"Maximum size of the read cache");
|
|
|
|
DEFINE_bool(read_cache_direct_write, true,
|
|
"Whether to use Direct IO for writing to the read cache");
|
|
|
|
DEFINE_bool(read_cache_direct_read, true,
|
|
"Whether to use Direct IO for reading from read cache");
|
|
|
|
DEFINE_bool(use_keep_filter, false, "Whether to use a noop compaction filter");
|
|
|
|
static bool ValidateCacheNumshardbits(const char* flagname, int32_t value) {
|
|
if (value >= 20) {
|
|
fprintf(stderr, "Invalid value for --%s: %d, must be < 20\n",
|
|
flagname, value);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
DEFINE_bool(verify_checksum, true,
|
|
"Verify checksum for every block read"
|
|
" from storage");
|
|
|
|
DEFINE_int32(checksum_type,
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions().checksum,
|
|
"ChecksumType as an int");
|
|
|
|
DEFINE_bool(statistics, false, "Database statistics");
|
|
DEFINE_int32(stats_level, ROCKSDB_NAMESPACE::StatsLevel::kExceptDetailedTimers,
|
|
"stats level for statistics");
|
|
DEFINE_string(statistics_string, "", "Serialized statistics string");
|
|
static class std::shared_ptr<ROCKSDB_NAMESPACE::Statistics> dbstats;
|
|
|
|
DEFINE_int64(writes, -1, "Number of write operations to do. If negative, do"
|
|
" --num reads.");
|
|
|
|
DEFINE_bool(finish_after_writes, false, "Write thread terminates after all writes are finished");
|
|
|
|
DEFINE_bool(sync, false, "Sync all writes to disk");
|
|
|
|
DEFINE_bool(use_fsync, false, "If true, issue fsync instead of fdatasync");
|
|
|
|
DEFINE_bool(disable_wal, false, "If true, do not write WAL for write.");
|
|
|
|
DEFINE_string(wal_dir, "", "If not empty, use the given dir for WAL");
|
|
|
|
DEFINE_string(truth_db, "/dev/shm/truth_db/dbbench",
|
|
"Truth key/values used when using verify");
|
|
|
|
DEFINE_int32(num_levels, 7, "The total number of levels");
|
|
|
|
DEFINE_int64(target_file_size_base,
|
|
ROCKSDB_NAMESPACE::Options().target_file_size_base,
|
|
"Target file size at level-1");
|
|
|
|
DEFINE_int32(target_file_size_multiplier,
|
|
ROCKSDB_NAMESPACE::Options().target_file_size_multiplier,
|
|
"A multiplier to compute target level-N file size (N >= 2)");
|
|
|
|
DEFINE_uint64(max_bytes_for_level_base,
|
|
ROCKSDB_NAMESPACE::Options().max_bytes_for_level_base,
|
|
"Max bytes for level-1");
|
|
|
|
DEFINE_bool(level_compaction_dynamic_level_bytes, false,
|
|
"Whether level size base is dynamic");
|
|
|
|
DEFINE_double(max_bytes_for_level_multiplier, 10,
|
|
"A multiplier to compute max bytes for level-N (N >= 2)");
|
|
|
|
static std::vector<int> FLAGS_max_bytes_for_level_multiplier_additional_v;
|
|
DEFINE_string(max_bytes_for_level_multiplier_additional, "",
|
|
"A vector that specifies additional fanout per level");
|
|
|
|
DEFINE_int32(level0_stop_writes_trigger,
|
|
ROCKSDB_NAMESPACE::Options().level0_stop_writes_trigger,
|
|
"Number of files in level-0"
|
|
" that will trigger put stop.");
|
|
|
|
DEFINE_int32(level0_slowdown_writes_trigger,
|
|
ROCKSDB_NAMESPACE::Options().level0_slowdown_writes_trigger,
|
|
"Number of files in level-0"
|
|
" that will slow down writes.");
|
|
|
|
DEFINE_int32(level0_file_num_compaction_trigger,
|
|
ROCKSDB_NAMESPACE::Options().level0_file_num_compaction_trigger,
|
|
"Number of files in level-0"
|
|
" when compactions start");
|
|
|
|
DEFINE_uint64(periodic_compaction_seconds,
|
|
ROCKSDB_NAMESPACE::Options().periodic_compaction_seconds,
|
|
"Files older than this will be picked up for compaction and"
|
|
" rewritten to the same level");
|
|
|
|
static bool ValidateInt32Percent(const char* flagname, int32_t value) {
|
|
if (value <= 0 || value>=100) {
|
|
fprintf(stderr, "Invalid value for --%s: %d, 0< pct <100 \n",
|
|
flagname, value);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
DEFINE_int32(readwritepercent, 90, "Ratio of reads to reads/writes (expressed"
|
|
" as percentage) for the ReadRandomWriteRandom workload. The "
|
|
"default value 90 means 90% operations out of all reads and writes"
|
|
" operations are reads. In other words, 9 gets for every 1 put.");
|
|
|
|
DEFINE_int32(mergereadpercent, 70, "Ratio of merges to merges&reads (expressed"
|
|
" as percentage) for the ReadRandomMergeRandom workload. The"
|
|
" default value 70 means 70% out of all read and merge operations"
|
|
" are merges. In other words, 7 merges for every 3 gets.");
|
|
|
|
DEFINE_int32(deletepercent, 2, "Percentage of deletes out of reads/writes/"
|
|
"deletes (used in RandomWithVerify only). RandomWithVerify "
|
|
"calculates writepercent as (100 - FLAGS_readwritepercent - "
|
|
"deletepercent), so deletepercent must be smaller than (100 - "
|
|
"FLAGS_readwritepercent)");
|
|
|
|
DEFINE_bool(optimize_filters_for_hits, false,
|
|
"Optimizes bloom filters for workloads for most lookups return "
|
|
"a value. For now this doesn't create bloom filters for the max "
|
|
"level of the LSM to reduce metadata that should fit in RAM. ");
|
|
|
|
DEFINE_uint64(delete_obsolete_files_period_micros, 0,
|
|
"Ignored. Left here for backward compatibility");
|
|
|
|
DEFINE_int64(writes_before_delete_range, 0,
|
|
"Number of writes before DeleteRange is called regularly.");
|
|
|
|
DEFINE_int64(writes_per_range_tombstone, 0,
|
|
"Number of writes between range tombstones");
|
|
|
|
DEFINE_int64(range_tombstone_width, 100, "Number of keys in tombstone's range");
|
|
|
|
DEFINE_int64(max_num_range_tombstones, 0,
|
|
"Maximum number of range tombstones "
|
|
"to insert.");
|
|
|
|
DEFINE_bool(expand_range_tombstones, false,
|
|
"Expand range tombstone into sequential regular tombstones.");
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
// Transactions Options
|
|
DEFINE_bool(optimistic_transaction_db, false,
|
|
"Open a OptimisticTransactionDB instance. "
|
|
"Required for randomtransaction benchmark.");
|
|
|
|
DEFINE_bool(transaction_db, false,
|
|
"Open a TransactionDB instance. "
|
|
"Required for randomtransaction benchmark.");
|
|
|
|
DEFINE_uint64(transaction_sets, 2,
|
|
"Number of keys each transaction will "
|
|
"modify (use in RandomTransaction only). Max: 9999");
|
|
|
|
DEFINE_bool(transaction_set_snapshot, false,
|
|
"Setting to true will have each transaction call SetSnapshot()"
|
|
" upon creation.");
|
|
|
|
DEFINE_int32(transaction_sleep, 0,
|
|
"Max microseconds to sleep in between "
|
|
"reading and writing a value (used in RandomTransaction only). ");
|
|
|
|
DEFINE_uint64(transaction_lock_timeout, 100,
|
|
"If using a transaction_db, specifies the lock wait timeout in"
|
|
" milliseconds before failing a transaction waiting on a lock");
|
|
DEFINE_string(
|
|
options_file, "",
|
|
"The path to a RocksDB options file. If specified, then db_bench will "
|
|
"run with the RocksDB options in the default column family of the "
|
|
"specified options file. "
|
|
"Note that with this setting, db_bench will ONLY accept the following "
|
|
"RocksDB options related command-line arguments, all other arguments "
|
|
"that are related to RocksDB options will be ignored:\n"
|
|
"\t--use_existing_db\n"
|
|
"\t--use_existing_keys\n"
|
|
"\t--statistics\n"
|
|
"\t--row_cache_size\n"
|
|
"\t--row_cache_numshardbits\n"
|
|
"\t--enable_io_prio\n"
|
|
"\t--dump_malloc_stats\n"
|
|
"\t--num_multi_db\n");
|
|
|
|
// FIFO Compaction Options
|
|
DEFINE_uint64(fifo_compaction_max_table_files_size_mb, 0,
|
|
"The limit of total table file sizes to trigger FIFO compaction");
|
|
|
|
DEFINE_bool(fifo_compaction_allow_compaction, true,
|
|
"Allow compaction in FIFO compaction.");
|
|
|
|
DEFINE_uint64(fifo_compaction_ttl, 0, "TTL for the SST Files in seconds.");
|
|
|
|
DEFINE_uint64(fifo_age_for_warm, 0, "age_for_warm for FIFO compaction.");
|
|
|
|
// Stacked BlobDB Options
|
|
DEFINE_bool(use_blob_db, false, "[Stacked BlobDB] Open a BlobDB instance.");
|
|
|
|
DEFINE_bool(
|
|
blob_db_enable_gc,
|
|
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().enable_garbage_collection,
|
|
"[Stacked BlobDB] Enable BlobDB garbage collection.");
|
|
|
|
DEFINE_double(
|
|
blob_db_gc_cutoff,
|
|
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().garbage_collection_cutoff,
|
|
"[Stacked BlobDB] Cutoff ratio for BlobDB garbage collection.");
|
|
|
|
DEFINE_bool(blob_db_is_fifo,
|
|
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().is_fifo,
|
|
"[Stacked BlobDB] Enable FIFO eviction strategy in BlobDB.");
|
|
|
|
DEFINE_uint64(blob_db_max_db_size,
|
|
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().max_db_size,
|
|
"[Stacked BlobDB] Max size limit of the directory where blob "
|
|
"files are stored.");
|
|
|
|
DEFINE_uint64(blob_db_max_ttl_range, 0,
|
|
"[Stacked BlobDB] TTL range to generate BlobDB data (in "
|
|
"seconds). 0 means no TTL.");
|
|
|
|
DEFINE_uint64(
|
|
blob_db_ttl_range_secs,
|
|
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().ttl_range_secs,
|
|
"[Stacked BlobDB] TTL bucket size to use when creating blob files.");
|
|
|
|
DEFINE_uint64(
|
|
blob_db_min_blob_size,
|
|
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().min_blob_size,
|
|
"[Stacked BlobDB] Smallest blob to store in a file. Blobs "
|
|
"smaller than this will be inlined with the key in the LSM tree.");
|
|
|
|
DEFINE_uint64(blob_db_bytes_per_sync,
|
|
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().bytes_per_sync,
|
|
"[Stacked BlobDB] Bytes to sync blob file at.");
|
|
|
|
DEFINE_uint64(blob_db_file_size,
|
|
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().blob_file_size,
|
|
"[Stacked BlobDB] Target size of each blob file.");
|
|
|
|
DEFINE_string(
|
|
blob_db_compression_type, "snappy",
|
|
"[Stacked BlobDB] Algorithm to use to compress blobs in blob files.");
|
|
static enum ROCKSDB_NAMESPACE::CompressionType
|
|
FLAGS_blob_db_compression_type_e = ROCKSDB_NAMESPACE::kSnappyCompression;
|
|
|
|
#endif // ROCKSDB_LITE
|
|
|
|
// Integrated BlobDB options
|
|
DEFINE_bool(
|
|
enable_blob_files,
|
|
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions().enable_blob_files,
|
|
"[Integrated BlobDB] Enable writing large values to separate blob files.");
|
|
|
|
DEFINE_uint64(min_blob_size,
|
|
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions().min_blob_size,
|
|
"[Integrated BlobDB] The size of the smallest value to be stored "
|
|
"separately in a blob file.");
|
|
|
|
DEFINE_uint64(blob_file_size,
|
|
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions().blob_file_size,
|
|
"[Integrated BlobDB] The size limit for blob files.");
|
|
|
|
DEFINE_string(blob_compression_type, "none",
|
|
"[Integrated BlobDB] The compression algorithm to use for large "
|
|
"values stored in blob files.");
|
|
|
|
DEFINE_bool(enable_blob_garbage_collection,
|
|
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions()
|
|
.enable_blob_garbage_collection,
|
|
"[Integrated BlobDB] Enable blob garbage collection.");
|
|
|
|
DEFINE_double(blob_garbage_collection_age_cutoff,
|
|
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions()
|
|
.blob_garbage_collection_age_cutoff,
|
|
"[Integrated BlobDB] The cutoff in terms of blob file age for "
|
|
"garbage collection.");
|
|
|
|
DEFINE_double(blob_garbage_collection_force_threshold,
|
|
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions()
|
|
.blob_garbage_collection_force_threshold,
|
|
"[Integrated BlobDB] The threshold for the ratio of garbage in "
|
|
"the oldest blob files for forcing garbage collection.");
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
|
|
// Secondary DB instance Options
|
|
DEFINE_bool(use_secondary_db, false,
|
|
"Open a RocksDB secondary instance. A primary instance can be "
|
|
"running in another db_bench process.");
|
|
|
|
DEFINE_string(secondary_path, "",
|
|
"Path to a directory used by the secondary instance to store "
|
|
"private files, e.g. info log.");
|
|
|
|
DEFINE_int32(secondary_update_interval, 5,
|
|
"Secondary instance attempts to catch up with the primary every "
|
|
"secondary_update_interval seconds.");
|
|
|
|
#endif // ROCKSDB_LITE
|
|
|
|
DEFINE_bool(report_bg_io_stats, false,
|
|
"Measure times spents on I/Os while in compactions. ");
|
|
|
|
DEFINE_bool(use_stderr_info_logger, false,
|
|
"Write info logs to stderr instead of to LOG file. ");
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
|
|
DEFINE_string(trace_file, "", "Trace workload to a file. ");
|
|
|
|
DEFINE_double(trace_replay_fast_forward, 1.0,
|
|
"Fast forward trace replay, must > 0.0.");
|
|
DEFINE_int32(block_cache_trace_sampling_frequency, 1,
|
|
"Block cache trace sampling frequency, termed s. It uses spatial "
|
|
"downsampling and samples accesses to one out of s blocks.");
|
|
DEFINE_int64(
|
|
block_cache_trace_max_trace_file_size_in_bytes,
|
|
uint64_t{64} * 1024 * 1024 * 1024,
|
|
"The maximum block cache trace file size in bytes. Block cache accesses "
|
|
"will not be logged if the trace file size exceeds this threshold. Default "
|
|
"is 64 GB.");
|
|
DEFINE_string(block_cache_trace_file, "", "Block cache trace file path.");
|
|
DEFINE_int32(trace_replay_threads, 1,
|
|
"The number of threads to replay, must >=1.");
|
|
|
|
DEFINE_bool(io_uring_enabled, true,
|
|
"If true, enable the use of IO uring if the platform supports it");
|
|
extern "C" bool RocksDbIOUringEnable() { return FLAGS_io_uring_enabled; }
|
|
#endif // ROCKSDB_LITE
|
|
|
|
static enum ROCKSDB_NAMESPACE::CompressionType StringToCompressionType(
|
|
const char* ctype) {
|
|
assert(ctype);
|
|
|
|
if (!strcasecmp(ctype, "none"))
|
|
return ROCKSDB_NAMESPACE::kNoCompression;
|
|
else if (!strcasecmp(ctype, "snappy"))
|
|
return ROCKSDB_NAMESPACE::kSnappyCompression;
|
|
else if (!strcasecmp(ctype, "zlib"))
|
|
return ROCKSDB_NAMESPACE::kZlibCompression;
|
|
else if (!strcasecmp(ctype, "bzip2"))
|
|
return ROCKSDB_NAMESPACE::kBZip2Compression;
|
|
else if (!strcasecmp(ctype, "lz4"))
|
|
return ROCKSDB_NAMESPACE::kLZ4Compression;
|
|
else if (!strcasecmp(ctype, "lz4hc"))
|
|
return ROCKSDB_NAMESPACE::kLZ4HCCompression;
|
|
else if (!strcasecmp(ctype, "xpress"))
|
|
return ROCKSDB_NAMESPACE::kXpressCompression;
|
|
else if (!strcasecmp(ctype, "zstd"))
|
|
return ROCKSDB_NAMESPACE::kZSTD;
|
|
|
|
fprintf(stdout, "Cannot parse compression type '%s'\n", ctype);
|
|
return ROCKSDB_NAMESPACE::kSnappyCompression; // default value
|
|
}
|
|
|
|
static std::string ColumnFamilyName(size_t i) {
|
|
if (i == 0) {
|
|
return ROCKSDB_NAMESPACE::kDefaultColumnFamilyName;
|
|
} else {
|
|
char name[100];
|
|
snprintf(name, sizeof(name), "column_family_name_%06zu", i);
|
|
return std::string(name);
|
|
}
|
|
}
|
|
|
|
DEFINE_string(compression_type, "snappy",
|
|
"Algorithm to use to compress the database");
|
|
static enum ROCKSDB_NAMESPACE::CompressionType FLAGS_compression_type_e =
|
|
ROCKSDB_NAMESPACE::kSnappyCompression;
|
|
|
|
DEFINE_int64(sample_for_compression, 0, "Sample every N block for compression");
|
|
|
|
DEFINE_int32(compression_level, ROCKSDB_NAMESPACE::CompressionOptions().level,
|
|
"Compression level. The meaning of this value is library-"
|
|
"dependent. If unset, we try to use the default for the library "
|
|
"specified in `--compression_type`");
|
|
|
|
DEFINE_int32(compression_max_dict_bytes,
|
|
ROCKSDB_NAMESPACE::CompressionOptions().max_dict_bytes,
|
|
"Maximum size of dictionary used to prime the compression "
|
|
"library.");
|
|
|
|
DEFINE_int32(compression_zstd_max_train_bytes,
|
|
ROCKSDB_NAMESPACE::CompressionOptions().zstd_max_train_bytes,
|
|
"Maximum size of training data passed to zstd's dictionary "
|
|
"trainer.");
|
|
|
|
DEFINE_int32(min_level_to_compress, -1, "If non-negative, compression starts"
|
|
" from this level. Levels with number < min_level_to_compress are"
|
|
" not compressed. Otherwise, apply compression_type to "
|
|
"all levels.");
|
|
|
|
DEFINE_int32(compression_parallel_threads, 1,
|
|
"Number of threads for parallel compression.");
|
|
|
|
DEFINE_uint64(compression_max_dict_buffer_bytes,
|
|
ROCKSDB_NAMESPACE::CompressionOptions().max_dict_buffer_bytes,
|
|
"Maximum bytes to buffer to collect samples for dictionary.");
|
|
|
|
static bool ValidateTableCacheNumshardbits(const char* flagname,
|
|
int32_t value) {
|
|
if (0 >= value || value >= 20) {
|
|
fprintf(stderr, "Invalid value for --%s: %d, must be 0 < val < 20\n",
|
|
flagname, value);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
DEFINE_int32(table_cache_numshardbits, 4, "");
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
DEFINE_string(env_uri, "",
|
|
"URI for registry Env lookup. Mutually exclusive"
|
|
" with --hdfs and --fs_uri");
|
|
DEFINE_string(fs_uri, "",
|
|
"URI for registry Filesystem lookup. Mutually exclusive"
|
|
" with --hdfs and --env_uri."
|
|
" Creates a default environment with the specified filesystem.");
|
|
#endif // ROCKSDB_LITE
|
|
DEFINE_string(hdfs, "",
|
|
"Name of hdfs environment. Mutually exclusive with"
|
|
" --env_uri and --fs_uri");
|
|
DEFINE_string(simulate_hybrid_fs_file, "",
|
|
"File for Store Metadata for Simulate hybrid FS. Empty means "
|
|
"disable the feature. Now, if it is set, "
|
|
"bottommost_temperature is set to kWarm.");
|
|
|
|
static std::shared_ptr<ROCKSDB_NAMESPACE::Env> env_guard;
|
|
|
|
static ROCKSDB_NAMESPACE::Env* FLAGS_env = ROCKSDB_NAMESPACE::Env::Default();
|
|
|
|
DEFINE_int64(stats_interval, 0, "Stats are reported every N operations when "
|
|
"this is greater than zero. When 0 the interval grows over time.");
|
|
|
|
DEFINE_int64(stats_interval_seconds, 0, "Report stats every N seconds. This "
|
|
"overrides stats_interval when both are > 0.");
|
|
|
|
DEFINE_int32(stats_per_interval, 0, "Reports additional stats per interval when"
|
|
" this is greater than 0.");
|
|
|
|
DEFINE_int64(report_interval_seconds, 0,
|
|
"If greater than zero, it will write simple stats in CSV format "
|
|
"to --report_file every N seconds");
|
|
|
|
DEFINE_string(report_file, "report.csv",
|
|
"Filename where some simple stats are reported to (if "
|
|
"--report_interval_seconds is bigger than 0)");
|
|
|
|
DEFINE_int32(thread_status_per_interval, 0,
|
|
"Takes and report a snapshot of the current status of each thread"
|
|
" when this is greater than 0.");
|
|
|
|
DEFINE_int32(perf_level, ROCKSDB_NAMESPACE::PerfLevel::kDisable,
|
|
"Level of perf collection");
|
|
|
|
static bool ValidateRateLimit(const char* flagname, double value) {
|
|
const double EPSILON = 1e-10;
|
|
if ( value < -EPSILON ) {
|
|
fprintf(stderr, "Invalid value for --%s: %12.6f, must be >= 0.0\n",
|
|
flagname, value);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
DEFINE_double(soft_rate_limit, 0.0, "DEPRECATED");
|
|
|
|
DEFINE_double(hard_rate_limit, 0.0, "DEPRECATED");
|
|
|
|
DEFINE_uint64(soft_pending_compaction_bytes_limit, 64ull * 1024 * 1024 * 1024,
|
|
"Slowdown writes if pending compaction bytes exceed this number");
|
|
|
|
DEFINE_uint64(hard_pending_compaction_bytes_limit, 128ull * 1024 * 1024 * 1024,
|
|
"Stop writes if pending compaction bytes exceed this number");
|
|
|
|
DEFINE_uint64(delayed_write_rate, 8388608u,
|
|
"Limited bytes allowed to DB when soft_rate_limit or "
|
|
"level0_slowdown_writes_trigger triggers");
|
|
|
|
DEFINE_bool(enable_pipelined_write, true,
|
|
"Allow WAL and memtable writes to be pipelined");
|
|
|
|
DEFINE_bool(
|
|
unordered_write, false,
|
|
"Enable the unordered write feature, which provides higher throughput but "
|
|
"relaxes the guarantees around atomic reads and immutable snapshots");
|
|
|
|
DEFINE_bool(allow_concurrent_memtable_write, true,
|
|
"Allow multi-writers to update mem tables in parallel.");
|
|
|
|
DEFINE_double(experimental_mempurge_threshold, 0.0,
|
|
"Maximum useful payload ratio estimate that triggers a mempurge "
|
|
"(memtable garbage collection).");
|
|
|
|
DEFINE_bool(inplace_update_support,
|
|
ROCKSDB_NAMESPACE::Options().inplace_update_support,
|
|
"Support in-place memtable update for smaller or same-size values");
|
|
|
|
DEFINE_uint64(inplace_update_num_locks,
|
|
ROCKSDB_NAMESPACE::Options().inplace_update_num_locks,
|
|
"Number of RW locks to protect in-place memtable updates");
|
|
|
|
DEFINE_bool(enable_write_thread_adaptive_yield, true,
|
|
"Use a yielding spin loop for brief writer thread waits.");
|
|
|
|
DEFINE_uint64(
|
|
write_thread_max_yield_usec, 100,
|
|
"Maximum microseconds for enable_write_thread_adaptive_yield operation.");
|
|
|
|
DEFINE_uint64(write_thread_slow_yield_usec, 3,
|
|
"The threshold at which a slow yield is considered a signal that "
|
|
"other processes or threads want the core.");
|
|
|
|
DEFINE_int32(rate_limit_delay_max_milliseconds, 1000,
|
|
"When hard_rate_limit is set then this is the max time a put will"
|
|
" be stalled.");
|
|
|
|
DEFINE_uint64(rate_limiter_bytes_per_sec, 0, "Set options.rate_limiter value.");
|
|
|
|
DEFINE_int64(rate_limiter_refill_period_us, 100 * 1000,
|
|
"Set refill period on "
|
|
"rate limiter.");
|
|
|
|
DEFINE_bool(rate_limiter_auto_tuned, false,
|
|
"Enable dynamic adjustment of rate limit according to demand for "
|
|
"background I/O");
|
|
|
|
|
|
DEFINE_bool(sine_write_rate, false,
|
|
"Use a sine wave write_rate_limit");
|
|
|
|
DEFINE_uint64(sine_write_rate_interval_milliseconds, 10000,
|
|
"Interval of which the sine wave write_rate_limit is recalculated");
|
|
|
|
DEFINE_double(sine_a, 1,
|
|
"A in f(x) = A sin(bx + c) + d");
|
|
|
|
DEFINE_double(sine_b, 1,
|
|
"B in f(x) = A sin(bx + c) + d");
|
|
|
|
DEFINE_double(sine_c, 0,
|
|
"C in f(x) = A sin(bx + c) + d");
|
|
|
|
DEFINE_double(sine_d, 1,
|
|
"D in f(x) = A sin(bx + c) + d");
|
|
|
|
DEFINE_bool(rate_limit_bg_reads, false,
|
|
"Use options.rate_limiter on compaction reads");
|
|
|
|
DEFINE_uint64(
|
|
benchmark_write_rate_limit, 0,
|
|
"If non-zero, db_bench will rate-limit the writes going into RocksDB. This "
|
|
"is the global rate in bytes/second.");
|
|
|
|
// the parameters of mix_graph
|
|
DEFINE_double(keyrange_dist_a, 0.0,
|
|
"The parameter 'a' of prefix average access distribution "
|
|
"f(x)=a*exp(b*x)+c*exp(d*x)");
|
|
DEFINE_double(keyrange_dist_b, 0.0,
|
|
"The parameter 'b' of prefix average access distribution "
|
|
"f(x)=a*exp(b*x)+c*exp(d*x)");
|
|
DEFINE_double(keyrange_dist_c, 0.0,
|
|
"The parameter 'c' of prefix average access distribution"
|
|
"f(x)=a*exp(b*x)+c*exp(d*x)");
|
|
DEFINE_double(keyrange_dist_d, 0.0,
|
|
"The parameter 'd' of prefix average access distribution"
|
|
"f(x)=a*exp(b*x)+c*exp(d*x)");
|
|
DEFINE_int64(keyrange_num, 1,
|
|
"The number of key ranges that are in the same prefix "
|
|
"group, each prefix range will have its key access "
|
|
"distribution");
|
|
DEFINE_double(key_dist_a, 0.0,
|
|
"The parameter 'a' of key access distribution model "
|
|
"f(x)=a*x^b");
|
|
DEFINE_double(key_dist_b, 0.0,
|
|
"The parameter 'b' of key access distribution model "
|
|
"f(x)=a*x^b");
|
|
DEFINE_double(value_theta, 0.0,
|
|
"The parameter 'theta' of Generized Pareto Distribution "
|
|
"f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
|
|
DEFINE_double(value_k, 0.0,
|
|
"The parameter 'k' of Generized Pareto Distribution "
|
|
"f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
|
|
DEFINE_double(value_sigma, 0.0,
|
|
"The parameter 'theta' of Generized Pareto Distribution "
|
|
"f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
|
|
DEFINE_double(iter_theta, 0.0,
|
|
"The parameter 'theta' of Generized Pareto Distribution "
|
|
"f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
|
|
DEFINE_double(iter_k, 0.0,
|
|
"The parameter 'k' of Generized Pareto Distribution "
|
|
"f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
|
|
DEFINE_double(iter_sigma, 0.0,
|
|
"The parameter 'sigma' of Generized Pareto Distribution "
|
|
"f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
|
|
DEFINE_double(mix_get_ratio, 1.0,
|
|
"The ratio of Get queries of mix_graph workload");
|
|
DEFINE_double(mix_put_ratio, 0.0,
|
|
"The ratio of Put queries of mix_graph workload");
|
|
DEFINE_double(mix_seek_ratio, 0.0,
|
|
"The ratio of Seek queries of mix_graph workload");
|
|
DEFINE_int64(mix_max_scan_len, 10000, "The max scan length of Iterator");
|
|
DEFINE_int64(mix_max_value_size, 1024, "The max value size of this workload");
|
|
DEFINE_double(
|
|
sine_mix_rate_noise, 0.0,
|
|
"Add the noise ratio to the sine rate, it is between 0.0 and 1.0");
|
|
DEFINE_bool(sine_mix_rate, false,
|
|
"Enable the sine QPS control on the mix workload");
|
|
DEFINE_uint64(
|
|
sine_mix_rate_interval_milliseconds, 10000,
|
|
"Interval of which the sine wave read_rate_limit is recalculated");
|
|
DEFINE_int64(mix_accesses, -1,
|
|
"The total query accesses of mix_graph workload");
|
|
|
|
DEFINE_uint64(
|
|
benchmark_read_rate_limit, 0,
|
|
"If non-zero, db_bench will rate-limit the reads from RocksDB. This "
|
|
"is the global rate in ops/second.");
|
|
|
|
DEFINE_uint64(max_compaction_bytes,
|
|
ROCKSDB_NAMESPACE::Options().max_compaction_bytes,
|
|
"Max bytes allowed in one compaction");
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
DEFINE_bool(readonly, false, "Run read only benchmarks.");
|
|
|
|
DEFINE_bool(print_malloc_stats, false,
|
|
"Print malloc stats to stdout after benchmarks finish.");
|
|
#endif // ROCKSDB_LITE
|
|
|
|
DEFINE_bool(disable_auto_compactions, false, "Do not auto trigger compactions");
|
|
|
|
DEFINE_uint64(wal_ttl_seconds, 0, "Set the TTL for the WAL Files in seconds.");
|
|
DEFINE_uint64(wal_size_limit_MB, 0, "Set the size limit for the WAL Files"
|
|
" in MB.");
|
|
DEFINE_uint64(max_total_wal_size, 0, "Set total max WAL size");
|
|
|
|
DEFINE_bool(mmap_read, ROCKSDB_NAMESPACE::Options().allow_mmap_reads,
|
|
"Allow reads to occur via mmap-ing files");
|
|
|
|
DEFINE_bool(mmap_write, ROCKSDB_NAMESPACE::Options().allow_mmap_writes,
|
|
"Allow writes to occur via mmap-ing files");
|
|
|
|
DEFINE_bool(use_direct_reads, ROCKSDB_NAMESPACE::Options().use_direct_reads,
|
|
"Use O_DIRECT for reading data");
|
|
|
|
DEFINE_bool(use_direct_io_for_flush_and_compaction,
|
|
ROCKSDB_NAMESPACE::Options().use_direct_io_for_flush_and_compaction,
|
|
"Use O_DIRECT for background flush and compaction writes");
|
|
|
|
DEFINE_bool(advise_random_on_open,
|
|
ROCKSDB_NAMESPACE::Options().advise_random_on_open,
|
|
"Advise random access on table file open");
|
|
|
|
DEFINE_string(compaction_fadvice, "NORMAL",
|
|
"Access pattern advice when a file is compacted");
|
|
static auto FLAGS_compaction_fadvice_e =
|
|
ROCKSDB_NAMESPACE::Options().access_hint_on_compaction_start;
|
|
|
|
DEFINE_bool(use_tailing_iterator, false,
|
|
"Use tailing iterator to access a series of keys instead of get");
|
|
|
|
DEFINE_bool(use_adaptive_mutex, ROCKSDB_NAMESPACE::Options().use_adaptive_mutex,
|
|
"Use adaptive mutex");
|
|
|
|
DEFINE_uint64(bytes_per_sync, ROCKSDB_NAMESPACE::Options().bytes_per_sync,
|
|
"Allows OS to incrementally sync SST files to disk while they are"
|
|
" being written, in the background. Issue one request for every"
|
|
" bytes_per_sync written. 0 turns it off.");
|
|
|
|
DEFINE_uint64(wal_bytes_per_sync,
|
|
ROCKSDB_NAMESPACE::Options().wal_bytes_per_sync,
|
|
"Allows OS to incrementally sync WAL files to disk while they are"
|
|
" being written, in the background. Issue one request for every"
|
|
" wal_bytes_per_sync written. 0 turns it off.");
|
|
|
|
DEFINE_bool(use_single_deletes, true,
|
|
"Use single deletes (used in RandomReplaceKeys only).");
|
|
|
|
DEFINE_double(stddev, 2000.0,
|
|
"Standard deviation of normal distribution used for picking keys"
|
|
" (used in RandomReplaceKeys only).");
|
|
|
|
DEFINE_int32(key_id_range, 100000,
|
|
"Range of possible value of key id (used in TimeSeries only).");
|
|
|
|
DEFINE_string(expire_style, "none",
|
|
"Style to remove expired time entries. Can be one of the options "
|
|
"below: none (do not expired data), compaction_filter (use a "
|
|
"compaction filter to remove expired data), delete (seek IDs and "
|
|
"remove expired data) (used in TimeSeries only).");
|
|
|
|
DEFINE_uint64(
|
|
time_range, 100000,
|
|
"Range of timestamp that store in the database (used in TimeSeries"
|
|
" only).");
|
|
|
|
DEFINE_int32(num_deletion_threads, 1,
|
|
"Number of threads to do deletion (used in TimeSeries and delete "
|
|
"expire_style only).");
|
|
|
|
DEFINE_int32(max_successive_merges, 0, "Maximum number of successive merge"
|
|
" operations on a key in the memtable");
|
|
|
|
static bool ValidatePrefixSize(const char* flagname, int32_t value) {
|
|
if (value < 0 || value>=2000000000) {
|
|
fprintf(stderr, "Invalid value for --%s: %d. 0<= PrefixSize <=2000000000\n",
|
|
flagname, value);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
DEFINE_int32(prefix_size, 0, "control the prefix size for HashSkipList and "
|
|
"plain table");
|
|
DEFINE_int64(keys_per_prefix, 0, "control average number of keys generated "
|
|
"per prefix, 0 means no special handling of the prefix, "
|
|
"i.e. use the prefix comes with the generated random number.");
|
|
DEFINE_bool(total_order_seek, false,
|
|
"Enable total order seek regardless of index format.");
|
|
DEFINE_bool(prefix_same_as_start, false,
|
|
"Enforce iterator to return keys with prefix same as seek key.");
|
|
DEFINE_bool(
|
|
seek_missing_prefix, false,
|
|
"Iterator seek to keys with non-exist prefixes. Require prefix_size > 8");
|
|
|
|
DEFINE_int32(memtable_insert_with_hint_prefix_size, 0,
|
|
"If non-zero, enable "
|
|
"memtable insert with hint with the given prefix size.");
|
|
DEFINE_bool(enable_io_prio, false, "Lower the background flush/compaction "
|
|
"threads' IO priority");
|
|
DEFINE_bool(enable_cpu_prio, false, "Lower the background flush/compaction "
|
|
"threads' CPU priority");
|
|
DEFINE_bool(identity_as_first_hash, false, "the first hash function of cuckoo "
|
|
"table becomes an identity function. This is only valid when key "
|
|
"is 8 bytes");
|
|
DEFINE_bool(dump_malloc_stats, true, "Dump malloc stats in LOG ");
|
|
DEFINE_uint64(stats_dump_period_sec,
|
|
ROCKSDB_NAMESPACE::Options().stats_dump_period_sec,
|
|
"Gap between printing stats to log in seconds");
|
|
DEFINE_uint64(stats_persist_period_sec,
|
|
ROCKSDB_NAMESPACE::Options().stats_persist_period_sec,
|
|
"Gap between persisting stats in seconds");
|
|
DEFINE_bool(persist_stats_to_disk,
|
|
ROCKSDB_NAMESPACE::Options().persist_stats_to_disk,
|
|
"whether to persist stats to disk");
|
|
DEFINE_uint64(stats_history_buffer_size,
|
|
ROCKSDB_NAMESPACE::Options().stats_history_buffer_size,
|
|
"Max number of stats snapshots to keep in memory");
|
|
DEFINE_int64(multiread_stride, 0,
|
|
"Stride length for the keys in a MultiGet batch");
|
|
DEFINE_bool(multiread_batched, false, "Use the new MultiGet API");
|
|
|
|
DEFINE_string(memtablerep, "skip_list", "");
|
|
DEFINE_int64(hash_bucket_count, 1024 * 1024, "hash bucket count");
|
|
DEFINE_bool(use_plain_table, false, "if use plain table "
|
|
"instead of block-based table format");
|
|
DEFINE_bool(use_cuckoo_table, false, "if use cuckoo table format");
|
|
DEFINE_double(cuckoo_hash_ratio, 0.9, "Hash ratio for Cuckoo SST table.");
|
|
DEFINE_bool(use_hash_search, false, "if use kHashSearch "
|
|
"instead of kBinarySearch. "
|
|
"This is valid if only we use BlockTable");
|
|
DEFINE_bool(use_block_based_filter, false, "if use kBlockBasedFilter "
|
|
"instead of kFullFilter for filter block. "
|
|
"This is valid if only we use BlockTable");
|
|
DEFINE_string(merge_operator, "", "The merge operator to use with the database."
|
|
"If a new merge operator is specified, be sure to use fresh"
|
|
" database The possible merge operators are defined in"
|
|
" utilities/merge_operators.h");
|
|
DEFINE_int32(skip_list_lookahead, 0, "Used with skip_list memtablerep; try "
|
|
"linear search first for this many steps from the previous "
|
|
"position");
|
|
DEFINE_bool(report_file_operations, false, "if report number of file "
|
|
"operations");
|
|
DEFINE_bool(report_open_timing, false, "if report open timing");
|
|
DEFINE_int32(readahead_size, 0, "Iterator readahead size");
|
|
|
|
DEFINE_bool(read_with_latest_user_timestamp, true,
|
|
"If true, always use the current latest timestamp for read. If "
|
|
"false, choose a random timestamp from the past.");
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
DEFINE_string(secondary_cache_uri, "",
|
|
"Full URI for creating a custom secondary cache object");
|
|
static class std::shared_ptr<ROCKSDB_NAMESPACE::SecondaryCache> secondary_cache;
|
|
#endif // ROCKSDB_LITE
|
|
|
|
static const bool FLAGS_soft_rate_limit_dummy __attribute__((__unused__)) =
|
|
RegisterFlagValidator(&FLAGS_soft_rate_limit, &ValidateRateLimit);
|
|
|
|
static const bool FLAGS_hard_rate_limit_dummy __attribute__((__unused__)) =
|
|
RegisterFlagValidator(&FLAGS_hard_rate_limit, &ValidateRateLimit);
|
|
|
|
static const bool FLAGS_prefix_size_dummy __attribute__((__unused__)) =
|
|
RegisterFlagValidator(&FLAGS_prefix_size, &ValidatePrefixSize);
|
|
|
|
static const bool FLAGS_key_size_dummy __attribute__((__unused__)) =
|
|
RegisterFlagValidator(&FLAGS_key_size, &ValidateKeySize);
|
|
|
|
static const bool FLAGS_cache_numshardbits_dummy __attribute__((__unused__)) =
|
|
RegisterFlagValidator(&FLAGS_cache_numshardbits,
|
|
&ValidateCacheNumshardbits);
|
|
|
|
static const bool FLAGS_readwritepercent_dummy __attribute__((__unused__)) =
|
|
RegisterFlagValidator(&FLAGS_readwritepercent, &ValidateInt32Percent);
|
|
|
|
DEFINE_int32(disable_seek_compaction, false,
|
|
"Not used, left here for backwards compatibility");
|
|
|
|
static const bool FLAGS_deletepercent_dummy __attribute__((__unused__)) =
|
|
RegisterFlagValidator(&FLAGS_deletepercent, &ValidateInt32Percent);
|
|
static const bool FLAGS_table_cache_numshardbits_dummy __attribute__((__unused__)) =
|
|
RegisterFlagValidator(&FLAGS_table_cache_numshardbits,
|
|
&ValidateTableCacheNumshardbits);
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
namespace {
|
|
static Status CreateMemTableRepFactory(
|
|
const ConfigOptions& config_options,
|
|
std::shared_ptr<MemTableRepFactory>* factory) {
|
|
Status s;
|
|
if (!strcasecmp(FLAGS_memtablerep.c_str(), SkipListFactory::kNickName())) {
|
|
factory->reset(new SkipListFactory(FLAGS_skip_list_lookahead));
|
|
#ifndef ROCKSDB_LITE
|
|
} else if (!strcasecmp(FLAGS_memtablerep.c_str(), "prefix_hash")) {
|
|
factory->reset(NewHashSkipListRepFactory(FLAGS_hash_bucket_count));
|
|
} else if (!strcasecmp(FLAGS_memtablerep.c_str(),
|
|
VectorRepFactory::kNickName())) {
|
|
factory->reset(new VectorRepFactory());
|
|
} else if (!strcasecmp(FLAGS_memtablerep.c_str(), "hash_linkedlist")) {
|
|
factory->reset(NewHashLinkListRepFactory(FLAGS_hash_bucket_count));
|
|
#endif // ROCKSDB_LITE
|
|
} else {
|
|
std::unique_ptr<MemTableRepFactory> unique;
|
|
s = MemTableRepFactory::CreateFromString(config_options, FLAGS_memtablerep,
|
|
&unique);
|
|
if (s.ok()) {
|
|
factory->reset(unique.release());
|
|
}
|
|
}
|
|
return s;
|
|
}
|
|
|
|
struct ReportFileOpCounters {
|
|
std::atomic<int> open_counter_;
|
|
std::atomic<int> delete_counter_;
|
|
std::atomic<int> rename_counter_;
|
|
std::atomic<int> flush_counter_;
|
|
std::atomic<int> sync_counter_;
|
|
std::atomic<int> fsync_counter_;
|
|
std::atomic<int> close_counter_;
|
|
std::atomic<int> read_counter_;
|
|
std::atomic<int> append_counter_;
|
|
std::atomic<uint64_t> bytes_read_;
|
|
std::atomic<uint64_t> bytes_written_;
|
|
};
|
|
|
|
// A special Env to records and report file operations in db_bench
|
|
class ReportFileOpEnv : public EnvWrapper {
|
|
public:
|
|
explicit ReportFileOpEnv(Env* base) : EnvWrapper(base) { reset(); }
|
|
|
|
void reset() {
|
|
counters_.open_counter_ = 0;
|
|
counters_.delete_counter_ = 0;
|
|
counters_.rename_counter_ = 0;
|
|
counters_.flush_counter_ = 0;
|
|
counters_.sync_counter_ = 0;
|
|
counters_.fsync_counter_ = 0;
|
|
counters_.close_counter_ = 0;
|
|
counters_.read_counter_ = 0;
|
|
counters_.append_counter_ = 0;
|
|
counters_.bytes_read_ = 0;
|
|
counters_.bytes_written_ = 0;
|
|
}
|
|
|
|
Status NewSequentialFile(const std::string& f,
|
|
std::unique_ptr<SequentialFile>* r,
|
|
const EnvOptions& soptions) override {
|
|
class CountingFile : public SequentialFile {
|
|
private:
|
|
std::unique_ptr<SequentialFile> target_;
|
|
ReportFileOpCounters* counters_;
|
|
|
|
public:
|
|
CountingFile(std::unique_ptr<SequentialFile>&& target,
|
|
ReportFileOpCounters* counters)
|
|
: target_(std::move(target)), counters_(counters) {}
|
|
|
|
Status Read(size_t n, Slice* result, char* scratch) override {
|
|
counters_->read_counter_.fetch_add(1, std::memory_order_relaxed);
|
|
Status rv = target_->Read(n, result, scratch);
|
|
counters_->bytes_read_.fetch_add(result->size(),
|
|
std::memory_order_relaxed);
|
|
return rv;
|
|
}
|
|
|
|
Status Skip(uint64_t n) override { return target_->Skip(n); }
|
|
};
|
|
|
|
Status s = target()->NewSequentialFile(f, r, soptions);
|
|
if (s.ok()) {
|
|
counters()->open_counter_.fetch_add(1, std::memory_order_relaxed);
|
|
r->reset(new CountingFile(std::move(*r), counters()));
|
|
}
|
|
return s;
|
|
}
|
|
|
|
Status DeleteFile(const std::string& fname) override {
|
|
Status s = target()->DeleteFile(fname);
|
|
if (s.ok()) {
|
|
counters()->delete_counter_.fetch_add(1, std::memory_order_relaxed);
|
|
}
|
|
return s;
|
|
}
|
|
|
|
Status RenameFile(const std::string& s, const std::string& t) override {
|
|
Status st = target()->RenameFile(s, t);
|
|
if (st.ok()) {
|
|
counters()->rename_counter_.fetch_add(1, std::memory_order_relaxed);
|
|
}
|
|
return st;
|
|
}
|
|
|
|
Status NewRandomAccessFile(const std::string& f,
|
|
std::unique_ptr<RandomAccessFile>* r,
|
|
const EnvOptions& soptions) override {
|
|
class CountingFile : public RandomAccessFile {
|
|
private:
|
|
std::unique_ptr<RandomAccessFile> target_;
|
|
ReportFileOpCounters* counters_;
|
|
|
|
public:
|
|
CountingFile(std::unique_ptr<RandomAccessFile>&& target,
|
|
ReportFileOpCounters* counters)
|
|
: target_(std::move(target)), counters_(counters) {}
|
|
Status Read(uint64_t offset, size_t n, Slice* result,
|
|
char* scratch) const override {
|
|
counters_->read_counter_.fetch_add(1, std::memory_order_relaxed);
|
|
Status rv = target_->Read(offset, n, result, scratch);
|
|
counters_->bytes_read_.fetch_add(result->size(),
|
|
std::memory_order_relaxed);
|
|
return rv;
|
|
}
|
|
};
|
|
|
|
Status s = target()->NewRandomAccessFile(f, r, soptions);
|
|
if (s.ok()) {
|
|
counters()->open_counter_.fetch_add(1, std::memory_order_relaxed);
|
|
r->reset(new CountingFile(std::move(*r), counters()));
|
|
}
|
|
return s;
|
|
}
|
|
|
|
Status NewWritableFile(const std::string& f, std::unique_ptr<WritableFile>* r,
|
|
const EnvOptions& soptions) override {
|
|
class CountingFile : public WritableFile {
|
|
private:
|
|
std::unique_ptr<WritableFile> target_;
|
|
ReportFileOpCounters* counters_;
|
|
|
|
public:
|
|
CountingFile(std::unique_ptr<WritableFile>&& target,
|
|
ReportFileOpCounters* counters)
|
|
: target_(std::move(target)), counters_(counters) {}
|
|
|
|
Status Append(const Slice& data) override {
|
|
counters_->append_counter_.fetch_add(1, std::memory_order_relaxed);
|
|
Status rv = target_->Append(data);
|
|
counters_->bytes_written_.fetch_add(data.size(),
|
|
std::memory_order_relaxed);
|
|
return rv;
|
|
}
|
|
|
|
Status Append(
|
|
const Slice& data,
|
|
const DataVerificationInfo& /* verification_info */) override {
|
|
return Append(data);
|
|
}
|
|
|
|
Status Truncate(uint64_t size) override {
|
|
return target_->Truncate(size);
|
|
}
|
|
Status Close() override {
|
|
Status s = target_->Close();
|
|
if (s.ok()) {
|
|
counters_->close_counter_.fetch_add(1, std::memory_order_relaxed);
|
|
}
|
|
return s;
|
|
}
|
|
Status Flush() override {
|
|
Status s = target_->Flush();
|
|
if (s.ok()) {
|
|
counters_->flush_counter_.fetch_add(1, std::memory_order_relaxed);
|
|
}
|
|
return s;
|
|
}
|
|
Status Sync() override {
|
|
Status s = target_->Sync();
|
|
if (s.ok()) {
|
|
counters_->sync_counter_.fetch_add(1, std::memory_order_relaxed);
|
|
}
|
|
return s;
|
|
}
|
|
Status Fsync() override {
|
|
Status s = target_->Fsync();
|
|
if (s.ok()) {
|
|
counters_->fsync_counter_.fetch_add(1, std::memory_order_relaxed);
|
|
}
|
|
return s;
|
|
}
|
|
};
|
|
|
|
Status s = target()->NewWritableFile(f, r, soptions);
|
|
if (s.ok()) {
|
|
counters()->open_counter_.fetch_add(1, std::memory_order_relaxed);
|
|
r->reset(new CountingFile(std::move(*r), counters()));
|
|
}
|
|
return s;
|
|
}
|
|
|
|
// getter
|
|
ReportFileOpCounters* counters() { return &counters_; }
|
|
|
|
private:
|
|
ReportFileOpCounters counters_;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
enum DistributionType : unsigned char {
|
|
kFixed = 0,
|
|
kUniform,
|
|
kNormal
|
|
};
|
|
|
|
static enum DistributionType FLAGS_value_size_distribution_type_e = kFixed;
|
|
|
|
static enum DistributionType StringToDistributionType(const char* ctype) {
|
|
assert(ctype);
|
|
|
|
if (!strcasecmp(ctype, "fixed"))
|
|
return kFixed;
|
|
else if (!strcasecmp(ctype, "uniform"))
|
|
return kUniform;
|
|
else if (!strcasecmp(ctype, "normal"))
|
|
return kNormal;
|
|
|
|
fprintf(stdout, "Cannot parse distribution type '%s'\n", ctype);
|
|
return kFixed; // default value
|
|
}
|
|
|
|
class BaseDistribution {
|
|
public:
|
|
BaseDistribution(unsigned int _min, unsigned int _max)
|
|
: min_value_size_(_min), max_value_size_(_max) {}
|
|
virtual ~BaseDistribution() {}
|
|
|
|
unsigned int Generate() {
|
|
auto val = Get();
|
|
if (NeedTruncate()) {
|
|
val = std::max(min_value_size_, val);
|
|
val = std::min(max_value_size_, val);
|
|
}
|
|
return val;
|
|
}
|
|
private:
|
|
virtual unsigned int Get() = 0;
|
|
virtual bool NeedTruncate() {
|
|
return true;
|
|
}
|
|
unsigned int min_value_size_;
|
|
unsigned int max_value_size_;
|
|
};
|
|
|
|
class FixedDistribution : public BaseDistribution
|
|
{
|
|
public:
|
|
FixedDistribution(unsigned int size) :
|
|
BaseDistribution(size, size),
|
|
size_(size) {}
|
|
private:
|
|
virtual unsigned int Get() override {
|
|
return size_;
|
|
}
|
|
virtual bool NeedTruncate() override {
|
|
return false;
|
|
}
|
|
unsigned int size_;
|
|
};
|
|
|
|
class NormalDistribution
|
|
: public BaseDistribution, public std::normal_distribution<double> {
|
|
public:
|
|
NormalDistribution(unsigned int _min, unsigned int _max)
|
|
: BaseDistribution(_min, _max),
|
|
// 99.7% values within the range [min, max].
|
|
std::normal_distribution<double>(
|
|
(double)(_min + _max) / 2.0 /*mean*/,
|
|
(double)(_max - _min) / 6.0 /*stddev*/),
|
|
gen_(rd_()) {}
|
|
|
|
private:
|
|
virtual unsigned int Get() override {
|
|
return static_cast<unsigned int>((*this)(gen_));
|
|
}
|
|
std::random_device rd_;
|
|
std::mt19937 gen_;
|
|
};
|
|
|
|
class UniformDistribution
|
|
: public BaseDistribution,
|
|
public std::uniform_int_distribution<unsigned int> {
|
|
public:
|
|
UniformDistribution(unsigned int _min, unsigned int _max)
|
|
: BaseDistribution(_min, _max),
|
|
std::uniform_int_distribution<unsigned int>(_min, _max),
|
|
gen_(rd_()) {}
|
|
|
|
private:
|
|
virtual unsigned int Get() override {
|
|
return (*this)(gen_);
|
|
}
|
|
virtual bool NeedTruncate() override {
|
|
return false;
|
|
}
|
|
std::random_device rd_;
|
|
std::mt19937 gen_;
|
|
};
|
|
|
|
// Helper for quickly generating random data.
|
|
class RandomGenerator {
|
|
private:
|
|
std::string data_;
|
|
unsigned int pos_;
|
|
std::unique_ptr<BaseDistribution> dist_;
|
|
|
|
public:
|
|
|
|
RandomGenerator() {
|
|
auto max_value_size = FLAGS_value_size_max;
|
|
switch (FLAGS_value_size_distribution_type_e) {
|
|
case kUniform:
|
|
dist_.reset(new UniformDistribution(FLAGS_value_size_min,
|
|
FLAGS_value_size_max));
|
|
break;
|
|
case kNormal:
|
|
dist_.reset(new NormalDistribution(FLAGS_value_size_min,
|
|
FLAGS_value_size_max));
|
|
break;
|
|
case kFixed:
|
|
default:
|
|
dist_.reset(new FixedDistribution(value_size));
|
|
max_value_size = value_size;
|
|
}
|
|
// We use a limited amount of data over and over again and ensure
|
|
// that it is larger than the compression window (32KB), and also
|
|
// large enough to serve all typical value sizes we want to write.
|
|
Random rnd(301);
|
|
std::string piece;
|
|
while (data_.size() < (unsigned)std::max(1048576, max_value_size)) {
|
|
// Add a short fragment that is as compressible as specified
|
|
// by FLAGS_compression_ratio.
|
|
test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece);
|
|
data_.append(piece);
|
|
}
|
|
pos_ = 0;
|
|
}
|
|
|
|
Slice Generate(unsigned int len) {
|
|
assert(len <= data_.size());
|
|
if (pos_ + len > data_.size()) {
|
|
pos_ = 0;
|
|
}
|
|
pos_ += len;
|
|
return Slice(data_.data() + pos_ - len, len);
|
|
}
|
|
|
|
Slice Generate() {
|
|
auto len = dist_->Generate();
|
|
return Generate(len);
|
|
}
|
|
};
|
|
|
|
static void AppendWithSpace(std::string* str, Slice msg) {
|
|
if (msg.empty()) return;
|
|
if (!str->empty()) {
|
|
str->push_back(' ');
|
|
}
|
|
str->append(msg.data(), msg.size());
|
|
}
|
|
|
|
struct DBWithColumnFamilies {
|
|
std::vector<ColumnFamilyHandle*> cfh;
|
|
DB* db;
|
|
#ifndef ROCKSDB_LITE
|
|
OptimisticTransactionDB* opt_txn_db;
|
|
#endif // ROCKSDB_LITE
|
|
std::atomic<size_t> num_created; // Need to be updated after all the
|
|
// new entries in cfh are set.
|
|
size_t num_hot; // Number of column families to be queried at each moment.
|
|
// After each CreateNewCf(), another num_hot number of new
|
|
// Column families will be created and used to be queried.
|
|
port::Mutex create_cf_mutex; // Only one thread can execute CreateNewCf()
|
|
std::vector<int> cfh_idx_to_prob; // ith index holds probability of operating
|
|
// on cfh[i].
|
|
|
|
DBWithColumnFamilies()
|
|
: db(nullptr)
|
|
#ifndef ROCKSDB_LITE
|
|
, opt_txn_db(nullptr)
|
|
#endif // ROCKSDB_LITE
|
|
{
|
|
cfh.clear();
|
|
num_created = 0;
|
|
num_hot = 0;
|
|
}
|
|
|
|
DBWithColumnFamilies(const DBWithColumnFamilies& other)
|
|
: cfh(other.cfh),
|
|
db(other.db),
|
|
#ifndef ROCKSDB_LITE
|
|
opt_txn_db(other.opt_txn_db),
|
|
#endif // ROCKSDB_LITE
|
|
num_created(other.num_created.load()),
|
|
num_hot(other.num_hot),
|
|
cfh_idx_to_prob(other.cfh_idx_to_prob) {
|
|
}
|
|
|
|
void DeleteDBs() {
|
|
std::for_each(cfh.begin(), cfh.end(),
|
|
[](ColumnFamilyHandle* cfhi) { delete cfhi; });
|
|
cfh.clear();
|
|
#ifndef ROCKSDB_LITE
|
|
if (opt_txn_db) {
|
|
delete opt_txn_db;
|
|
opt_txn_db = nullptr;
|
|
} else {
|
|
delete db;
|
|
db = nullptr;
|
|
}
|
|
#else
|
|
delete db;
|
|
db = nullptr;
|
|
#endif // ROCKSDB_LITE
|
|
}
|
|
|
|
ColumnFamilyHandle* GetCfh(int64_t rand_num) {
|
|
assert(num_hot > 0);
|
|
size_t rand_offset = 0;
|
|
if (!cfh_idx_to_prob.empty()) {
|
|
assert(cfh_idx_to_prob.size() == num_hot);
|
|
int sum = 0;
|
|
while (sum + cfh_idx_to_prob[rand_offset] < rand_num % 100) {
|
|
sum += cfh_idx_to_prob[rand_offset];
|
|
++rand_offset;
|
|
}
|
|
assert(rand_offset < cfh_idx_to_prob.size());
|
|
} else {
|
|
rand_offset = rand_num % num_hot;
|
|
}
|
|
return cfh[num_created.load(std::memory_order_acquire) - num_hot +
|
|
rand_offset];
|
|
}
|
|
|
|
// stage: assume CF from 0 to stage * num_hot has be created. Need to create
|
|
// stage * num_hot + 1 to stage * (num_hot + 1).
|
|
void CreateNewCf(ColumnFamilyOptions options, int64_t stage) {
|
|
MutexLock l(&create_cf_mutex);
|
|
if ((stage + 1) * num_hot <= num_created) {
|
|
// Already created.
|
|
return;
|
|
}
|
|
auto new_num_created = num_created + num_hot;
|
|
assert(new_num_created <= cfh.size());
|
|
for (size_t i = num_created; i < new_num_created; i++) {
|
|
Status s =
|
|
db->CreateColumnFamily(options, ColumnFamilyName(i), &(cfh[i]));
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "create column family error: %s\n",
|
|
s.ToString().c_str());
|
|
abort();
|
|
}
|
|
}
|
|
num_created.store(new_num_created, std::memory_order_release);
|
|
}
|
|
};
|
|
|
|
// a class that reports stats to CSV file
|
|
class ReporterAgent {
|
|
public:
|
|
ReporterAgent(Env* env, const std::string& fname,
|
|
uint64_t report_interval_secs)
|
|
: env_(env),
|
|
total_ops_done_(0),
|
|
last_report_(0),
|
|
report_interval_secs_(report_interval_secs),
|
|
stop_(false) {
|
|
auto s = env_->NewWritableFile(fname, &report_file_, EnvOptions());
|
|
if (s.ok()) {
|
|
s = report_file_->Append(Header() + "\n");
|
|
}
|
|
if (s.ok()) {
|
|
s = report_file_->Flush();
|
|
}
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Can't open %s: %s\n", fname.c_str(),
|
|
s.ToString().c_str());
|
|
abort();
|
|
}
|
|
|
|
reporting_thread_ = port::Thread([&]() { SleepAndReport(); });
|
|
}
|
|
|
|
~ReporterAgent() {
|
|
{
|
|
std::unique_lock<std::mutex> lk(mutex_);
|
|
stop_ = true;
|
|
stop_cv_.notify_all();
|
|
}
|
|
reporting_thread_.join();
|
|
}
|
|
|
|
// thread safe
|
|
void ReportFinishedOps(int64_t num_ops) {
|
|
total_ops_done_.fetch_add(num_ops);
|
|
}
|
|
|
|
private:
|
|
std::string Header() const { return "secs_elapsed,interval_qps"; }
|
|
void SleepAndReport() {
|
|
auto* clock = env_->GetSystemClock().get();
|
|
auto time_started = clock->NowMicros();
|
|
while (true) {
|
|
{
|
|
std::unique_lock<std::mutex> lk(mutex_);
|
|
if (stop_ ||
|
|
stop_cv_.wait_for(lk, std::chrono::seconds(report_interval_secs_),
|
|
[&]() { return stop_; })) {
|
|
// stopping
|
|
break;
|
|
}
|
|
// else -> timeout, which means time for a report!
|
|
}
|
|
auto total_ops_done_snapshot = total_ops_done_.load();
|
|
// round the seconds elapsed
|
|
auto secs_elapsed =
|
|
(clock->NowMicros() - time_started + kMicrosInSecond / 2) /
|
|
kMicrosInSecond;
|
|
std::string report = ToString(secs_elapsed) + "," +
|
|
ToString(total_ops_done_snapshot - last_report_) +
|
|
"\n";
|
|
auto s = report_file_->Append(report);
|
|
if (s.ok()) {
|
|
s = report_file_->Flush();
|
|
}
|
|
if (!s.ok()) {
|
|
fprintf(stderr,
|
|
"Can't write to report file (%s), stopping the reporting\n",
|
|
s.ToString().c_str());
|
|
break;
|
|
}
|
|
last_report_ = total_ops_done_snapshot;
|
|
}
|
|
}
|
|
|
|
Env* env_;
|
|
std::unique_ptr<WritableFile> report_file_;
|
|
std::atomic<int64_t> total_ops_done_;
|
|
int64_t last_report_;
|
|
const uint64_t report_interval_secs_;
|
|
ROCKSDB_NAMESPACE::port::Thread reporting_thread_;
|
|
std::mutex mutex_;
|
|
// will notify on stop
|
|
std::condition_variable stop_cv_;
|
|
bool stop_;
|
|
};
|
|
|
|
enum OperationType : unsigned char {
|
|
kRead = 0,
|
|
kWrite,
|
|
kDelete,
|
|
kSeek,
|
|
kMerge,
|
|
kUpdate,
|
|
kCompress,
|
|
kUncompress,
|
|
kCrc,
|
|
kHash,
|
|
kOthers
|
|
};
|
|
|
|
static std::unordered_map<OperationType, std::string, std::hash<unsigned char>>
|
|
OperationTypeString = {
|
|
{kRead, "read"},
|
|
{kWrite, "write"},
|
|
{kDelete, "delete"},
|
|
{kSeek, "seek"},
|
|
{kMerge, "merge"},
|
|
{kUpdate, "update"},
|
|
{kCompress, "compress"},
|
|
{kCompress, "uncompress"},
|
|
{kCrc, "crc"},
|
|
{kHash, "hash"},
|
|
{kOthers, "op"}
|
|
};
|
|
|
|
class CombinedStats;
|
|
class Stats {
|
|
private:
|
|
SystemClock* clock_;
|
|
int id_;
|
|
uint64_t start_ = 0;
|
|
uint64_t sine_interval_;
|
|
uint64_t finish_;
|
|
double seconds_;
|
|
uint64_t done_;
|
|
uint64_t last_report_done_;
|
|
uint64_t next_report_;
|
|
uint64_t bytes_;
|
|
uint64_t last_op_finish_;
|
|
uint64_t last_report_finish_;
|
|
std::unordered_map<OperationType, std::shared_ptr<HistogramImpl>,
|
|
std::hash<unsigned char>> hist_;
|
|
std::string message_;
|
|
bool exclude_from_merge_;
|
|
ReporterAgent* reporter_agent_; // does not own
|
|
friend class CombinedStats;
|
|
|
|
public:
|
|
Stats() : clock_(FLAGS_env->GetSystemClock().get()) { Start(-1); }
|
|
|
|
void SetReporterAgent(ReporterAgent* reporter_agent) {
|
|
reporter_agent_ = reporter_agent;
|
|
}
|
|
|
|
void Start(int id) {
|
|
id_ = id;
|
|
next_report_ = FLAGS_stats_interval ? FLAGS_stats_interval : 100;
|
|
last_op_finish_ = start_;
|
|
hist_.clear();
|
|
done_ = 0;
|
|
last_report_done_ = 0;
|
|
bytes_ = 0;
|
|
seconds_ = 0;
|
|
start_ = clock_->NowMicros();
|
|
sine_interval_ = clock_->NowMicros();
|
|
finish_ = start_;
|
|
last_report_finish_ = start_;
|
|
message_.clear();
|
|
// When set, stats from this thread won't be merged with others.
|
|
exclude_from_merge_ = false;
|
|
}
|
|
|
|
void Merge(const Stats& other) {
|
|
if (other.exclude_from_merge_)
|
|
return;
|
|
|
|
for (auto it = other.hist_.begin(); it != other.hist_.end(); ++it) {
|
|
auto this_it = hist_.find(it->first);
|
|
if (this_it != hist_.end()) {
|
|
this_it->second->Merge(*(other.hist_.at(it->first)));
|
|
} else {
|
|
hist_.insert({ it->first, it->second });
|
|
}
|
|
}
|
|
|
|
done_ += other.done_;
|
|
bytes_ += other.bytes_;
|
|
seconds_ += other.seconds_;
|
|
if (other.start_ < start_) start_ = other.start_;
|
|
if (other.finish_ > finish_) finish_ = other.finish_;
|
|
|
|
// Just keep the messages from one thread
|
|
if (message_.empty()) message_ = other.message_;
|
|
}
|
|
|
|
void Stop() {
|
|
finish_ = clock_->NowMicros();
|
|
seconds_ = (finish_ - start_) * 1e-6;
|
|
}
|
|
|
|
void AddMessage(Slice msg) {
|
|
AppendWithSpace(&message_, msg);
|
|
}
|
|
|
|
void SetId(int id) { id_ = id; }
|
|
void SetExcludeFromMerge() { exclude_from_merge_ = true; }
|
|
|
|
void PrintThreadStatus() {
|
|
std::vector<ThreadStatus> thread_list;
|
|
FLAGS_env->GetThreadList(&thread_list);
|
|
|
|
fprintf(stderr, "\n%18s %10s %12s %20s %13s %45s %12s %s\n",
|
|
"ThreadID", "ThreadType", "cfName", "Operation",
|
|
"ElapsedTime", "Stage", "State", "OperationProperties");
|
|
|
|
int64_t current_time = 0;
|
|
clock_->GetCurrentTime(¤t_time).PermitUncheckedError();
|
|
for (auto ts : thread_list) {
|
|
fprintf(stderr, "%18" PRIu64 " %10s %12s %20s %13s %45s %12s",
|
|
ts.thread_id,
|
|
ThreadStatus::GetThreadTypeName(ts.thread_type).c_str(),
|
|
ts.cf_name.c_str(),
|
|
ThreadStatus::GetOperationName(ts.operation_type).c_str(),
|
|
ThreadStatus::MicrosToString(ts.op_elapsed_micros).c_str(),
|
|
ThreadStatus::GetOperationStageName(ts.operation_stage).c_str(),
|
|
ThreadStatus::GetStateName(ts.state_type).c_str());
|
|
|
|
auto op_properties = ThreadStatus::InterpretOperationProperties(
|
|
ts.operation_type, ts.op_properties);
|
|
for (const auto& op_prop : op_properties) {
|
|
fprintf(stderr, " %s %" PRIu64" |",
|
|
op_prop.first.c_str(), op_prop.second);
|
|
}
|
|
fprintf(stderr, "\n");
|
|
}
|
|
}
|
|
|
|
void ResetSineInterval() { sine_interval_ = clock_->NowMicros(); }
|
|
|
|
uint64_t GetSineInterval() {
|
|
return sine_interval_;
|
|
}
|
|
|
|
uint64_t GetStart() {
|
|
return start_;
|
|
}
|
|
|
|
void ResetLastOpTime() {
|
|
// Set to now to avoid latency from calls to SleepForMicroseconds
|
|
last_op_finish_ = clock_->NowMicros();
|
|
}
|
|
|
|
void FinishedOps(DBWithColumnFamilies* db_with_cfh, DB* db, int64_t num_ops,
|
|
enum OperationType op_type = kOthers) {
|
|
if (reporter_agent_) {
|
|
reporter_agent_->ReportFinishedOps(num_ops);
|
|
}
|
|
if (FLAGS_histogram) {
|
|
uint64_t now = clock_->NowMicros();
|
|
uint64_t micros = now - last_op_finish_;
|
|
|
|
if (hist_.find(op_type) == hist_.end())
|
|
{
|
|
auto hist_temp = std::make_shared<HistogramImpl>();
|
|
hist_.insert({op_type, std::move(hist_temp)});
|
|
}
|
|
hist_[op_type]->Add(micros);
|
|
|
|
if (micros > 20000 && !FLAGS_stats_interval) {
|
|
fprintf(stderr, "long op: %" PRIu64 " micros%30s\r", micros, "");
|
|
fflush(stderr);
|
|
}
|
|
last_op_finish_ = now;
|
|
}
|
|
|
|
done_ += num_ops;
|
|
if (done_ >= next_report_) {
|
|
if (!FLAGS_stats_interval) {
|
|
if (next_report_ < 1000) next_report_ += 100;
|
|
else if (next_report_ < 5000) next_report_ += 500;
|
|
else if (next_report_ < 10000) next_report_ += 1000;
|
|
else if (next_report_ < 50000) next_report_ += 5000;
|
|
else if (next_report_ < 100000) next_report_ += 10000;
|
|
else if (next_report_ < 500000) next_report_ += 50000;
|
|
else next_report_ += 100000;
|
|
fprintf(stderr, "... finished %" PRIu64 " ops%30s\r", done_, "");
|
|
} else {
|
|
uint64_t now = clock_->NowMicros();
|
|
int64_t usecs_since_last = now - last_report_finish_;
|
|
|
|
// Determine whether to print status where interval is either
|
|
// each N operations or each N seconds.
|
|
|
|
if (FLAGS_stats_interval_seconds &&
|
|
usecs_since_last < (FLAGS_stats_interval_seconds * 1000000)) {
|
|
// Don't check again for this many operations
|
|
next_report_ += FLAGS_stats_interval;
|
|
|
|
} else {
|
|
fprintf(stderr,
|
|
"%s ... thread %d: (%" PRIu64 ",%" PRIu64
|
|
") ops and "
|
|
"(%.1f,%.1f) ops/second in (%.6f,%.6f) seconds\n",
|
|
clock_->TimeToString(now / 1000000).c_str(), id_,
|
|
done_ - last_report_done_, done_,
|
|
(done_ - last_report_done_) / (usecs_since_last / 1000000.0),
|
|
done_ / ((now - start_) / 1000000.0),
|
|
(now - last_report_finish_) / 1000000.0,
|
|
(now - start_) / 1000000.0);
|
|
|
|
if (id_ == 0 && FLAGS_stats_per_interval) {
|
|
std::string stats;
|
|
|
|
if (db_with_cfh && db_with_cfh->num_created.load()) {
|
|
for (size_t i = 0; i < db_with_cfh->num_created.load(); ++i) {
|
|
if (db->GetProperty(db_with_cfh->cfh[i], "rocksdb.cfstats",
|
|
&stats))
|
|
fprintf(stderr, "%s\n", stats.c_str());
|
|
if (FLAGS_show_table_properties) {
|
|
for (int level = 0; level < FLAGS_num_levels; ++level) {
|
|
if (db->GetProperty(
|
|
db_with_cfh->cfh[i],
|
|
"rocksdb.aggregated-table-properties-at-level" +
|
|
ToString(level),
|
|
&stats)) {
|
|
if (stats.find("# entries=0") == std::string::npos) {
|
|
fprintf(stderr, "Level[%d]: %s\n", level,
|
|
stats.c_str());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (db) {
|
|
if (db->GetProperty("rocksdb.stats", &stats)) {
|
|
fprintf(stderr, "%s\n", stats.c_str());
|
|
}
|
|
if (FLAGS_show_table_properties) {
|
|
for (int level = 0; level < FLAGS_num_levels; ++level) {
|
|
if (db->GetProperty(
|
|
"rocksdb.aggregated-table-properties-at-level" +
|
|
ToString(level),
|
|
&stats)) {
|
|
if (stats.find("# entries=0") == std::string::npos) {
|
|
fprintf(stderr, "Level[%d]: %s\n", level, stats.c_str());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
next_report_ += FLAGS_stats_interval;
|
|
last_report_finish_ = now;
|
|
last_report_done_ = done_;
|
|
}
|
|
}
|
|
if (id_ == 0 && FLAGS_thread_status_per_interval) {
|
|
PrintThreadStatus();
|
|
}
|
|
fflush(stderr);
|
|
}
|
|
}
|
|
|
|
void AddBytes(int64_t n) {
|
|
bytes_ += n;
|
|
}
|
|
|
|
void Report(const Slice& name) {
|
|
// Pretend at least one op was done in case we are running a benchmark
|
|
// that does not call FinishedOps().
|
|
if (done_ < 1) done_ = 1;
|
|
|
|
std::string extra;
|
|
if (bytes_ > 0) {
|
|
// Rate is computed on actual elapsed time, not the sum of per-thread
|
|
// elapsed times.
|
|
double elapsed = (finish_ - start_) * 1e-6;
|
|
char rate[100];
|
|
snprintf(rate, sizeof(rate), "%6.1f MB/s",
|
|
(bytes_ / 1048576.0) / elapsed);
|
|
extra = rate;
|
|
}
|
|
AppendWithSpace(&extra, message_);
|
|
double elapsed = (finish_ - start_) * 1e-6;
|
|
double throughput = (double)done_/elapsed;
|
|
|
|
fprintf(stdout, "%-12s : %11.3f micros/op %ld ops/sec;%s%s\n",
|
|
name.ToString().c_str(),
|
|
seconds_ * 1e6 / done_,
|
|
(long)throughput,
|
|
(extra.empty() ? "" : " "),
|
|
extra.c_str());
|
|
if (FLAGS_histogram) {
|
|
for (auto it = hist_.begin(); it != hist_.end(); ++it) {
|
|
fprintf(stdout, "Microseconds per %s:\n%s\n",
|
|
OperationTypeString[it->first].c_str(),
|
|
it->second->ToString().c_str());
|
|
}
|
|
}
|
|
if (FLAGS_report_file_operations) {
|
|
ReportFileOpEnv* env = static_cast<ReportFileOpEnv*>(FLAGS_env);
|
|
ReportFileOpCounters* counters = env->counters();
|
|
fprintf(stdout, "Num files opened: %d\n",
|
|
counters->open_counter_.load(std::memory_order_relaxed));
|
|
fprintf(stdout, "Num files deleted: %d\n",
|
|
counters->delete_counter_.load(std::memory_order_relaxed));
|
|
fprintf(stdout, "Num files renamed: %d\n",
|
|
counters->rename_counter_.load(std::memory_order_relaxed));
|
|
fprintf(stdout, "Num Flush(): %d\n",
|
|
counters->flush_counter_.load(std::memory_order_relaxed));
|
|
fprintf(stdout, "Num Sync(): %d\n",
|
|
counters->sync_counter_.load(std::memory_order_relaxed));
|
|
fprintf(stdout, "Num Fsync(): %d\n",
|
|
counters->fsync_counter_.load(std::memory_order_relaxed));
|
|
fprintf(stdout, "Num Close(): %d\n",
|
|
counters->close_counter_.load(std::memory_order_relaxed));
|
|
fprintf(stdout, "Num Read(): %d\n",
|
|
counters->read_counter_.load(std::memory_order_relaxed));
|
|
fprintf(stdout, "Num Append(): %d\n",
|
|
counters->append_counter_.load(std::memory_order_relaxed));
|
|
fprintf(stdout, "Num bytes read: %" PRIu64 "\n",
|
|
counters->bytes_read_.load(std::memory_order_relaxed));
|
|
fprintf(stdout, "Num bytes written: %" PRIu64 "\n",
|
|
counters->bytes_written_.load(std::memory_order_relaxed));
|
|
env->reset();
|
|
}
|
|
fflush(stdout);
|
|
}
|
|
};
|
|
|
|
class CombinedStats {
|
|
public:
|
|
void AddStats(const Stats& stat) {
|
|
uint64_t total_ops = stat.done_;
|
|
uint64_t total_bytes_ = stat.bytes_;
|
|
double elapsed;
|
|
|
|
if (total_ops < 1) {
|
|
total_ops = 1;
|
|
}
|
|
|
|
elapsed = (stat.finish_ - stat.start_) * 1e-6;
|
|
throughput_ops_.emplace_back(total_ops / elapsed);
|
|
|
|
if (total_bytes_ > 0) {
|
|
double mbs = (total_bytes_ / 1048576.0);
|
|
throughput_mbs_.emplace_back(mbs / elapsed);
|
|
}
|
|
}
|
|
|
|
void Report(const std::string& bench_name) {
|
|
const char* name = bench_name.c_str();
|
|
int num_runs = static_cast<int>(throughput_ops_.size());
|
|
|
|
if (throughput_mbs_.size() == throughput_ops_.size()) {
|
|
fprintf(stdout,
|
|
"%s [AVG %d runs] : %d ops/sec; %6.1f MB/sec\n"
|
|
"%s [MEDIAN %d runs] : %d ops/sec; %6.1f MB/sec\n",
|
|
name, num_runs, static_cast<int>(CalcAvg(throughput_ops_)),
|
|
CalcAvg(throughput_mbs_), name, num_runs,
|
|
static_cast<int>(CalcMedian(throughput_ops_)),
|
|
CalcMedian(throughput_mbs_));
|
|
} else {
|
|
fprintf(stdout,
|
|
"%s [AVG %d runs] : %d ops/sec\n"
|
|
"%s [MEDIAN %d runs] : %d ops/sec\n",
|
|
name, num_runs, static_cast<int>(CalcAvg(throughput_ops_)), name,
|
|
num_runs, static_cast<int>(CalcMedian(throughput_ops_)));
|
|
}
|
|
}
|
|
|
|
private:
|
|
double CalcAvg(std::vector<double> data) {
|
|
double avg = 0;
|
|
for (double x : data) {
|
|
avg += x;
|
|
}
|
|
avg = avg / data.size();
|
|
return avg;
|
|
}
|
|
|
|
double CalcMedian(std::vector<double> data) {
|
|
assert(data.size() > 0);
|
|
std::sort(data.begin(), data.end());
|
|
|
|
size_t mid = data.size() / 2;
|
|
if (data.size() % 2 == 1) {
|
|
// Odd number of entries
|
|
return data[mid];
|
|
} else {
|
|
// Even number of entries
|
|
return (data[mid] + data[mid - 1]) / 2;
|
|
}
|
|
}
|
|
|
|
std::vector<double> throughput_ops_;
|
|
std::vector<double> throughput_mbs_;
|
|
};
|
|
|
|
class TimestampEmulator {
|
|
private:
|
|
std::atomic<uint64_t> timestamp_;
|
|
|
|
public:
|
|
TimestampEmulator() : timestamp_(0) {}
|
|
uint64_t Get() const { return timestamp_.load(); }
|
|
void Inc() { timestamp_++; }
|
|
Slice Allocate(char* scratch) {
|
|
// TODO: support larger timestamp sizes
|
|
assert(FLAGS_user_timestamp_size == 8);
|
|
assert(scratch);
|
|
uint64_t ts = timestamp_.fetch_add(1);
|
|
EncodeFixed64(scratch, ts);
|
|
return Slice(scratch, FLAGS_user_timestamp_size);
|
|
}
|
|
Slice GetTimestampForRead(Random64& rand, char* scratch) {
|
|
assert(FLAGS_user_timestamp_size == 8);
|
|
assert(scratch);
|
|
if (FLAGS_read_with_latest_user_timestamp) {
|
|
return Allocate(scratch);
|
|
}
|
|
// Choose a random timestamp from the past.
|
|
uint64_t ts = rand.Next() % Get();
|
|
EncodeFixed64(scratch, ts);
|
|
return Slice(scratch, FLAGS_user_timestamp_size);
|
|
}
|
|
};
|
|
|
|
// State shared by all concurrent executions of the same benchmark.
|
|
struct SharedState {
|
|
port::Mutex mu;
|
|
port::CondVar cv;
|
|
int total;
|
|
int perf_level;
|
|
std::shared_ptr<RateLimiter> write_rate_limiter;
|
|
std::shared_ptr<RateLimiter> read_rate_limiter;
|
|
|
|
// Each thread goes through the following states:
|
|
// (1) initializing
|
|
// (2) waiting for others to be initialized
|
|
// (3) running
|
|
// (4) done
|
|
|
|
long num_initialized;
|
|
long num_done;
|
|
bool start;
|
|
|
|
SharedState() : cv(&mu), perf_level(FLAGS_perf_level) { }
|
|
};
|
|
|
|
// Per-thread state for concurrent executions of the same benchmark.
|
|
struct ThreadState {
|
|
int tid; // 0..n-1 when running in n threads
|
|
Random64 rand; // Has different seeds for different threads
|
|
Stats stats;
|
|
SharedState* shared;
|
|
|
|
explicit ThreadState(int index)
|
|
: tid(index), rand((FLAGS_seed ? FLAGS_seed : 1000) + index) {}
|
|
};
|
|
|
|
class Duration {
|
|
public:
|
|
Duration(uint64_t max_seconds, int64_t max_ops, int64_t ops_per_stage = 0) {
|
|
max_seconds_ = max_seconds;
|
|
max_ops_= max_ops;
|
|
ops_per_stage_ = (ops_per_stage > 0) ? ops_per_stage : max_ops;
|
|
ops_ = 0;
|
|
start_at_ = FLAGS_env->NowMicros();
|
|
}
|
|
|
|
int64_t GetStage() { return std::min(ops_, max_ops_ - 1) / ops_per_stage_; }
|
|
|
|
bool Done(int64_t increment) {
|
|
if (increment <= 0) increment = 1; // avoid Done(0) and infinite loops
|
|
ops_ += increment;
|
|
|
|
if (max_seconds_) {
|
|
// Recheck every appx 1000 ops (exact iff increment is factor of 1000)
|
|
auto granularity = FLAGS_ops_between_duration_checks;
|
|
if ((ops_ / granularity) != ((ops_ - increment) / granularity)) {
|
|
uint64_t now = FLAGS_env->NowMicros();
|
|
return ((now - start_at_) / 1000000) >= max_seconds_;
|
|
} else {
|
|
return false;
|
|
}
|
|
} else {
|
|
return ops_ > max_ops_;
|
|
}
|
|
}
|
|
|
|
private:
|
|
uint64_t max_seconds_;
|
|
int64_t max_ops_;
|
|
int64_t ops_per_stage_;
|
|
int64_t ops_;
|
|
uint64_t start_at_;
|
|
};
|
|
|
|
class Benchmark {
|
|
private:
|
|
std::shared_ptr<Cache> cache_;
|
|
std::shared_ptr<Cache> compressed_cache_;
|
|
const SliceTransform* prefix_extractor_;
|
|
DBWithColumnFamilies db_;
|
|
std::vector<DBWithColumnFamilies> multi_dbs_;
|
|
int64_t num_;
|
|
int key_size_;
|
|
int user_timestamp_size_;
|
|
int prefix_size_;
|
|
int64_t keys_per_prefix_;
|
|
int64_t entries_per_batch_;
|
|
int64_t writes_before_delete_range_;
|
|
int64_t writes_per_range_tombstone_;
|
|
int64_t range_tombstone_width_;
|
|
int64_t max_num_range_tombstones_;
|
|
WriteOptions write_options_;
|
|
Options open_options_; // keep options around to properly destroy db later
|
|
#ifndef ROCKSDB_LITE
|
|
TraceOptions trace_options_;
|
|
TraceOptions block_cache_trace_options_;
|
|
#endif
|
|
int64_t reads_;
|
|
int64_t deletes_;
|
|
double read_random_exp_range_;
|
|
int64_t writes_;
|
|
int64_t readwrites_;
|
|
int64_t merge_keys_;
|
|
bool report_file_operations_;
|
|
bool use_blob_db_; // Stacked BlobDB
|
|
std::vector<std::string> keys_;
|
|
|
|
class ErrorHandlerListener : public EventListener {
|
|
public:
|
|
#ifndef ROCKSDB_LITE
|
|
ErrorHandlerListener()
|
|
: mutex_(),
|
|
cv_(&mutex_),
|
|
no_auto_recovery_(false),
|
|
recovery_complete_(false) {}
|
|
|
|
~ErrorHandlerListener() override {}
|
|
|
|
const char* Name() const override { return kClassName(); }
|
|
static const char* kClassName() { return "ErrorHandlerListener"; }
|
|
|
|
void OnErrorRecoveryBegin(BackgroundErrorReason /*reason*/,
|
|
Status /*bg_error*/,
|
|
bool* auto_recovery) override {
|
|
if (*auto_recovery && no_auto_recovery_) {
|
|
*auto_recovery = false;
|
|
}
|
|
}
|
|
|
|
void OnErrorRecoveryCompleted(Status /*old_bg_error*/) override {
|
|
InstrumentedMutexLock l(&mutex_);
|
|
recovery_complete_ = true;
|
|
cv_.SignalAll();
|
|
}
|
|
|
|
bool WaitForRecovery(uint64_t abs_time_us) {
|
|
InstrumentedMutexLock l(&mutex_);
|
|
if (!recovery_complete_) {
|
|
cv_.TimedWait(abs_time_us);
|
|
}
|
|
if (recovery_complete_) {
|
|
recovery_complete_ = false;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void EnableAutoRecovery(bool enable = true) { no_auto_recovery_ = !enable; }
|
|
|
|
private:
|
|
InstrumentedMutex mutex_;
|
|
InstrumentedCondVar cv_;
|
|
bool no_auto_recovery_;
|
|
bool recovery_complete_;
|
|
#else // ROCKSDB_LITE
|
|
bool WaitForRecovery(uint64_t /*abs_time_us*/) { return true; }
|
|
void EnableAutoRecovery(bool /*enable*/) {}
|
|
#endif // ROCKSDB_LITE
|
|
};
|
|
|
|
std::shared_ptr<ErrorHandlerListener> listener_;
|
|
|
|
std::unique_ptr<TimestampEmulator> mock_app_clock_;
|
|
|
|
bool SanityCheck() {
|
|
if (FLAGS_compression_ratio > 1) {
|
|
fprintf(stderr, "compression_ratio should be between 0 and 1\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
inline bool CompressSlice(const CompressionInfo& compression_info,
|
|
const Slice& input, std::string* compressed) {
|
|
constexpr uint32_t compress_format_version = 2;
|
|
|
|
return CompressData(input, compression_info, compress_format_version,
|
|
compressed);
|
|
}
|
|
|
|
void PrintHeader(const Options& options) {
|
|
PrintEnvironment();
|
|
fprintf(stdout,
|
|
"Keys: %d bytes each (+ %d bytes user-defined timestamp)\n",
|
|
FLAGS_key_size, FLAGS_user_timestamp_size);
|
|
auto avg_value_size = FLAGS_value_size;
|
|
if (FLAGS_value_size_distribution_type_e == kFixed) {
|
|
fprintf(stdout, "Values: %d bytes each (%d bytes after compression)\n",
|
|
avg_value_size,
|
|
static_cast<int>(avg_value_size * FLAGS_compression_ratio + 0.5));
|
|
} else {
|
|
avg_value_size = (FLAGS_value_size_min + FLAGS_value_size_max) / 2;
|
|
fprintf(stdout, "Values: %d avg bytes each (%d bytes after compression)\n",
|
|
avg_value_size,
|
|
static_cast<int>(avg_value_size * FLAGS_compression_ratio + 0.5));
|
|
fprintf(stdout, "Values Distribution: %s (min: %d, max: %d)\n",
|
|
FLAGS_value_size_distribution_type.c_str(),
|
|
FLAGS_value_size_min, FLAGS_value_size_max);
|
|
}
|
|
fprintf(stdout, "Entries: %" PRIu64 "\n", num_);
|
|
fprintf(stdout, "Prefix: %d bytes\n", FLAGS_prefix_size);
|
|
fprintf(stdout, "Keys per prefix: %" PRIu64 "\n", keys_per_prefix_);
|
|
fprintf(stdout, "RawSize: %.1f MB (estimated)\n",
|
|
((static_cast<int64_t>(FLAGS_key_size + avg_value_size) * num_)
|
|
/ 1048576.0));
|
|
fprintf(stdout, "FileSize: %.1f MB (estimated)\n",
|
|
(((FLAGS_key_size + avg_value_size * FLAGS_compression_ratio)
|
|
* num_)
|
|
/ 1048576.0));
|
|
fprintf(stdout, "Write rate: %" PRIu64 " bytes/second\n",
|
|
FLAGS_benchmark_write_rate_limit);
|
|
fprintf(stdout, "Read rate: %" PRIu64 " ops/second\n",
|
|
FLAGS_benchmark_read_rate_limit);
|
|
if (FLAGS_enable_numa) {
|
|
fprintf(stderr, "Running in NUMA enabled mode.\n");
|
|
#ifndef NUMA
|
|
fprintf(stderr, "NUMA is not defined in the system.\n");
|
|
exit(1);
|
|
#else
|
|
if (numa_available() == -1) {
|
|
fprintf(stderr, "NUMA is not supported by the system.\n");
|
|
exit(1);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
auto compression = CompressionTypeToString(FLAGS_compression_type_e);
|
|
fprintf(stdout, "Compression: %s\n", compression.c_str());
|
|
fprintf(stdout, "Compression sampling rate: %" PRId64 "\n",
|
|
FLAGS_sample_for_compression);
|
|
if (options.memtable_factory != nullptr) {
|
|
fprintf(stdout, "Memtablerep: %s\n",
|
|
options.memtable_factory->GetId().c_str());
|
|
}
|
|
fprintf(stdout, "Perf Level: %d\n", FLAGS_perf_level);
|
|
|
|
PrintWarnings(compression.c_str());
|
|
fprintf(stdout, "------------------------------------------------\n");
|
|
}
|
|
|
|
void PrintWarnings(const char* compression) {
|
|
#if defined(__GNUC__) && !defined(__OPTIMIZE__)
|
|
fprintf(stdout,
|
|
"WARNING: Optimization is disabled: benchmarks unnecessarily slow\n"
|
|
);
|
|
#endif
|
|
#ifndef NDEBUG
|
|
fprintf(stdout,
|
|
"WARNING: Assertions are enabled; benchmarks unnecessarily slow\n");
|
|
#endif
|
|
if (FLAGS_compression_type_e != ROCKSDB_NAMESPACE::kNoCompression) {
|
|
// The test string should not be too small.
|
|
const int len = FLAGS_block_size;
|
|
std::string input_str(len, 'y');
|
|
std::string compressed;
|
|
CompressionOptions opts;
|
|
CompressionContext context(FLAGS_compression_type_e);
|
|
CompressionInfo info(opts, context, CompressionDict::GetEmptyDict(),
|
|
FLAGS_compression_type_e,
|
|
FLAGS_sample_for_compression);
|
|
bool result = CompressSlice(info, Slice(input_str), &compressed);
|
|
|
|
if (!result) {
|
|
fprintf(stdout, "WARNING: %s compression is not enabled\n",
|
|
compression);
|
|
} else if (compressed.size() >= input_str.size()) {
|
|
fprintf(stdout, "WARNING: %s compression is not effective\n",
|
|
compression);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Current the following isn't equivalent to OS_LINUX.
|
|
#if defined(__linux)
|
|
static Slice TrimSpace(Slice s) {
|
|
unsigned int start = 0;
|
|
while (start < s.size() && isspace(s[start])) {
|
|
start++;
|
|
}
|
|
unsigned int limit = static_cast<unsigned int>(s.size());
|
|
while (limit > start && isspace(s[limit-1])) {
|
|
limit--;
|
|
}
|
|
return Slice(s.data() + start, limit - start);
|
|
}
|
|
#endif
|
|
|
|
void PrintEnvironment() {
|
|
fprintf(stderr, "RocksDB: version %d.%d\n",
|
|
kMajorVersion, kMinorVersion);
|
|
|
|
#if defined(__linux) || defined(__APPLE__) || defined(__FreeBSD__)
|
|
time_t now = time(nullptr);
|
|
char buf[52];
|
|
// Lint complains about ctime() usage, so replace it with ctime_r(). The
|
|
// requirement is to provide a buffer which is at least 26 bytes.
|
|
fprintf(stderr, "Date: %s",
|
|
ctime_r(&now, buf)); // ctime_r() adds newline
|
|
|
|
#if defined(__linux)
|
|
FILE* cpuinfo = fopen("/proc/cpuinfo", "r");
|
|
if (cpuinfo != nullptr) {
|
|
char line[1000];
|
|
int num_cpus = 0;
|
|
std::string cpu_type;
|
|
std::string cache_size;
|
|
while (fgets(line, sizeof(line), cpuinfo) != nullptr) {
|
|
const char* sep = strchr(line, ':');
|
|
if (sep == nullptr) {
|
|
continue;
|
|
}
|
|
Slice key = TrimSpace(Slice(line, sep - 1 - line));
|
|
Slice val = TrimSpace(Slice(sep + 1));
|
|
if (key == "model name") {
|
|
++num_cpus;
|
|
cpu_type = val.ToString();
|
|
} else if (key == "cache size") {
|
|
cache_size = val.ToString();
|
|
}
|
|
}
|
|
fclose(cpuinfo);
|
|
fprintf(stderr, "CPU: %d * %s\n", num_cpus, cpu_type.c_str());
|
|
fprintf(stderr, "CPUCache: %s\n", cache_size.c_str());
|
|
}
|
|
#elif defined(__APPLE__)
|
|
struct host_basic_info h;
|
|
size_t hlen = HOST_BASIC_INFO_COUNT;
|
|
if (host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&h,
|
|
(uint32_t*)&hlen) == KERN_SUCCESS) {
|
|
std::string cpu_type;
|
|
std::string cache_size;
|
|
size_t hcache_size;
|
|
hlen = sizeof(hcache_size);
|
|
if (sysctlbyname("hw.cachelinesize", &hcache_size, &hlen, NULL, 0) == 0) {
|
|
cache_size = std::to_string(hcache_size);
|
|
}
|
|
switch (h.cpu_type) {
|
|
case CPU_TYPE_X86_64:
|
|
cpu_type = "x86_64";
|
|
break;
|
|
case CPU_TYPE_ARM64:
|
|
cpu_type = "arm64";
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
fprintf(stderr, "CPU: %d * %s\n", h.max_cpus, cpu_type.c_str());
|
|
fprintf(stderr, "CPUCache: %s\n", cache_size.c_str());
|
|
}
|
|
#elif defined(__FreeBSD__)
|
|
int ncpus;
|
|
size_t len = sizeof(ncpus);
|
|
int mib[2] = {CTL_HW, HW_NCPU};
|
|
if (sysctl(mib, 2, &ncpus, &len, nullptr, 0) == 0) {
|
|
char cpu_type[16];
|
|
len = sizeof(cpu_type) - 1;
|
|
mib[1] = HW_MACHINE;
|
|
if (sysctl(mib, 2, cpu_type, &len, nullptr, 0) == 0) cpu_type[len] = 0;
|
|
|
|
fprintf(stderr, "CPU: %d * %s\n", ncpus, cpu_type);
|
|
// no programmatic way to get the cache line size except on PPC
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static bool KeyExpired(const TimestampEmulator* timestamp_emulator,
|
|
const Slice& key) {
|
|
const char* pos = key.data();
|
|
pos += 8;
|
|
uint64_t timestamp = 0;
|
|
if (port::kLittleEndian) {
|
|
int bytes_to_fill = 8;
|
|
for (int i = 0; i < bytes_to_fill; ++i) {
|
|
timestamp |= (static_cast<uint64_t>(static_cast<unsigned char>(pos[i]))
|
|
<< ((bytes_to_fill - i - 1) << 3));
|
|
}
|
|
} else {
|
|
memcpy(×tamp, pos, sizeof(timestamp));
|
|
}
|
|
return timestamp_emulator->Get() - timestamp > FLAGS_time_range;
|
|
}
|
|
|
|
class ExpiredTimeFilter : public CompactionFilter {
|
|
public:
|
|
explicit ExpiredTimeFilter(
|
|
const std::shared_ptr<TimestampEmulator>& timestamp_emulator)
|
|
: timestamp_emulator_(timestamp_emulator) {}
|
|
bool Filter(int /*level*/, const Slice& key,
|
|
const Slice& /*existing_value*/, std::string* /*new_value*/,
|
|
bool* /*value_changed*/) const override {
|
|
return KeyExpired(timestamp_emulator_.get(), key);
|
|
}
|
|
const char* Name() const override { return "ExpiredTimeFilter"; }
|
|
|
|
private:
|
|
std::shared_ptr<TimestampEmulator> timestamp_emulator_;
|
|
};
|
|
|
|
class KeepFilter : public CompactionFilter {
|
|
public:
|
|
bool Filter(int /*level*/, const Slice& /*key*/, const Slice& /*value*/,
|
|
std::string* /*new_value*/,
|
|
bool* /*value_changed*/) const override {
|
|
return false;
|
|
}
|
|
|
|
const char* Name() const override { return "KeepFilter"; }
|
|
};
|
|
|
|
std::shared_ptr<Cache> NewCache(int64_t capacity) {
|
|
if (capacity <= 0) {
|
|
return nullptr;
|
|
}
|
|
if (FLAGS_use_clock_cache) {
|
|
auto cache = NewClockCache(static_cast<size_t>(capacity),
|
|
FLAGS_cache_numshardbits);
|
|
if (!cache) {
|
|
fprintf(stderr, "Clock cache not supported.");
|
|
exit(1);
|
|
}
|
|
return cache;
|
|
} else {
|
|
LRUCacheOptions opts(
|
|
static_cast<size_t>(capacity), FLAGS_cache_numshardbits,
|
|
false /*strict_capacity_limit*/, FLAGS_cache_high_pri_pool_ratio,
|
|
#ifdef MEMKIND
|
|
FLAGS_use_cache_memkind_kmem_allocator
|
|
? std::make_shared<MemkindKmemAllocator>()
|
|
: nullptr
|
|
#else
|
|
nullptr
|
|
#endif
|
|
);
|
|
if (FLAGS_use_cache_memkind_kmem_allocator) {
|
|
#ifndef MEMKIND
|
|
fprintf(stderr, "Memkind library is not linked with the binary.");
|
|
exit(1);
|
|
#endif
|
|
}
|
|
#ifndef ROCKSDB_LITE
|
|
if (!FLAGS_secondary_cache_uri.empty()) {
|
|
Status s = SecondaryCache::CreateFromString(
|
|
ConfigOptions(), FLAGS_secondary_cache_uri, &secondary_cache);
|
|
if (secondary_cache == nullptr) {
|
|
fprintf(
|
|
stderr,
|
|
"No secondary cache registered matching string: %s status=%s\n",
|
|
FLAGS_secondary_cache_uri.c_str(), s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
opts.secondary_cache = secondary_cache;
|
|
}
|
|
#endif // ROCKSDB_LITE
|
|
return NewLRUCache(opts);
|
|
}
|
|
}
|
|
|
|
public:
|
|
Benchmark()
|
|
: cache_(NewCache(FLAGS_cache_size)),
|
|
compressed_cache_(NewCache(FLAGS_compressed_cache_size)),
|
|
prefix_extractor_(NewFixedPrefixTransform(FLAGS_prefix_size)),
|
|
num_(FLAGS_num),
|
|
key_size_(FLAGS_key_size),
|
|
user_timestamp_size_(FLAGS_user_timestamp_size),
|
|
prefix_size_(FLAGS_prefix_size),
|
|
keys_per_prefix_(FLAGS_keys_per_prefix),
|
|
entries_per_batch_(1),
|
|
reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads),
|
|
read_random_exp_range_(0.0),
|
|
writes_(FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes),
|
|
readwrites_(
|
|
(FLAGS_writes < 0 && FLAGS_reads < 0)
|
|
? FLAGS_num
|
|
: ((FLAGS_writes > FLAGS_reads) ? FLAGS_writes : FLAGS_reads)),
|
|
merge_keys_(FLAGS_merge_keys < 0 ? FLAGS_num : FLAGS_merge_keys),
|
|
report_file_operations_(FLAGS_report_file_operations),
|
|
#ifndef ROCKSDB_LITE
|
|
use_blob_db_(FLAGS_use_blob_db) // Stacked BlobDB
|
|
#else
|
|
use_blob_db_(false) // Stacked BlobDB
|
|
#endif // !ROCKSDB_LITE
|
|
{
|
|
// use simcache instead of cache
|
|
if (FLAGS_simcache_size >= 0) {
|
|
if (FLAGS_cache_numshardbits >= 1) {
|
|
cache_ =
|
|
NewSimCache(cache_, FLAGS_simcache_size, FLAGS_cache_numshardbits);
|
|
} else {
|
|
cache_ = NewSimCache(cache_, FLAGS_simcache_size, 0);
|
|
}
|
|
}
|
|
|
|
if (report_file_operations_) {
|
|
if (!FLAGS_hdfs.empty()) {
|
|
fprintf(stderr,
|
|
"--hdfs and --report_file_operations cannot be enabled "
|
|
"at the same time");
|
|
exit(1);
|
|
}
|
|
FLAGS_env = new ReportFileOpEnv(FLAGS_env);
|
|
}
|
|
|
|
if (FLAGS_prefix_size > FLAGS_key_size) {
|
|
fprintf(stderr, "prefix size is larger than key size");
|
|
exit(1);
|
|
}
|
|
|
|
std::vector<std::string> files;
|
|
FLAGS_env->GetChildren(FLAGS_db, &files);
|
|
for (size_t i = 0; i < files.size(); i++) {
|
|
if (Slice(files[i]).starts_with("heap-")) {
|
|
FLAGS_env->DeleteFile(FLAGS_db + "/" + files[i]);
|
|
}
|
|
}
|
|
if (!FLAGS_use_existing_db) {
|
|
Options options;
|
|
options.env = FLAGS_env;
|
|
if (!FLAGS_wal_dir.empty()) {
|
|
options.wal_dir = FLAGS_wal_dir;
|
|
}
|
|
#ifndef ROCKSDB_LITE
|
|
if (use_blob_db_) {
|
|
// Stacked BlobDB
|
|
blob_db::DestroyBlobDB(FLAGS_db, options, blob_db::BlobDBOptions());
|
|
}
|
|
#endif // !ROCKSDB_LITE
|
|
DestroyDB(FLAGS_db, options);
|
|
if (!FLAGS_wal_dir.empty()) {
|
|
FLAGS_env->DeleteDir(FLAGS_wal_dir);
|
|
}
|
|
|
|
if (FLAGS_num_multi_db > 1) {
|
|
FLAGS_env->CreateDir(FLAGS_db);
|
|
if (!FLAGS_wal_dir.empty()) {
|
|
FLAGS_env->CreateDir(FLAGS_wal_dir);
|
|
}
|
|
}
|
|
}
|
|
|
|
listener_.reset(new ErrorHandlerListener());
|
|
if (user_timestamp_size_ > 0) {
|
|
mock_app_clock_.reset(new TimestampEmulator());
|
|
}
|
|
}
|
|
|
|
void DeleteDBs() {
|
|
db_.DeleteDBs();
|
|
for (const DBWithColumnFamilies& dbwcf : multi_dbs_) {
|
|
delete dbwcf.db;
|
|
}
|
|
}
|
|
|
|
~Benchmark() {
|
|
DeleteDBs();
|
|
delete prefix_extractor_;
|
|
if (cache_.get() != nullptr) {
|
|
// Clear cache reference first
|
|
open_options_.write_buffer_manager.reset();
|
|
// this will leak, but we're shutting down so nobody cares
|
|
cache_->DisownData();
|
|
}
|
|
}
|
|
|
|
Slice AllocateKey(std::unique_ptr<const char[]>* key_guard) {
|
|
char* data = new char[key_size_];
|
|
const char* const_data = data;
|
|
key_guard->reset(const_data);
|
|
return Slice(key_guard->get(), key_size_);
|
|
}
|
|
|
|
// Generate key according to the given specification and random number.
|
|
// The resulting key will have the following format:
|
|
// - If keys_per_prefix_ is positive, extra trailing bytes are either cut
|
|
// off or padded with '0'.
|
|
// The prefix value is derived from key value.
|
|
// ----------------------------
|
|
// | prefix 00000 | key 00000 |
|
|
// ----------------------------
|
|
//
|
|
// - If keys_per_prefix_ is 0, the key is simply a binary representation of
|
|
// random number followed by trailing '0's
|
|
// ----------------------------
|
|
// | key 00000 |
|
|
// ----------------------------
|
|
void GenerateKeyFromInt(uint64_t v, int64_t num_keys, Slice* key) {
|
|
if (!keys_.empty()) {
|
|
assert(FLAGS_use_existing_keys);
|
|
assert(keys_.size() == static_cast<size_t>(num_keys));
|
|
assert(v < static_cast<uint64_t>(num_keys));
|
|
*key = keys_[v];
|
|
return;
|
|
}
|
|
char* start = const_cast<char*>(key->data());
|
|
char* pos = start;
|
|
if (keys_per_prefix_ > 0) {
|
|
int64_t num_prefix = num_keys / keys_per_prefix_;
|
|
int64_t prefix = v % num_prefix;
|
|
int bytes_to_fill = std::min(prefix_size_, 8);
|
|
if (port::kLittleEndian) {
|
|
for (int i = 0; i < bytes_to_fill; ++i) {
|
|
pos[i] = (prefix >> ((bytes_to_fill - i - 1) << 3)) & 0xFF;
|
|
}
|
|
} else {
|
|
memcpy(pos, static_cast<void*>(&prefix), bytes_to_fill);
|
|
}
|
|
if (prefix_size_ > 8) {
|
|
// fill the rest with 0s
|
|
memset(pos + 8, '0', prefix_size_ - 8);
|
|
}
|
|
pos += prefix_size_;
|
|
}
|
|
|
|
int bytes_to_fill = std::min(key_size_ - static_cast<int>(pos - start), 8);
|
|
if (port::kLittleEndian) {
|
|
for (int i = 0; i < bytes_to_fill; ++i) {
|
|
pos[i] = (v >> ((bytes_to_fill - i - 1) << 3)) & 0xFF;
|
|
}
|
|
} else {
|
|
memcpy(pos, static_cast<void*>(&v), bytes_to_fill);
|
|
}
|
|
pos += bytes_to_fill;
|
|
if (key_size_ > pos - start) {
|
|
memset(pos, '0', key_size_ - (pos - start));
|
|
}
|
|
}
|
|
|
|
void GenerateKeyFromIntForSeek(uint64_t v, int64_t num_keys, Slice* key) {
|
|
GenerateKeyFromInt(v, num_keys, key);
|
|
if (FLAGS_seek_missing_prefix) {
|
|
assert(prefix_size_ > 8);
|
|
char* key_ptr = const_cast<char*>(key->data());
|
|
// This rely on GenerateKeyFromInt filling paddings with '0's.
|
|
// Putting a '1' will create a non-existing prefix.
|
|
key_ptr[8] = '1';
|
|
}
|
|
}
|
|
|
|
std::string GetPathForMultiple(std::string base_name, size_t id) {
|
|
if (!base_name.empty()) {
|
|
#ifndef OS_WIN
|
|
if (base_name.back() != '/') {
|
|
base_name += '/';
|
|
}
|
|
#else
|
|
if (base_name.back() != '\\') {
|
|
base_name += '\\';
|
|
}
|
|
#endif
|
|
}
|
|
return base_name + ToString(id);
|
|
}
|
|
|
|
void VerifyDBFromDB(std::string& truth_db_name) {
|
|
DBWithColumnFamilies truth_db;
|
|
auto s = DB::OpenForReadOnly(open_options_, truth_db_name, &truth_db.db);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "open error: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
ReadOptions ro;
|
|
ro.total_order_seek = true;
|
|
std::unique_ptr<Iterator> truth_iter(truth_db.db->NewIterator(ro));
|
|
std::unique_ptr<Iterator> db_iter(db_.db->NewIterator(ro));
|
|
// Verify that all the key/values in truth_db are retrivable in db with
|
|
// ::Get
|
|
fprintf(stderr, "Verifying db >= truth_db with ::Get...\n");
|
|
for (truth_iter->SeekToFirst(); truth_iter->Valid(); truth_iter->Next()) {
|
|
std::string value;
|
|
s = db_.db->Get(ro, truth_iter->key(), &value);
|
|
assert(s.ok());
|
|
// TODO(myabandeh): provide debugging hints
|
|
assert(Slice(value) == truth_iter->value());
|
|
}
|
|
// Verify that the db iterator does not give any extra key/value
|
|
fprintf(stderr, "Verifying db == truth_db...\n");
|
|
for (db_iter->SeekToFirst(), truth_iter->SeekToFirst(); db_iter->Valid();
|
|
db_iter->Next(), truth_iter->Next()) {
|
|
assert(truth_iter->Valid());
|
|
assert(truth_iter->value() == db_iter->value());
|
|
}
|
|
// No more key should be left unchecked in truth_db
|
|
assert(!truth_iter->Valid());
|
|
fprintf(stderr, "...Verified\n");
|
|
}
|
|
|
|
void ErrorExit() {
|
|
DeleteDBs();
|
|
exit(1);
|
|
}
|
|
|
|
void Run() {
|
|
if (!SanityCheck()) {
|
|
ErrorExit();
|
|
}
|
|
Open(&open_options_);
|
|
PrintHeader(open_options_);
|
|
std::stringstream benchmark_stream(FLAGS_benchmarks);
|
|
std::string name;
|
|
std::unique_ptr<ExpiredTimeFilter> filter;
|
|
while (std::getline(benchmark_stream, name, ',')) {
|
|
// Sanitize parameters
|
|
num_ = FLAGS_num;
|
|
reads_ = (FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads);
|
|
writes_ = (FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes);
|
|
deletes_ = (FLAGS_deletes < 0 ? FLAGS_num : FLAGS_deletes);
|
|
value_size = FLAGS_value_size;
|
|
key_size_ = FLAGS_key_size;
|
|
entries_per_batch_ = FLAGS_batch_size;
|
|
writes_before_delete_range_ = FLAGS_writes_before_delete_range;
|
|
writes_per_range_tombstone_ = FLAGS_writes_per_range_tombstone;
|
|
range_tombstone_width_ = FLAGS_range_tombstone_width;
|
|
max_num_range_tombstones_ = FLAGS_max_num_range_tombstones;
|
|
write_options_ = WriteOptions();
|
|
read_random_exp_range_ = FLAGS_read_random_exp_range;
|
|
if (FLAGS_sync) {
|
|
write_options_.sync = true;
|
|
}
|
|
write_options_.disableWAL = FLAGS_disable_wal;
|
|
|
|
void (Benchmark::*method)(ThreadState*) = nullptr;
|
|
void (Benchmark::*post_process_method)() = nullptr;
|
|
|
|
bool fresh_db = false;
|
|
int num_threads = FLAGS_threads;
|
|
|
|
int num_repeat = 1;
|
|
int num_warmup = 0;
|
|
if (!name.empty() && *name.rbegin() == ']') {
|
|
auto it = name.find('[');
|
|
if (it == std::string::npos) {
|
|
fprintf(stderr, "unknown benchmark arguments '%s'\n", name.c_str());
|
|
ErrorExit();
|
|
}
|
|
std::string args = name.substr(it + 1);
|
|
args.resize(args.size() - 1);
|
|
name.resize(it);
|
|
|
|
std::string bench_arg;
|
|
std::stringstream args_stream(args);
|
|
while (std::getline(args_stream, bench_arg, '-')) {
|
|
if (bench_arg.empty()) {
|
|
continue;
|
|
}
|
|
if (bench_arg[0] == 'X') {
|
|
// Repeat the benchmark n times
|
|
std::string num_str = bench_arg.substr(1);
|
|
num_repeat = std::stoi(num_str);
|
|
} else if (bench_arg[0] == 'W') {
|
|
// Warm up the benchmark for n times
|
|
std::string num_str = bench_arg.substr(1);
|
|
num_warmup = std::stoi(num_str);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Both fillseqdeterministic and filluniquerandomdeterministic
|
|
// fill the levels except the max level with UNIQUE_RANDOM
|
|
// and fill the max level with fillseq and filluniquerandom, respectively
|
|
if (name == "fillseqdeterministic" ||
|
|
name == "filluniquerandomdeterministic") {
|
|
if (!FLAGS_disable_auto_compactions) {
|
|
fprintf(stderr,
|
|
"Please disable_auto_compactions in FillDeterministic "
|
|
"benchmark\n");
|
|
ErrorExit();
|
|
}
|
|
if (num_threads > 1) {
|
|
fprintf(stderr,
|
|
"filldeterministic multithreaded not supported"
|
|
", use 1 thread\n");
|
|
num_threads = 1;
|
|
}
|
|
fresh_db = true;
|
|
if (name == "fillseqdeterministic") {
|
|
method = &Benchmark::WriteSeqDeterministic;
|
|
} else {
|
|
method = &Benchmark::WriteUniqueRandomDeterministic;
|
|
}
|
|
} else if (name == "fillseq") {
|
|
fresh_db = true;
|
|
method = &Benchmark::WriteSeq;
|
|
} else if (name == "fillbatch") {
|
|
fresh_db = true;
|
|
entries_per_batch_ = 1000;
|
|
method = &Benchmark::WriteSeq;
|
|
} else if (name == "fillrandom") {
|
|
fresh_db = true;
|
|
method = &Benchmark::WriteRandom;
|
|
} else if (name == "filluniquerandom" ||
|
|
name == "fillanddeleteuniquerandom") {
|
|
fresh_db = true;
|
|
if (num_threads > 1) {
|
|
fprintf(stderr,
|
|
"filluniquerandom and fillanddeleteuniquerandom "
|
|
"multithreaded not supported, use 1 thread");
|
|
num_threads = 1;
|
|
}
|
|
method = &Benchmark::WriteUniqueRandom;
|
|
} else if (name == "overwrite") {
|
|
method = &Benchmark::WriteRandom;
|
|
} else if (name == "fillsync") {
|
|
fresh_db = true;
|
|
num_ /= 1000;
|
|
write_options_.sync = true;
|
|
method = &Benchmark::WriteRandom;
|
|
} else if (name == "fill100K") {
|
|
fresh_db = true;
|
|
num_ /= 1000;
|
|
value_size = 100 * 1000;
|
|
method = &Benchmark::WriteRandom;
|
|
} else if (name == "readseq") {
|
|
method = &Benchmark::ReadSequential;
|
|
} else if (name == "readtorowcache") {
|
|
if (!FLAGS_use_existing_keys || !FLAGS_row_cache_size) {
|
|
fprintf(stderr,
|
|
"Please set use_existing_keys to true and specify a "
|
|
"row cache size in readtorowcache benchmark\n");
|
|
ErrorExit();
|
|
}
|
|
method = &Benchmark::ReadToRowCache;
|
|
} else if (name == "readtocache") {
|
|
method = &Benchmark::ReadSequential;
|
|
num_threads = 1;
|
|
reads_ = num_;
|
|
} else if (name == "readreverse") {
|
|
method = &Benchmark::ReadReverse;
|
|
} else if (name == "readrandom") {
|
|
if (FLAGS_multiread_stride) {
|
|
fprintf(stderr, "entries_per_batch = %" PRIi64 "\n",
|
|
entries_per_batch_);
|
|
}
|
|
method = &Benchmark::ReadRandom;
|
|
} else if (name == "readrandomfast") {
|
|
method = &Benchmark::ReadRandomFast;
|
|
} else if (name == "multireadrandom") {
|
|
fprintf(stderr, "entries_per_batch = %" PRIi64 "\n",
|
|
entries_per_batch_);
|
|
method = &Benchmark::MultiReadRandom;
|
|
} else if (name == "approximatesizerandom") {
|
|
fprintf(stderr, "entries_per_batch = %" PRIi64 "\n",
|
|
entries_per_batch_);
|
|
method = &Benchmark::ApproximateSizeRandom;
|
|
} else if (name == "mixgraph") {
|
|
method = &Benchmark::MixGraph;
|
|
} else if (name == "readmissing") {
|
|
++key_size_;
|
|
method = &Benchmark::ReadRandom;
|
|
} else if (name == "newiterator") {
|
|
method = &Benchmark::IteratorCreation;
|
|
} else if (name == "newiteratorwhilewriting") {
|
|
num_threads++; // Add extra thread for writing
|
|
method = &Benchmark::IteratorCreationWhileWriting;
|
|
} else if (name == "seekrandom") {
|
|
method = &Benchmark::SeekRandom;
|
|
} else if (name == "seekrandomwhilewriting") {
|
|
num_threads++; // Add extra thread for writing
|
|
method = &Benchmark::SeekRandomWhileWriting;
|
|
} else if (name == "seekrandomwhilemerging") {
|
|
num_threads++; // Add extra thread for merging
|
|
method = &Benchmark::SeekRandomWhileMerging;
|
|
} else if (name == "readrandomsmall") {
|
|
reads_ /= 1000;
|
|
method = &Benchmark::ReadRandom;
|
|
} else if (name == "deleteseq") {
|
|
method = &Benchmark::DeleteSeq;
|
|
} else if (name == "deleterandom") {
|
|
method = &Benchmark::DeleteRandom;
|
|
} else if (name == "readwhilewriting") {
|
|
num_threads++; // Add extra thread for writing
|
|
method = &Benchmark::ReadWhileWriting;
|
|
} else if (name == "readwhilemerging") {
|
|
num_threads++; // Add extra thread for writing
|
|
method = &Benchmark::ReadWhileMerging;
|
|
} else if (name == "readwhilescanning") {
|
|
num_threads++; // Add extra thread for scaning
|
|
method = &Benchmark::ReadWhileScanning;
|
|
} else if (name == "readrandomwriterandom") {
|
|
method = &Benchmark::ReadRandomWriteRandom;
|
|
} else if (name == "readrandommergerandom") {
|
|
if (FLAGS_merge_operator.empty()) {
|
|
fprintf(stdout, "%-12s : skipped (--merge_operator is unknown)\n",
|
|
name.c_str());
|
|
ErrorExit();
|
|
}
|
|
method = &Benchmark::ReadRandomMergeRandom;
|
|
} else if (name == "updaterandom") {
|
|
method = &Benchmark::UpdateRandom;
|
|
} else if (name == "xorupdaterandom") {
|
|
method = &Benchmark::XORUpdateRandom;
|
|
} else if (name == "appendrandom") {
|
|
method = &Benchmark::AppendRandom;
|
|
} else if (name == "mergerandom") {
|
|
if (FLAGS_merge_operator.empty()) {
|
|
fprintf(stdout, "%-12s : skipped (--merge_operator is unknown)\n",
|
|
name.c_str());
|
|
exit(1);
|
|
}
|
|
method = &Benchmark::MergeRandom;
|
|
} else if (name == "randomwithverify") {
|
|
method = &Benchmark::RandomWithVerify;
|
|
} else if (name == "fillseekseq") {
|
|
method = &Benchmark::WriteSeqSeekSeq;
|
|
} else if (name == "compact") {
|
|
method = &Benchmark::Compact;
|
|
} else if (name == "compactall") {
|
|
CompactAll();
|
|
#ifndef ROCKSDB_LITE
|
|
} else if (name == "compact0") {
|
|
CompactLevel(0);
|
|
} else if (name == "compact1") {
|
|
CompactLevel(1);
|
|
} else if (name == "waitforcompaction") {
|
|
WaitForCompaction();
|
|
#endif
|
|
} else if (name == "flush") {
|
|
Flush();
|
|
} else if (name == "crc32c") {
|
|
method = &Benchmark::Crc32c;
|
|
} else if (name == "xxhash") {
|
|
method = &Benchmark::xxHash;
|
|
} else if (name == "xxhash64") {
|
|
method = &Benchmark::xxHash64;
|
|
} else if (name == "xxh3") {
|
|
method = &Benchmark::xxh3;
|
|
} else if (name == "acquireload") {
|
|
method = &Benchmark::AcquireLoad;
|
|
} else if (name == "compress") {
|
|
method = &Benchmark::Compress;
|
|
} else if (name == "uncompress") {
|
|
method = &Benchmark::Uncompress;
|
|
#ifndef ROCKSDB_LITE
|
|
} else if (name == "randomtransaction") {
|
|
method = &Benchmark::RandomTransaction;
|
|
post_process_method = &Benchmark::RandomTransactionVerify;
|
|
#endif // ROCKSDB_LITE
|
|
} else if (name == "randomreplacekeys") {
|
|
fresh_db = true;
|
|
method = &Benchmark::RandomReplaceKeys;
|
|
} else if (name == "timeseries") {
|
|
timestamp_emulator_.reset(new TimestampEmulator());
|
|
if (FLAGS_expire_style == "compaction_filter") {
|
|
filter.reset(new ExpiredTimeFilter(timestamp_emulator_));
|
|
fprintf(stdout, "Compaction filter is used to remove expired data");
|
|
open_options_.compaction_filter = filter.get();
|
|
}
|
|
fresh_db = true;
|
|
method = &Benchmark::TimeSeries;
|
|
} else if (name == "stats") {
|
|
PrintStats("rocksdb.stats");
|
|
} else if (name == "resetstats") {
|
|
ResetStats();
|
|
} else if (name == "verify") {
|
|
VerifyDBFromDB(FLAGS_truth_db);
|
|
} else if (name == "levelstats") {
|
|
PrintStats("rocksdb.levelstats");
|
|
} else if (name == "memstats") {
|
|
std::vector<std::string> keys{"rocksdb.num-immutable-mem-table",
|
|
"rocksdb.cur-size-active-mem-table",
|
|
"rocksdb.cur-size-all-mem-tables",
|
|
"rocksdb.size-all-mem-tables",
|
|
"rocksdb.num-entries-active-mem-table",
|
|
"rocksdb.num-entries-imm-mem-tables"};
|
|
PrintStats(keys);
|
|
} else if (name == "sstables") {
|
|
PrintStats("rocksdb.sstables");
|
|
} else if (name == "stats_history") {
|
|
PrintStatsHistory();
|
|
#ifndef ROCKSDB_LITE
|
|
} else if (name == "replay") {
|
|
if (num_threads > 1) {
|
|
fprintf(stderr, "Multi-threaded replay is not yet supported\n");
|
|
ErrorExit();
|
|
}
|
|
if (FLAGS_trace_file == "") {
|
|
fprintf(stderr, "Please set --trace_file to be replayed from\n");
|
|
ErrorExit();
|
|
}
|
|
method = &Benchmark::Replay;
|
|
#endif // ROCKSDB_LITE
|
|
} else if (name == "getmergeoperands") {
|
|
method = &Benchmark::GetMergeOperands;
|
|
} else if (!name.empty()) { // No error message for empty name
|
|
fprintf(stderr, "unknown benchmark '%s'\n", name.c_str());
|
|
ErrorExit();
|
|
}
|
|
|
|
if (fresh_db) {
|
|
if (FLAGS_use_existing_db) {
|
|
fprintf(stdout, "%-12s : skipped (--use_existing_db is true)\n",
|
|
name.c_str());
|
|
method = nullptr;
|
|
} else {
|
|
if (db_.db != nullptr) {
|
|
db_.DeleteDBs();
|
|
DestroyDB(FLAGS_db, open_options_);
|
|
}
|
|
Options options = open_options_;
|
|
for (size_t i = 0; i < multi_dbs_.size(); i++) {
|
|
delete multi_dbs_[i].db;
|
|
if (!open_options_.wal_dir.empty()) {
|
|
options.wal_dir = GetPathForMultiple(open_options_.wal_dir, i);
|
|
}
|
|
DestroyDB(GetPathForMultiple(FLAGS_db, i), options);
|
|
}
|
|
multi_dbs_.clear();
|
|
}
|
|
Open(&open_options_); // use open_options for the last accessed
|
|
}
|
|
|
|
if (method != nullptr) {
|
|
fprintf(stdout, "DB path: [%s]\n", FLAGS_db.c_str());
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
// A trace_file option can be provided both for trace and replay
|
|
// operations. But db_bench does not support tracing and replaying at
|
|
// the same time, for now. So, start tracing only when it is not a
|
|
// replay.
|
|
if (FLAGS_trace_file != "" && name != "replay") {
|
|
std::unique_ptr<TraceWriter> trace_writer;
|
|
Status s = NewFileTraceWriter(FLAGS_env, EnvOptions(),
|
|
FLAGS_trace_file, &trace_writer);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Encountered an error starting a trace, %s\n",
|
|
s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
s = db_.db->StartTrace(trace_options_, std::move(trace_writer));
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Encountered an error starting a trace, %s\n",
|
|
s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
fprintf(stdout, "Tracing the workload to: [%s]\n",
|
|
FLAGS_trace_file.c_str());
|
|
}
|
|
// Start block cache tracing.
|
|
if (!FLAGS_block_cache_trace_file.empty()) {
|
|
// Sanity checks.
|
|
if (FLAGS_block_cache_trace_sampling_frequency <= 0) {
|
|
fprintf(stderr,
|
|
"Block cache trace sampling frequency must be higher than "
|
|
"0.\n");
|
|
ErrorExit();
|
|
}
|
|
if (FLAGS_block_cache_trace_max_trace_file_size_in_bytes <= 0) {
|
|
fprintf(stderr,
|
|
"The maximum file size for block cache tracing must be "
|
|
"higher than 0.\n");
|
|
ErrorExit();
|
|
}
|
|
block_cache_trace_options_.max_trace_file_size =
|
|
FLAGS_block_cache_trace_max_trace_file_size_in_bytes;
|
|
block_cache_trace_options_.sampling_frequency =
|
|
FLAGS_block_cache_trace_sampling_frequency;
|
|
std::unique_ptr<TraceWriter> block_cache_trace_writer;
|
|
Status s = NewFileTraceWriter(FLAGS_env, EnvOptions(),
|
|
FLAGS_block_cache_trace_file,
|
|
&block_cache_trace_writer);
|
|
if (!s.ok()) {
|
|
fprintf(stderr,
|
|
"Encountered an error when creating trace writer, %s\n",
|
|
s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
s = db_.db->StartBlockCacheTrace(block_cache_trace_options_,
|
|
std::move(block_cache_trace_writer));
|
|
if (!s.ok()) {
|
|
fprintf(
|
|
stderr,
|
|
"Encountered an error when starting block cache tracing, %s\n",
|
|
s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
fprintf(stdout, "Tracing block cache accesses to: [%s]\n",
|
|
FLAGS_block_cache_trace_file.c_str());
|
|
}
|
|
#endif // ROCKSDB_LITE
|
|
|
|
if (num_warmup > 0) {
|
|
printf("Warming up benchmark by running %d times\n", num_warmup);
|
|
}
|
|
|
|
for (int i = 0; i < num_warmup; i++) {
|
|
RunBenchmark(num_threads, name, method);
|
|
}
|
|
|
|
if (num_repeat > 1) {
|
|
printf("Running benchmark for %d times\n", num_repeat);
|
|
}
|
|
|
|
CombinedStats combined_stats;
|
|
for (int i = 0; i < num_repeat; i++) {
|
|
Stats stats = RunBenchmark(num_threads, name, method);
|
|
combined_stats.AddStats(stats);
|
|
}
|
|
if (num_repeat > 1) {
|
|
combined_stats.Report(name);
|
|
}
|
|
}
|
|
if (post_process_method != nullptr) {
|
|
(this->*post_process_method)();
|
|
}
|
|
}
|
|
|
|
if (secondary_update_thread_) {
|
|
secondary_update_stopped_.store(1, std::memory_order_relaxed);
|
|
secondary_update_thread_->join();
|
|
secondary_update_thread_.reset();
|
|
}
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
if (name != "replay" && FLAGS_trace_file != "") {
|
|
Status s = db_.db->EndTrace();
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Encountered an error ending the trace, %s\n",
|
|
s.ToString().c_str());
|
|
}
|
|
}
|
|
if (!FLAGS_block_cache_trace_file.empty()) {
|
|
Status s = db_.db->EndBlockCacheTrace();
|
|
if (!s.ok()) {
|
|
fprintf(stderr,
|
|
"Encountered an error ending the block cache tracing, %s\n",
|
|
s.ToString().c_str());
|
|
}
|
|
}
|
|
#endif // ROCKSDB_LITE
|
|
|
|
if (FLAGS_statistics) {
|
|
fprintf(stdout, "STATISTICS:\n%s\n", dbstats->ToString().c_str());
|
|
}
|
|
if (FLAGS_simcache_size >= 0) {
|
|
fprintf(
|
|
stdout, "SIMULATOR CACHE STATISTICS:\n%s\n",
|
|
static_cast_with_check<SimCache>(cache_.get())->ToString().c_str());
|
|
}
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
if (FLAGS_use_secondary_db) {
|
|
fprintf(stdout, "Secondary instance updated %" PRIu64 " times.\n",
|
|
secondary_db_updates_);
|
|
}
|
|
#endif // ROCKSDB_LITE
|
|
}
|
|
|
|
private:
|
|
std::shared_ptr<TimestampEmulator> timestamp_emulator_;
|
|
std::unique_ptr<port::Thread> secondary_update_thread_;
|
|
std::atomic<int> secondary_update_stopped_{0};
|
|
#ifndef ROCKSDB_LITE
|
|
uint64_t secondary_db_updates_ = 0;
|
|
#endif // ROCKSDB_LITE
|
|
struct ThreadArg {
|
|
Benchmark* bm;
|
|
SharedState* shared;
|
|
ThreadState* thread;
|
|
void (Benchmark::*method)(ThreadState*);
|
|
};
|
|
|
|
static void ThreadBody(void* v) {
|
|
ThreadArg* arg = reinterpret_cast<ThreadArg*>(v);
|
|
SharedState* shared = arg->shared;
|
|
ThreadState* thread = arg->thread;
|
|
{
|
|
MutexLock l(&shared->mu);
|
|
shared->num_initialized++;
|
|
if (shared->num_initialized >= shared->total) {
|
|
shared->cv.SignalAll();
|
|
}
|
|
while (!shared->start) {
|
|
shared->cv.Wait();
|
|
}
|
|
}
|
|
|
|
SetPerfLevel(static_cast<PerfLevel> (shared->perf_level));
|
|
perf_context.EnablePerLevelPerfContext();
|
|
thread->stats.Start(thread->tid);
|
|
(arg->bm->*(arg->method))(thread);
|
|
thread->stats.Stop();
|
|
|
|
{
|
|
MutexLock l(&shared->mu);
|
|
shared->num_done++;
|
|
if (shared->num_done >= shared->total) {
|
|
shared->cv.SignalAll();
|
|
}
|
|
}
|
|
}
|
|
|
|
Stats RunBenchmark(int n, Slice name,
|
|
void (Benchmark::*method)(ThreadState*)) {
|
|
SharedState shared;
|
|
shared.total = n;
|
|
shared.num_initialized = 0;
|
|
shared.num_done = 0;
|
|
shared.start = false;
|
|
if (FLAGS_benchmark_write_rate_limit > 0) {
|
|
shared.write_rate_limiter.reset(
|
|
NewGenericRateLimiter(FLAGS_benchmark_write_rate_limit));
|
|
}
|
|
if (FLAGS_benchmark_read_rate_limit > 0) {
|
|
shared.read_rate_limiter.reset(NewGenericRateLimiter(
|
|
FLAGS_benchmark_read_rate_limit, 100000 /* refill_period_us */,
|
|
10 /* fairness */, RateLimiter::Mode::kReadsOnly));
|
|
}
|
|
|
|
std::unique_ptr<ReporterAgent> reporter_agent;
|
|
if (FLAGS_report_interval_seconds > 0) {
|
|
reporter_agent.reset(new ReporterAgent(FLAGS_env, FLAGS_report_file,
|
|
FLAGS_report_interval_seconds));
|
|
}
|
|
|
|
ThreadArg* arg = new ThreadArg[n];
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
#ifdef NUMA
|
|
if (FLAGS_enable_numa) {
|
|
// Performs a local allocation of memory to threads in numa node.
|
|
int n_nodes = numa_num_task_nodes(); // Number of nodes in NUMA.
|
|
numa_exit_on_error = 1;
|
|
int numa_node = i % n_nodes;
|
|
bitmask* nodes = numa_allocate_nodemask();
|
|
numa_bitmask_clearall(nodes);
|
|
numa_bitmask_setbit(nodes, numa_node);
|
|
// numa_bind() call binds the process to the node and these
|
|
// properties are passed on to the thread that is created in
|
|
// StartThread method called later in the loop.
|
|
numa_bind(nodes);
|
|
numa_set_strict(1);
|
|
numa_free_nodemask(nodes);
|
|
}
|
|
#endif
|
|
arg[i].bm = this;
|
|
arg[i].method = method;
|
|
arg[i].shared = &shared;
|
|
arg[i].thread = new ThreadState(i);
|
|
arg[i].thread->stats.SetReporterAgent(reporter_agent.get());
|
|
arg[i].thread->shared = &shared;
|
|
FLAGS_env->StartThread(ThreadBody, &arg[i]);
|
|
}
|
|
|
|
shared.mu.Lock();
|
|
while (shared.num_initialized < n) {
|
|
shared.cv.Wait();
|
|
}
|
|
|
|
shared.start = true;
|
|
shared.cv.SignalAll();
|
|
while (shared.num_done < n) {
|
|
shared.cv.Wait();
|
|
}
|
|
shared.mu.Unlock();
|
|
|
|
// Stats for some threads can be excluded.
|
|
Stats merge_stats;
|
|
for (int i = 0; i < n; i++) {
|
|
merge_stats.Merge(arg[i].thread->stats);
|
|
}
|
|
merge_stats.Report(name);
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
delete arg[i].thread;
|
|
}
|
|
delete[] arg;
|
|
|
|
return merge_stats;
|
|
}
|
|
|
|
template <OperationType kOpType, typename FnType, typename... Args>
|
|
static inline void ChecksumBenchmark(FnType fn, ThreadState* thread,
|
|
Args... args) {
|
|
const int size = FLAGS_block_size; // use --block_size option for db_bench
|
|
std::string labels = "(" + ToString(FLAGS_block_size) + " per op)";
|
|
const char* label = labels.c_str();
|
|
|
|
std::string data(size, 'x');
|
|
uint64_t bytes = 0;
|
|
uint32_t val = 0;
|
|
while (bytes < 5000U * uint64_t{1048576}) { // ~5GB
|
|
val += static_cast<uint32_t>(fn(data.data(), size, args...));
|
|
thread->stats.FinishedOps(nullptr, nullptr, 1, kOpType);
|
|
bytes += size;
|
|
}
|
|
// Print so result is not dead
|
|
fprintf(stderr, "... val=0x%x\r", static_cast<unsigned int>(val));
|
|
|
|
thread->stats.AddBytes(bytes);
|
|
thread->stats.AddMessage(label);
|
|
}
|
|
|
|
void Crc32c(ThreadState* thread) {
|
|
ChecksumBenchmark<kCrc>(crc32c::Value, thread);
|
|
}
|
|
|
|
void xxHash(ThreadState* thread) {
|
|
ChecksumBenchmark<kHash>(XXH32, thread, /*seed*/ 0);
|
|
}
|
|
|
|
void xxHash64(ThreadState* thread) {
|
|
ChecksumBenchmark<kHash>(XXH64, thread, /*seed*/ 0);
|
|
}
|
|
|
|
void xxh3(ThreadState* thread) {
|
|
ChecksumBenchmark<kHash>(XXH3_64bits, thread);
|
|
}
|
|
|
|
void AcquireLoad(ThreadState* thread) {
|
|
int dummy;
|
|
std::atomic<void*> ap(&dummy);
|
|
int count = 0;
|
|
void *ptr = nullptr;
|
|
thread->stats.AddMessage("(each op is 1000 loads)");
|
|
while (count < 100000) {
|
|
for (int i = 0; i < 1000; i++) {
|
|
ptr = ap.load(std::memory_order_acquire);
|
|
}
|
|
count++;
|
|
thread->stats.FinishedOps(nullptr, nullptr, 1, kOthers);
|
|
}
|
|
if (ptr == nullptr) exit(1); // Disable unused variable warning.
|
|
}
|
|
|
|
void Compress(ThreadState *thread) {
|
|
RandomGenerator gen;
|
|
Slice input = gen.Generate(FLAGS_block_size);
|
|
int64_t bytes = 0;
|
|
int64_t produced = 0;
|
|
bool ok = true;
|
|
std::string compressed;
|
|
CompressionOptions opts;
|
|
CompressionContext context(FLAGS_compression_type_e);
|
|
CompressionInfo info(opts, context, CompressionDict::GetEmptyDict(),
|
|
FLAGS_compression_type_e,
|
|
FLAGS_sample_for_compression);
|
|
// Compress 1G
|
|
while (ok && bytes < int64_t(1) << 30) {
|
|
compressed.clear();
|
|
ok = CompressSlice(info, input, &compressed);
|
|
produced += compressed.size();
|
|
bytes += input.size();
|
|
thread->stats.FinishedOps(nullptr, nullptr, 1, kCompress);
|
|
}
|
|
|
|
if (!ok) {
|
|
thread->stats.AddMessage("(compression failure)");
|
|
} else {
|
|
char buf[340];
|
|
snprintf(buf, sizeof(buf), "(output: %.1f%%)",
|
|
(produced * 100.0) / bytes);
|
|
thread->stats.AddMessage(buf);
|
|
thread->stats.AddBytes(bytes);
|
|
}
|
|
}
|
|
|
|
void Uncompress(ThreadState *thread) {
|
|
RandomGenerator gen;
|
|
Slice input = gen.Generate(FLAGS_block_size);
|
|
std::string compressed;
|
|
|
|
CompressionContext compression_ctx(FLAGS_compression_type_e);
|
|
CompressionOptions compression_opts;
|
|
CompressionInfo compression_info(
|
|
compression_opts, compression_ctx, CompressionDict::GetEmptyDict(),
|
|
FLAGS_compression_type_e, FLAGS_sample_for_compression);
|
|
UncompressionContext uncompression_ctx(FLAGS_compression_type_e);
|
|
UncompressionInfo uncompression_info(uncompression_ctx,
|
|
UncompressionDict::GetEmptyDict(),
|
|
FLAGS_compression_type_e);
|
|
|
|
bool ok = CompressSlice(compression_info, input, &compressed);
|
|
int64_t bytes = 0;
|
|
size_t uncompressed_size = 0;
|
|
while (ok && bytes < 1024 * 1048576) {
|
|
constexpr uint32_t compress_format_version = 2;
|
|
|
|
CacheAllocationPtr uncompressed = UncompressData(
|
|
uncompression_info, compressed.data(), compressed.size(),
|
|
&uncompressed_size, compress_format_version);
|
|
|
|
ok = uncompressed.get() != nullptr;
|
|
bytes += input.size();
|
|
thread->stats.FinishedOps(nullptr, nullptr, 1, kUncompress);
|
|
}
|
|
|
|
if (!ok) {
|
|
thread->stats.AddMessage("(compression failure)");
|
|
} else {
|
|
thread->stats.AddBytes(bytes);
|
|
}
|
|
}
|
|
|
|
// Returns true if the options is initialized from the specified
|
|
// options file.
|
|
bool InitializeOptionsFromFile(Options* opts) {
|
|
#ifndef ROCKSDB_LITE
|
|
printf("Initializing RocksDB Options from the specified file\n");
|
|
DBOptions db_opts;
|
|
std::vector<ColumnFamilyDescriptor> cf_descs;
|
|
if (FLAGS_options_file != "") {
|
|
auto s = LoadOptionsFromFile(FLAGS_options_file, FLAGS_env, &db_opts,
|
|
&cf_descs);
|
|
db_opts.env = FLAGS_env;
|
|
if (s.ok()) {
|
|
*opts = Options(db_opts, cf_descs[0].options);
|
|
return true;
|
|
}
|
|
fprintf(stderr, "Unable to load options file %s --- %s\n",
|
|
FLAGS_options_file.c_str(), s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
#else
|
|
(void)opts;
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
void InitializeOptionsFromFlags(Options* opts) {
|
|
printf("Initializing RocksDB Options from command-line flags\n");
|
|
Options& options = *opts;
|
|
ConfigOptions config_options(options);
|
|
config_options.ignore_unsupported_options = false;
|
|
|
|
assert(db_.db == nullptr);
|
|
|
|
options.env = FLAGS_env;
|
|
options.max_open_files = FLAGS_open_files;
|
|
if (FLAGS_cost_write_buffer_to_cache || FLAGS_db_write_buffer_size != 0) {
|
|
options.write_buffer_manager.reset(
|
|
new WriteBufferManager(FLAGS_db_write_buffer_size, cache_));
|
|
}
|
|
options.arena_block_size = FLAGS_arena_block_size;
|
|
options.write_buffer_size = FLAGS_write_buffer_size;
|
|
options.max_write_buffer_number = FLAGS_max_write_buffer_number;
|
|
options.min_write_buffer_number_to_merge =
|
|
FLAGS_min_write_buffer_number_to_merge;
|
|
options.max_write_buffer_number_to_maintain =
|
|
FLAGS_max_write_buffer_number_to_maintain;
|
|
options.max_write_buffer_size_to_maintain =
|
|
FLAGS_max_write_buffer_size_to_maintain;
|
|
options.max_background_jobs = FLAGS_max_background_jobs;
|
|
options.max_background_compactions = FLAGS_max_background_compactions;
|
|
options.max_subcompactions = static_cast<uint32_t>(FLAGS_subcompactions);
|
|
options.max_background_flushes = FLAGS_max_background_flushes;
|
|
options.compaction_style = FLAGS_compaction_style_e;
|
|
options.compaction_pri = FLAGS_compaction_pri_e;
|
|
options.allow_mmap_reads = FLAGS_mmap_read;
|
|
options.allow_mmap_writes = FLAGS_mmap_write;
|
|
options.use_direct_reads = FLAGS_use_direct_reads;
|
|
options.use_direct_io_for_flush_and_compaction =
|
|
FLAGS_use_direct_io_for_flush_and_compaction;
|
|
#ifndef ROCKSDB_LITE
|
|
options.ttl = FLAGS_fifo_compaction_ttl;
|
|
options.compaction_options_fifo = CompactionOptionsFIFO(
|
|
FLAGS_fifo_compaction_max_table_files_size_mb * 1024 * 1024,
|
|
FLAGS_fifo_compaction_allow_compaction);
|
|
options.compaction_options_fifo.age_for_warm = FLAGS_fifo_age_for_warm;
|
|
#endif // ROCKSDB_LITE
|
|
if (FLAGS_prefix_size != 0) {
|
|
options.prefix_extractor.reset(
|
|
NewFixedPrefixTransform(FLAGS_prefix_size));
|
|
}
|
|
if (FLAGS_use_uint64_comparator) {
|
|
options.comparator = test::Uint64Comparator();
|
|
if (FLAGS_key_size != 8) {
|
|
fprintf(stderr, "Using Uint64 comparator but key size is not 8.\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
if (FLAGS_use_stderr_info_logger) {
|
|
options.info_log.reset(new StderrLogger());
|
|
}
|
|
options.memtable_huge_page_size = FLAGS_memtable_use_huge_page ? 2048 : 0;
|
|
options.memtable_prefix_bloom_size_ratio = FLAGS_memtable_bloom_size_ratio;
|
|
options.memtable_whole_key_filtering = FLAGS_memtable_whole_key_filtering;
|
|
if (FLAGS_memtable_insert_with_hint_prefix_size > 0) {
|
|
options.memtable_insert_with_hint_prefix_extractor.reset(
|
|
NewCappedPrefixTransform(
|
|
FLAGS_memtable_insert_with_hint_prefix_size));
|
|
}
|
|
options.bloom_locality = FLAGS_bloom_locality;
|
|
options.max_file_opening_threads = FLAGS_file_opening_threads;
|
|
options.new_table_reader_for_compaction_inputs =
|
|
FLAGS_new_table_reader_for_compaction_inputs;
|
|
options.compaction_readahead_size = FLAGS_compaction_readahead_size;
|
|
options.log_readahead_size = FLAGS_log_readahead_size;
|
|
options.random_access_max_buffer_size = FLAGS_random_access_max_buffer_size;
|
|
options.writable_file_max_buffer_size = FLAGS_writable_file_max_buffer_size;
|
|
options.use_fsync = FLAGS_use_fsync;
|
|
options.num_levels = FLAGS_num_levels;
|
|
options.target_file_size_base = FLAGS_target_file_size_base;
|
|
options.target_file_size_multiplier = FLAGS_target_file_size_multiplier;
|
|
options.max_bytes_for_level_base = FLAGS_max_bytes_for_level_base;
|
|
options.level_compaction_dynamic_level_bytes =
|
|
FLAGS_level_compaction_dynamic_level_bytes;
|
|
options.max_bytes_for_level_multiplier =
|
|
FLAGS_max_bytes_for_level_multiplier;
|
|
Status s =
|
|
CreateMemTableRepFactory(config_options, &options.memtable_factory);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Could not create memtable factory: %s\n",
|
|
s.ToString().c_str());
|
|
exit(1);
|
|
} else if ((FLAGS_prefix_size == 0) &&
|
|
(options.memtable_factory->IsInstanceOf("prefix_hash") ||
|
|
options.memtable_factory->IsInstanceOf("hash_linkedlist"))) {
|
|
fprintf(stderr, "prefix_size should be non-zero if PrefixHash or "
|
|
"HashLinkedList memtablerep is used\n");
|
|
exit(1);
|
|
}
|
|
if (FLAGS_use_plain_table) {
|
|
#ifndef ROCKSDB_LITE
|
|
if (!options.memtable_factory->IsInstanceOf("prefix_hash") &&
|
|
!options.memtable_factory->IsInstanceOf("hash_linkedlist")) {
|
|
fprintf(stderr, "Warning: plain table is used with %s\n",
|
|
options.memtable_factory->Name());
|
|
}
|
|
|
|
int bloom_bits_per_key = FLAGS_bloom_bits;
|
|
if (bloom_bits_per_key < 0) {
|
|
bloom_bits_per_key = PlainTableOptions().bloom_bits_per_key;
|
|
}
|
|
|
|
PlainTableOptions plain_table_options;
|
|
plain_table_options.user_key_len = FLAGS_key_size;
|
|
plain_table_options.bloom_bits_per_key = bloom_bits_per_key;
|
|
plain_table_options.hash_table_ratio = 0.75;
|
|
options.table_factory = std::shared_ptr<TableFactory>(
|
|
NewPlainTableFactory(plain_table_options));
|
|
#else
|
|
fprintf(stderr, "Plain table is not supported in lite mode\n");
|
|
exit(1);
|
|
#endif // ROCKSDB_LITE
|
|
} else if (FLAGS_use_cuckoo_table) {
|
|
#ifndef ROCKSDB_LITE
|
|
if (FLAGS_cuckoo_hash_ratio > 1 || FLAGS_cuckoo_hash_ratio < 0) {
|
|
fprintf(stderr, "Invalid cuckoo_hash_ratio\n");
|
|
exit(1);
|
|
}
|
|
|
|
if (!FLAGS_mmap_read) {
|
|
fprintf(stderr, "cuckoo table format requires mmap read to operate\n");
|
|
exit(1);
|
|
}
|
|
|
|
ROCKSDB_NAMESPACE::CuckooTableOptions table_options;
|
|
table_options.hash_table_ratio = FLAGS_cuckoo_hash_ratio;
|
|
table_options.identity_as_first_hash = FLAGS_identity_as_first_hash;
|
|
options.table_factory = std::shared_ptr<TableFactory>(
|
|
NewCuckooTableFactory(table_options));
|
|
#else
|
|
fprintf(stderr, "Cuckoo table is not supported in lite mode\n");
|
|
exit(1);
|
|
#endif // ROCKSDB_LITE
|
|
} else {
|
|
BlockBasedTableOptions block_based_options;
|
|
block_based_options.checksum =
|
|
static_cast<ChecksumType>(FLAGS_checksum_type);
|
|
if (FLAGS_use_hash_search) {
|
|
if (FLAGS_prefix_size == 0) {
|
|
fprintf(stderr,
|
|
"prefix_size not assigned when enable use_hash_search \n");
|
|
exit(1);
|
|
}
|
|
block_based_options.index_type = BlockBasedTableOptions::kHashSearch;
|
|
} else {
|
|
block_based_options.index_type = BlockBasedTableOptions::kBinarySearch;
|
|
}
|
|
if (FLAGS_partition_index_and_filters || FLAGS_partition_index) {
|
|
if (FLAGS_index_with_first_key) {
|
|
fprintf(stderr,
|
|
"--index_with_first_key is not compatible with"
|
|
" partition index.");
|
|
}
|
|
if (FLAGS_use_hash_search) {
|
|
fprintf(stderr,
|
|
"use_hash_search is incompatible with "
|
|
"partition index and is ignored");
|
|
}
|
|
block_based_options.index_type =
|
|
BlockBasedTableOptions::kTwoLevelIndexSearch;
|
|
block_based_options.metadata_block_size = FLAGS_metadata_block_size;
|
|
if (FLAGS_partition_index_and_filters) {
|
|
block_based_options.partition_filters = true;
|
|
}
|
|
} else if (FLAGS_index_with_first_key) {
|
|
block_based_options.index_type =
|
|
BlockBasedTableOptions::kBinarySearchWithFirstKey;
|
|
}
|
|
BlockBasedTableOptions::IndexShorteningMode index_shortening =
|
|
block_based_options.index_shortening;
|
|
switch (FLAGS_index_shortening_mode) {
|
|
case 0:
|
|
index_shortening =
|
|
BlockBasedTableOptions::IndexShorteningMode::kNoShortening;
|
|
break;
|
|
case 1:
|
|
index_shortening =
|
|
BlockBasedTableOptions::IndexShorteningMode::kShortenSeparators;
|
|
break;
|
|
case 2:
|
|
index_shortening = BlockBasedTableOptions::IndexShorteningMode::
|
|
kShortenSeparatorsAndSuccessor;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Unknown key shortening mode\n");
|
|
}
|
|
block_based_options.optimize_filters_for_memory =
|
|
FLAGS_optimize_filters_for_memory;
|
|
block_based_options.index_shortening = index_shortening;
|
|
if (cache_ == nullptr) {
|
|
block_based_options.no_block_cache = true;
|
|
}
|
|
block_based_options.cache_index_and_filter_blocks =
|
|
FLAGS_cache_index_and_filter_blocks;
|
|
block_based_options.pin_l0_filter_and_index_blocks_in_cache =
|
|
FLAGS_pin_l0_filter_and_index_blocks_in_cache;
|
|
block_based_options.pin_top_level_index_and_filter =
|
|
FLAGS_pin_top_level_index_and_filter;
|
|
if (FLAGS_cache_high_pri_pool_ratio > 1e-6) { // > 0.0 + eps
|
|
block_based_options.cache_index_and_filter_blocks_with_high_priority =
|
|
true;
|
|
}
|
|
block_based_options.block_cache = cache_;
|
|
block_based_options.block_cache_compressed = compressed_cache_;
|
|
block_based_options.block_size = FLAGS_block_size;
|
|
block_based_options.block_restart_interval = FLAGS_block_restart_interval;
|
|
block_based_options.index_block_restart_interval =
|
|
FLAGS_index_block_restart_interval;
|
|
block_based_options.format_version =
|
|
static_cast<uint32_t>(FLAGS_format_version);
|
|
block_based_options.read_amp_bytes_per_bit = FLAGS_read_amp_bytes_per_bit;
|
|
block_based_options.enable_index_compression =
|
|
FLAGS_enable_index_compression;
|
|
block_based_options.block_align = FLAGS_block_align;
|
|
BlockBasedTableOptions::PrepopulateBlockCache prepopulate_block_cache =
|
|
block_based_options.prepopulate_block_cache;
|
|
switch (FLAGS_prepopulate_block_cache) {
|
|
case 0:
|
|
prepopulate_block_cache =
|
|
BlockBasedTableOptions::PrepopulateBlockCache::kDisable;
|
|
break;
|
|
case 1:
|
|
prepopulate_block_cache =
|
|
BlockBasedTableOptions::PrepopulateBlockCache::kFlushOnly;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Unknown prepopulate block cache mode\n");
|
|
}
|
|
block_based_options.prepopulate_block_cache = prepopulate_block_cache;
|
|
if (FLAGS_use_data_block_hash_index) {
|
|
block_based_options.data_block_index_type =
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions::kDataBlockBinaryAndHash;
|
|
} else {
|
|
block_based_options.data_block_index_type =
|
|
ROCKSDB_NAMESPACE::BlockBasedTableOptions::kDataBlockBinarySearch;
|
|
}
|
|
block_based_options.data_block_hash_table_util_ratio =
|
|
FLAGS_data_block_hash_table_util_ratio;
|
|
if (FLAGS_read_cache_path != "") {
|
|
#ifndef ROCKSDB_LITE
|
|
Status rc_status;
|
|
|
|
// Read cache need to be provided with a the Logger, we will put all
|
|
// reac cache logs in the read cache path in a file named rc_LOG
|
|
rc_status = FLAGS_env->CreateDirIfMissing(FLAGS_read_cache_path);
|
|
std::shared_ptr<Logger> read_cache_logger;
|
|
if (rc_status.ok()) {
|
|
rc_status = FLAGS_env->NewLogger(FLAGS_read_cache_path + "/rc_LOG",
|
|
&read_cache_logger);
|
|
}
|
|
|
|
if (rc_status.ok()) {
|
|
PersistentCacheConfig rc_cfg(FLAGS_env, FLAGS_read_cache_path,
|
|
FLAGS_read_cache_size,
|
|
read_cache_logger);
|
|
|
|
rc_cfg.enable_direct_reads = FLAGS_read_cache_direct_read;
|
|
rc_cfg.enable_direct_writes = FLAGS_read_cache_direct_write;
|
|
rc_cfg.writer_qdepth = 4;
|
|
rc_cfg.writer_dispatch_size = 4 * 1024;
|
|
|
|
auto pcache = std::make_shared<BlockCacheTier>(rc_cfg);
|
|
block_based_options.persistent_cache = pcache;
|
|
rc_status = pcache->Open();
|
|
}
|
|
|
|
if (!rc_status.ok()) {
|
|
fprintf(stderr, "Error initializing read cache, %s\n",
|
|
rc_status.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
#else
|
|
fprintf(stderr, "Read cache is not supported in LITE\n");
|
|
exit(1);
|
|
|
|
#endif
|
|
}
|
|
options.table_factory.reset(
|
|
NewBlockBasedTableFactory(block_based_options));
|
|
}
|
|
if (FLAGS_max_bytes_for_level_multiplier_additional_v.size() > 0) {
|
|
if (FLAGS_max_bytes_for_level_multiplier_additional_v.size() !=
|
|
static_cast<unsigned int>(FLAGS_num_levels)) {
|
|
fprintf(stderr, "Insufficient number of fanouts specified %d\n",
|
|
static_cast<int>(
|
|
FLAGS_max_bytes_for_level_multiplier_additional_v.size()));
|
|
exit(1);
|
|
}
|
|
options.max_bytes_for_level_multiplier_additional =
|
|
FLAGS_max_bytes_for_level_multiplier_additional_v;
|
|
}
|
|
options.level0_stop_writes_trigger = FLAGS_level0_stop_writes_trigger;
|
|
options.level0_file_num_compaction_trigger =
|
|
FLAGS_level0_file_num_compaction_trigger;
|
|
options.level0_slowdown_writes_trigger =
|
|
FLAGS_level0_slowdown_writes_trigger;
|
|
options.compression = FLAGS_compression_type_e;
|
|
if (FLAGS_simulate_hybrid_fs_file != "") {
|
|
options.bottommost_temperature = Temperature::kWarm;
|
|
}
|
|
options.sample_for_compression = FLAGS_sample_for_compression;
|
|
options.WAL_ttl_seconds = FLAGS_wal_ttl_seconds;
|
|
options.WAL_size_limit_MB = FLAGS_wal_size_limit_MB;
|
|
options.max_total_wal_size = FLAGS_max_total_wal_size;
|
|
|
|
if (FLAGS_min_level_to_compress >= 0) {
|
|
assert(FLAGS_min_level_to_compress <= FLAGS_num_levels);
|
|
options.compression_per_level.resize(FLAGS_num_levels);
|
|
for (int i = 0; i < FLAGS_min_level_to_compress; i++) {
|
|
options.compression_per_level[i] = kNoCompression;
|
|
}
|
|
for (int i = FLAGS_min_level_to_compress;
|
|
i < FLAGS_num_levels; i++) {
|
|
options.compression_per_level[i] = FLAGS_compression_type_e;
|
|
}
|
|
}
|
|
options.soft_rate_limit = FLAGS_soft_rate_limit;
|
|
options.hard_rate_limit = FLAGS_hard_rate_limit;
|
|
options.soft_pending_compaction_bytes_limit =
|
|
FLAGS_soft_pending_compaction_bytes_limit;
|
|
options.hard_pending_compaction_bytes_limit =
|
|
FLAGS_hard_pending_compaction_bytes_limit;
|
|
options.delayed_write_rate = FLAGS_delayed_write_rate;
|
|
options.allow_concurrent_memtable_write =
|
|
FLAGS_allow_concurrent_memtable_write;
|
|
options.experimental_mempurge_threshold =
|
|
FLAGS_experimental_mempurge_threshold;
|
|
options.inplace_update_support = FLAGS_inplace_update_support;
|
|
options.inplace_update_num_locks = FLAGS_inplace_update_num_locks;
|
|
options.enable_write_thread_adaptive_yield =
|
|
FLAGS_enable_write_thread_adaptive_yield;
|
|
options.enable_pipelined_write = FLAGS_enable_pipelined_write;
|
|
options.unordered_write = FLAGS_unordered_write;
|
|
options.write_thread_max_yield_usec = FLAGS_write_thread_max_yield_usec;
|
|
options.write_thread_slow_yield_usec = FLAGS_write_thread_slow_yield_usec;
|
|
options.rate_limit_delay_max_milliseconds =
|
|
FLAGS_rate_limit_delay_max_milliseconds;
|
|
options.table_cache_numshardbits = FLAGS_table_cache_numshardbits;
|
|
options.max_compaction_bytes = FLAGS_max_compaction_bytes;
|
|
options.disable_auto_compactions = FLAGS_disable_auto_compactions;
|
|
options.optimize_filters_for_hits = FLAGS_optimize_filters_for_hits;
|
|
options.periodic_compaction_seconds = FLAGS_periodic_compaction_seconds;
|
|
|
|
// fill storage options
|
|
options.advise_random_on_open = FLAGS_advise_random_on_open;
|
|
options.access_hint_on_compaction_start = FLAGS_compaction_fadvice_e;
|
|
options.use_adaptive_mutex = FLAGS_use_adaptive_mutex;
|
|
options.bytes_per_sync = FLAGS_bytes_per_sync;
|
|
options.wal_bytes_per_sync = FLAGS_wal_bytes_per_sync;
|
|
|
|
// merge operator options
|
|
if (!FLAGS_merge_operator.empty()) {
|
|
s = MergeOperator::CreateFromString(config_options, FLAGS_merge_operator,
|
|
&options.merge_operator);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "invalid merge operator[%s]: %s\n",
|
|
FLAGS_merge_operator.c_str(), s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
}
|
|
options.max_successive_merges = FLAGS_max_successive_merges;
|
|
options.report_bg_io_stats = FLAGS_report_bg_io_stats;
|
|
|
|
// set universal style compaction configurations, if applicable
|
|
if (FLAGS_universal_size_ratio != 0) {
|
|
options.compaction_options_universal.size_ratio =
|
|
FLAGS_universal_size_ratio;
|
|
}
|
|
if (FLAGS_universal_min_merge_width != 0) {
|
|
options.compaction_options_universal.min_merge_width =
|
|
FLAGS_universal_min_merge_width;
|
|
}
|
|
if (FLAGS_universal_max_merge_width != 0) {
|
|
options.compaction_options_universal.max_merge_width =
|
|
FLAGS_universal_max_merge_width;
|
|
}
|
|
if (FLAGS_universal_max_size_amplification_percent != 0) {
|
|
options.compaction_options_universal.max_size_amplification_percent =
|
|
FLAGS_universal_max_size_amplification_percent;
|
|
}
|
|
if (FLAGS_universal_compression_size_percent != -1) {
|
|
options.compaction_options_universal.compression_size_percent =
|
|
FLAGS_universal_compression_size_percent;
|
|
}
|
|
options.compaction_options_universal.allow_trivial_move =
|
|
FLAGS_universal_allow_trivial_move;
|
|
options.compaction_options_universal.incremental =
|
|
FLAGS_universal_incremental;
|
|
if (FLAGS_thread_status_per_interval > 0) {
|
|
options.enable_thread_tracking = true;
|
|
}
|
|
|
|
if (FLAGS_user_timestamp_size > 0) {
|
|
if (FLAGS_user_timestamp_size != 8) {
|
|
fprintf(stderr, "Only 64 bits timestamps are supported.\n");
|
|
exit(1);
|
|
}
|
|
options.comparator = ROCKSDB_NAMESPACE::test::ComparatorWithU64Ts();
|
|
}
|
|
|
|
// Integrated BlobDB
|
|
options.enable_blob_files = FLAGS_enable_blob_files;
|
|
options.min_blob_size = FLAGS_min_blob_size;
|
|
options.blob_file_size = FLAGS_blob_file_size;
|
|
options.blob_compression_type =
|
|
StringToCompressionType(FLAGS_blob_compression_type.c_str());
|
|
options.enable_blob_garbage_collection =
|
|
FLAGS_enable_blob_garbage_collection;
|
|
options.blob_garbage_collection_age_cutoff =
|
|
FLAGS_blob_garbage_collection_age_cutoff;
|
|
options.blob_garbage_collection_force_threshold =
|
|
FLAGS_blob_garbage_collection_force_threshold;
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
if (FLAGS_readonly && FLAGS_transaction_db) {
|
|
fprintf(stderr, "Cannot use readonly flag with transaction_db\n");
|
|
exit(1);
|
|
}
|
|
if (FLAGS_use_secondary_db &&
|
|
(FLAGS_transaction_db || FLAGS_optimistic_transaction_db)) {
|
|
fprintf(stderr, "Cannot use use_secondary_db flag with transaction_db\n");
|
|
exit(1);
|
|
}
|
|
#endif // ROCKSDB_LITE
|
|
|
|
}
|
|
|
|
void InitializeOptionsGeneral(Options* opts) {
|
|
Options& options = *opts;
|
|
|
|
options.create_missing_column_families = FLAGS_num_column_families > 1;
|
|
options.statistics = dbstats;
|
|
options.wal_dir = FLAGS_wal_dir;
|
|
options.create_if_missing = !FLAGS_use_existing_db;
|
|
options.dump_malloc_stats = FLAGS_dump_malloc_stats;
|
|
options.stats_dump_period_sec =
|
|
static_cast<unsigned int>(FLAGS_stats_dump_period_sec);
|
|
options.stats_persist_period_sec =
|
|
static_cast<unsigned int>(FLAGS_stats_persist_period_sec);
|
|
options.persist_stats_to_disk = FLAGS_persist_stats_to_disk;
|
|
options.stats_history_buffer_size =
|
|
static_cast<size_t>(FLAGS_stats_history_buffer_size);
|
|
|
|
options.compression_opts.level = FLAGS_compression_level;
|
|
options.compression_opts.max_dict_bytes = FLAGS_compression_max_dict_bytes;
|
|
options.compression_opts.zstd_max_train_bytes =
|
|
FLAGS_compression_zstd_max_train_bytes;
|
|
options.compression_opts.parallel_threads =
|
|
FLAGS_compression_parallel_threads;
|
|
options.compression_opts.max_dict_buffer_bytes =
|
|
FLAGS_compression_max_dict_buffer_bytes;
|
|
// If this is a block based table, set some related options
|
|
auto table_options =
|
|
options.table_factory->GetOptions<BlockBasedTableOptions>();
|
|
if (table_options != nullptr) {
|
|
if (FLAGS_cache_size) {
|
|
table_options->block_cache = cache_;
|
|
}
|
|
if (FLAGS_bloom_bits < 0) {
|
|
table_options->filter_policy = BlockBasedTableOptions().filter_policy;
|
|
} else if (FLAGS_bloom_bits == 0) {
|
|
table_options->filter_policy.reset();
|
|
} else {
|
|
table_options->filter_policy.reset(
|
|
FLAGS_use_ribbon_filter
|
|
? NewRibbonFilterPolicy(FLAGS_bloom_bits)
|
|
: NewBloomFilterPolicy(FLAGS_bloom_bits,
|
|
FLAGS_use_block_based_filter));
|
|
}
|
|
}
|
|
if (FLAGS_row_cache_size) {
|
|
if (FLAGS_cache_numshardbits >= 1) {
|
|
options.row_cache =
|
|
NewLRUCache(FLAGS_row_cache_size, FLAGS_cache_numshardbits);
|
|
} else {
|
|
options.row_cache = NewLRUCache(FLAGS_row_cache_size);
|
|
}
|
|
}
|
|
if (FLAGS_enable_io_prio) {
|
|
FLAGS_env->LowerThreadPoolIOPriority(Env::LOW);
|
|
FLAGS_env->LowerThreadPoolIOPriority(Env::HIGH);
|
|
}
|
|
if (FLAGS_enable_cpu_prio) {
|
|
FLAGS_env->LowerThreadPoolCPUPriority(Env::LOW);
|
|
FLAGS_env->LowerThreadPoolCPUPriority(Env::HIGH);
|
|
}
|
|
options.env = FLAGS_env;
|
|
if (FLAGS_sine_write_rate) {
|
|
FLAGS_benchmark_write_rate_limit = static_cast<uint64_t>(SineRate(0));
|
|
}
|
|
|
|
if (FLAGS_rate_limiter_bytes_per_sec > 0) {
|
|
if (FLAGS_rate_limit_bg_reads &&
|
|
!FLAGS_new_table_reader_for_compaction_inputs) {
|
|
fprintf(stderr,
|
|
"rate limit compaction reads must have "
|
|
"new_table_reader_for_compaction_inputs set\n");
|
|
exit(1);
|
|
}
|
|
options.rate_limiter.reset(NewGenericRateLimiter(
|
|
FLAGS_rate_limiter_bytes_per_sec, FLAGS_rate_limiter_refill_period_us,
|
|
10 /* fairness */,
|
|
FLAGS_rate_limit_bg_reads ? RateLimiter::Mode::kReadsOnly
|
|
: RateLimiter::Mode::kWritesOnly,
|
|
FLAGS_rate_limiter_auto_tuned));
|
|
}
|
|
|
|
options.listeners.emplace_back(listener_);
|
|
|
|
if (FLAGS_num_multi_db <= 1) {
|
|
OpenDb(options, FLAGS_db, &db_);
|
|
} else {
|
|
multi_dbs_.clear();
|
|
multi_dbs_.resize(FLAGS_num_multi_db);
|
|
auto wal_dir = options.wal_dir;
|
|
for (int i = 0; i < FLAGS_num_multi_db; i++) {
|
|
if (!wal_dir.empty()) {
|
|
options.wal_dir = GetPathForMultiple(wal_dir, i);
|
|
}
|
|
OpenDb(options, GetPathForMultiple(FLAGS_db, i), &multi_dbs_[i]);
|
|
}
|
|
options.wal_dir = wal_dir;
|
|
}
|
|
|
|
// KeepFilter is a noop filter, this can be used to test compaction filter
|
|
if (FLAGS_use_keep_filter) {
|
|
options.compaction_filter = new KeepFilter();
|
|
fprintf(stdout, "A noop compaction filter is used\n");
|
|
}
|
|
|
|
if (FLAGS_use_existing_keys) {
|
|
// Only work on single database
|
|
assert(db_.db != nullptr);
|
|
ReadOptions read_opts;
|
|
read_opts.total_order_seek = true;
|
|
Iterator* iter = db_.db->NewIterator(read_opts);
|
|
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
|
|
keys_.emplace_back(iter->key().ToString());
|
|
}
|
|
delete iter;
|
|
FLAGS_num = keys_.size();
|
|
}
|
|
}
|
|
|
|
void Open(Options* opts) {
|
|
if (!InitializeOptionsFromFile(opts)) {
|
|
InitializeOptionsFromFlags(opts);
|
|
}
|
|
|
|
InitializeOptionsGeneral(opts);
|
|
}
|
|
|
|
void OpenDb(Options options, const std::string& db_name,
|
|
DBWithColumnFamilies* db) {
|
|
uint64_t open_start = FLAGS_report_open_timing ? FLAGS_env->NowNanos() : 0;
|
|
Status s;
|
|
// Open with column families if necessary.
|
|
if (FLAGS_num_column_families > 1) {
|
|
size_t num_hot = FLAGS_num_column_families;
|
|
if (FLAGS_num_hot_column_families > 0 &&
|
|
FLAGS_num_hot_column_families < FLAGS_num_column_families) {
|
|
num_hot = FLAGS_num_hot_column_families;
|
|
} else {
|
|
FLAGS_num_hot_column_families = FLAGS_num_column_families;
|
|
}
|
|
std::vector<ColumnFamilyDescriptor> column_families;
|
|
for (size_t i = 0; i < num_hot; i++) {
|
|
column_families.push_back(ColumnFamilyDescriptor(
|
|
ColumnFamilyName(i), ColumnFamilyOptions(options)));
|
|
}
|
|
std::vector<int> cfh_idx_to_prob;
|
|
if (!FLAGS_column_family_distribution.empty()) {
|
|
std::stringstream cf_prob_stream(FLAGS_column_family_distribution);
|
|
std::string cf_prob;
|
|
int sum = 0;
|
|
while (std::getline(cf_prob_stream, cf_prob, ',')) {
|
|
cfh_idx_to_prob.push_back(std::stoi(cf_prob));
|
|
sum += cfh_idx_to_prob.back();
|
|
}
|
|
if (sum != 100) {
|
|
fprintf(stderr, "column_family_distribution items must sum to 100\n");
|
|
exit(1);
|
|
}
|
|
if (cfh_idx_to_prob.size() != num_hot) {
|
|
fprintf(stderr,
|
|
"got %" ROCKSDB_PRIszt
|
|
" column_family_distribution items; expected "
|
|
"%" ROCKSDB_PRIszt "\n",
|
|
cfh_idx_to_prob.size(), num_hot);
|
|
exit(1);
|
|
}
|
|
}
|
|
#ifndef ROCKSDB_LITE
|
|
if (FLAGS_readonly) {
|
|
s = DB::OpenForReadOnly(options, db_name, column_families,
|
|
&db->cfh, &db->db);
|
|
} else if (FLAGS_optimistic_transaction_db) {
|
|
s = OptimisticTransactionDB::Open(options, db_name, column_families,
|
|
&db->cfh, &db->opt_txn_db);
|
|
if (s.ok()) {
|
|
db->db = db->opt_txn_db->GetBaseDB();
|
|
}
|
|
} else if (FLAGS_transaction_db) {
|
|
TransactionDB* ptr;
|
|
TransactionDBOptions txn_db_options;
|
|
if (options.unordered_write) {
|
|
options.two_write_queues = true;
|
|
txn_db_options.skip_concurrency_control = true;
|
|
txn_db_options.write_policy = WRITE_PREPARED;
|
|
}
|
|
s = TransactionDB::Open(options, txn_db_options, db_name,
|
|
column_families, &db->cfh, &ptr);
|
|
if (s.ok()) {
|
|
db->db = ptr;
|
|
}
|
|
} else {
|
|
s = DB::Open(options, db_name, column_families, &db->cfh, &db->db);
|
|
}
|
|
#else
|
|
s = DB::Open(options, db_name, column_families, &db->cfh, &db->db);
|
|
#endif // ROCKSDB_LITE
|
|
db->cfh.resize(FLAGS_num_column_families);
|
|
db->num_created = num_hot;
|
|
db->num_hot = num_hot;
|
|
db->cfh_idx_to_prob = std::move(cfh_idx_to_prob);
|
|
#ifndef ROCKSDB_LITE
|
|
} else if (FLAGS_readonly) {
|
|
s = DB::OpenForReadOnly(options, db_name, &db->db);
|
|
} else if (FLAGS_optimistic_transaction_db) {
|
|
s = OptimisticTransactionDB::Open(options, db_name, &db->opt_txn_db);
|
|
if (s.ok()) {
|
|
db->db = db->opt_txn_db->GetBaseDB();
|
|
}
|
|
} else if (FLAGS_transaction_db) {
|
|
TransactionDB* ptr = nullptr;
|
|
TransactionDBOptions txn_db_options;
|
|
if (options.unordered_write) {
|
|
options.two_write_queues = true;
|
|
txn_db_options.skip_concurrency_control = true;
|
|
txn_db_options.write_policy = WRITE_PREPARED;
|
|
}
|
|
s = CreateLoggerFromOptions(db_name, options, &options.info_log);
|
|
if (s.ok()) {
|
|
s = TransactionDB::Open(options, txn_db_options, db_name, &ptr);
|
|
}
|
|
if (s.ok()) {
|
|
db->db = ptr;
|
|
}
|
|
} else if (FLAGS_use_blob_db) {
|
|
// Stacked BlobDB
|
|
blob_db::BlobDBOptions blob_db_options;
|
|
blob_db_options.enable_garbage_collection = FLAGS_blob_db_enable_gc;
|
|
blob_db_options.garbage_collection_cutoff = FLAGS_blob_db_gc_cutoff;
|
|
blob_db_options.is_fifo = FLAGS_blob_db_is_fifo;
|
|
blob_db_options.max_db_size = FLAGS_blob_db_max_db_size;
|
|
blob_db_options.ttl_range_secs = FLAGS_blob_db_ttl_range_secs;
|
|
blob_db_options.min_blob_size = FLAGS_blob_db_min_blob_size;
|
|
blob_db_options.bytes_per_sync = FLAGS_blob_db_bytes_per_sync;
|
|
blob_db_options.blob_file_size = FLAGS_blob_db_file_size;
|
|
blob_db_options.compression = FLAGS_blob_db_compression_type_e;
|
|
blob_db::BlobDB* ptr = nullptr;
|
|
s = blob_db::BlobDB::Open(options, blob_db_options, db_name, &ptr);
|
|
if (s.ok()) {
|
|
db->db = ptr;
|
|
}
|
|
} else if (FLAGS_use_secondary_db) {
|
|
if (FLAGS_secondary_path.empty()) {
|
|
std::string default_secondary_path;
|
|
FLAGS_env->GetTestDirectory(&default_secondary_path);
|
|
default_secondary_path += "/dbbench_secondary";
|
|
FLAGS_secondary_path = default_secondary_path;
|
|
}
|
|
s = DB::OpenAsSecondary(options, db_name, FLAGS_secondary_path, &db->db);
|
|
if (s.ok() && FLAGS_secondary_update_interval > 0) {
|
|
secondary_update_thread_.reset(new port::Thread(
|
|
[this](int interval, DBWithColumnFamilies* _db) {
|
|
while (0 == secondary_update_stopped_.load(
|
|
std::memory_order_relaxed)) {
|
|
Status secondary_update_status =
|
|
_db->db->TryCatchUpWithPrimary();
|
|
if (!secondary_update_status.ok()) {
|
|
fprintf(stderr, "Failed to catch up with primary: %s\n",
|
|
secondary_update_status.ToString().c_str());
|
|
break;
|
|
}
|
|
++secondary_db_updates_;
|
|
FLAGS_env->SleepForMicroseconds(interval * 1000000);
|
|
}
|
|
},
|
|
FLAGS_secondary_update_interval, db));
|
|
}
|
|
#endif // ROCKSDB_LITE
|
|
} else {
|
|
s = DB::Open(options, db_name, &db->db);
|
|
}
|
|
if (FLAGS_report_open_timing) {
|
|
std::cout << "OpenDb: "
|
|
<< (FLAGS_env->NowNanos() - open_start) / 1000000.0
|
|
<< " milliseconds\n";
|
|
}
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "open error: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
enum WriteMode {
|
|
RANDOM, SEQUENTIAL, UNIQUE_RANDOM
|
|
};
|
|
|
|
void WriteSeqDeterministic(ThreadState* thread) {
|
|
DoDeterministicCompact(thread, open_options_.compaction_style, SEQUENTIAL);
|
|
}
|
|
|
|
void WriteUniqueRandomDeterministic(ThreadState* thread) {
|
|
DoDeterministicCompact(thread, open_options_.compaction_style,
|
|
UNIQUE_RANDOM);
|
|
}
|
|
|
|
void WriteSeq(ThreadState* thread) {
|
|
DoWrite(thread, SEQUENTIAL);
|
|
}
|
|
|
|
void WriteRandom(ThreadState* thread) {
|
|
DoWrite(thread, RANDOM);
|
|
}
|
|
|
|
void WriteUniqueRandom(ThreadState* thread) {
|
|
DoWrite(thread, UNIQUE_RANDOM);
|
|
}
|
|
|
|
class KeyGenerator {
|
|
public:
|
|
KeyGenerator(Random64* rand, WriteMode mode, uint64_t num,
|
|
uint64_t /*num_per_set*/ = 64 * 1024)
|
|
: rand_(rand), mode_(mode), num_(num), next_(0) {
|
|
if (mode_ == UNIQUE_RANDOM) {
|
|
// NOTE: if memory consumption of this approach becomes a concern,
|
|
// we can either break it into pieces and only random shuffle a section
|
|
// each time. Alternatively, use a bit map implementation
|
|
// (https://reviews.facebook.net/differential/diff/54627/)
|
|
values_.resize(num_);
|
|
for (uint64_t i = 0; i < num_; ++i) {
|
|
values_[i] = i;
|
|
}
|
|
RandomShuffle(values_.begin(), values_.end(),
|
|
static_cast<uint32_t>(FLAGS_seed));
|
|
}
|
|
}
|
|
|
|
uint64_t Next() {
|
|
switch (mode_) {
|
|
case SEQUENTIAL:
|
|
return next_++;
|
|
case RANDOM:
|
|
return rand_->Next() % num_;
|
|
case UNIQUE_RANDOM:
|
|
assert(next_ < num_);
|
|
return values_[next_++];
|
|
}
|
|
assert(false);
|
|
return std::numeric_limits<uint64_t>::max();
|
|
}
|
|
|
|
// Only available for UNIQUE_RANDOM mode.
|
|
uint64_t Fetch(uint64_t index) {
|
|
assert(mode_ == UNIQUE_RANDOM);
|
|
assert(index < values_.size());
|
|
return values_[index];
|
|
}
|
|
|
|
private:
|
|
Random64* rand_;
|
|
WriteMode mode_;
|
|
const uint64_t num_;
|
|
uint64_t next_;
|
|
std::vector<uint64_t> values_;
|
|
};
|
|
|
|
DB* SelectDB(ThreadState* thread) {
|
|
return SelectDBWithCfh(thread)->db;
|
|
}
|
|
|
|
DBWithColumnFamilies* SelectDBWithCfh(ThreadState* thread) {
|
|
return SelectDBWithCfh(thread->rand.Next());
|
|
}
|
|
|
|
DBWithColumnFamilies* SelectDBWithCfh(uint64_t rand_int) {
|
|
if (db_.db != nullptr) {
|
|
return &db_;
|
|
} else {
|
|
return &multi_dbs_[rand_int % multi_dbs_.size()];
|
|
}
|
|
}
|
|
|
|
double SineRate(double x) {
|
|
return FLAGS_sine_a*sin((FLAGS_sine_b*x) + FLAGS_sine_c) + FLAGS_sine_d;
|
|
}
|
|
|
|
void DoWrite(ThreadState* thread, WriteMode write_mode) {
|
|
const int test_duration = write_mode == RANDOM ? FLAGS_duration : 0;
|
|
const int64_t num_ops = writes_ == 0 ? num_ : writes_;
|
|
|
|
size_t num_key_gens = 1;
|
|
if (db_.db == nullptr) {
|
|
num_key_gens = multi_dbs_.size();
|
|
}
|
|
std::vector<std::unique_ptr<KeyGenerator>> key_gens(num_key_gens);
|
|
int64_t max_ops = num_ops * num_key_gens;
|
|
int64_t ops_per_stage = max_ops;
|
|
if (FLAGS_num_column_families > 1 && FLAGS_num_hot_column_families > 0) {
|
|
ops_per_stage = (max_ops - 1) / (FLAGS_num_column_families /
|
|
FLAGS_num_hot_column_families) +
|
|
1;
|
|
}
|
|
|
|
Duration duration(test_duration, max_ops, ops_per_stage);
|
|
const uint64_t num_per_key_gen = num_ + max_num_range_tombstones_;
|
|
for (size_t i = 0; i < num_key_gens; i++) {
|
|
key_gens[i].reset(new KeyGenerator(&(thread->rand), write_mode,
|
|
num_per_key_gen, ops_per_stage));
|
|
}
|
|
|
|
if (num_ != FLAGS_num) {
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "(%" PRIu64 " ops)", num_);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
RandomGenerator gen;
|
|
WriteBatch batch(/*reserved_bytes=*/0, /*max_bytes=*/0,
|
|
user_timestamp_size_);
|
|
Status s;
|
|
int64_t bytes = 0;
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
std::unique_ptr<const char[]> begin_key_guard;
|
|
Slice begin_key = AllocateKey(&begin_key_guard);
|
|
std::unique_ptr<const char[]> end_key_guard;
|
|
Slice end_key = AllocateKey(&end_key_guard);
|
|
double p = 0.0;
|
|
uint64_t num_overwrites = 0, num_unique_keys = 0, num_selective_deletes = 0;
|
|
// If user set overwrite_probability flag,
|
|
// check if value is in [0.0,1.0].
|
|
if (FLAGS_overwrite_probability > 0.0) {
|
|
p = FLAGS_overwrite_probability > 1.0 ? 1.0 : FLAGS_overwrite_probability;
|
|
// If overwrite set by user, and UNIQUE_RANDOM mode on,
|
|
// the overwrite_window_size must be > 0.
|
|
if (write_mode == UNIQUE_RANDOM && FLAGS_overwrite_window_size == 0) {
|
|
fprintf(stderr,
|
|
"Overwrite_window_size must be strictly greater than 0.\n");
|
|
ErrorExit();
|
|
}
|
|
}
|
|
|
|
// Default_random_engine provides slightly
|
|
// improved throughput over mt19937.
|
|
std::default_random_engine overwrite_gen{
|
|
static_cast<unsigned int>(FLAGS_seed)};
|
|
std::bernoulli_distribution overwrite_decider(p);
|
|
|
|
// Inserted key window is filled with the last N
|
|
// keys previously inserted into the DB (with
|
|
// N=FLAGS_overwrite_window_size).
|
|
// We use a deque struct because:
|
|
// - random access is O(1)
|
|
// - insertion/removal at beginning/end is also O(1).
|
|
std::deque<int64_t> inserted_key_window;
|
|
Random64 reservoir_id_gen(FLAGS_seed);
|
|
|
|
// --- Variables used in disposable/persistent keys simulation:
|
|
// The following variables are used when
|
|
// disposable_entries_batch_size is >0. We simualte a workload
|
|
// where the following sequence is repeated multiple times:
|
|
// "A set of keys S1 is inserted ('disposable entries'), then after
|
|
// some delay another set of keys S2 is inserted ('persistent entries')
|
|
// and the first set of keys S1 is deleted. S2 artificially represents
|
|
// the insertion of hypothetical results from some undefined computation
|
|
// done on the first set of keys S1. The next sequence can start as soon
|
|
// as the last disposable entry in the set S1 of this sequence is
|
|
// inserted, if the delay is non negligible"
|
|
bool skip_for_loop = false, is_disposable_entry = true;
|
|
std::vector<uint64_t> disposable_entries_index(num_key_gens, 0);
|
|
std::vector<uint64_t> persistent_ent_and_del_index(num_key_gens, 0);
|
|
const uint64_t kNumDispAndPersEntries =
|
|
FLAGS_disposable_entries_batch_size +
|
|
FLAGS_persistent_entries_batch_size;
|
|
if (kNumDispAndPersEntries > 0) {
|
|
if ((write_mode != UNIQUE_RANDOM) || (writes_per_range_tombstone_ > 0) ||
|
|
(p > 0.0)) {
|
|
fprintf(
|
|
stderr,
|
|
"Disposable/persistent deletes are not compatible with overwrites "
|
|
"and DeleteRanges; and are only supported in filluniquerandom.\n");
|
|
ErrorExit();
|
|
}
|
|
if (FLAGS_disposable_entries_value_size < 0 ||
|
|
FLAGS_persistent_entries_value_size < 0) {
|
|
fprintf(
|
|
stderr,
|
|
"disposable_entries_value_size and persistent_entries_value_size"
|
|
"have to be positive.\n");
|
|
ErrorExit();
|
|
}
|
|
}
|
|
Random rnd_disposable_entry(static_cast<uint32_t>(FLAGS_seed));
|
|
std::string random_value;
|
|
// Queue that stores scheduled timestamp of disposable entries deletes,
|
|
// along with starting index of disposable entry keys to delete.
|
|
std::vector<std::queue<std::pair<uint64_t, uint64_t>>> disposable_entries_q(
|
|
num_key_gens);
|
|
// --- End of variables used in disposable/persistent keys simulation.
|
|
|
|
std::vector<std::unique_ptr<const char[]>> expanded_key_guards;
|
|
std::vector<Slice> expanded_keys;
|
|
if (FLAGS_expand_range_tombstones) {
|
|
expanded_key_guards.resize(range_tombstone_width_);
|
|
for (auto& expanded_key_guard : expanded_key_guards) {
|
|
expanded_keys.emplace_back(AllocateKey(&expanded_key_guard));
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
|
|
int64_t stage = 0;
|
|
int64_t num_written = 0;
|
|
while ((num_per_key_gen != 0) && !duration.Done(entries_per_batch_)) {
|
|
if (duration.GetStage() != stage) {
|
|
stage = duration.GetStage();
|
|
if (db_.db != nullptr) {
|
|
db_.CreateNewCf(open_options_, stage);
|
|
} else {
|
|
for (auto& db : multi_dbs_) {
|
|
db.CreateNewCf(open_options_, stage);
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t id = thread->rand.Next() % num_key_gens;
|
|
DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(id);
|
|
batch.Clear();
|
|
int64_t batch_bytes = 0;
|
|
|
|
for (int64_t j = 0; j < entries_per_batch_; j++) {
|
|
int64_t rand_num = 0;
|
|
if ((write_mode == UNIQUE_RANDOM) && (p > 0.0)) {
|
|
if ((inserted_key_window.size() > 0) &&
|
|
overwrite_decider(overwrite_gen)) {
|
|
num_overwrites++;
|
|
rand_num = inserted_key_window[reservoir_id_gen.Next() %
|
|
inserted_key_window.size()];
|
|
} else {
|
|
num_unique_keys++;
|
|
rand_num = key_gens[id]->Next();
|
|
if (inserted_key_window.size() < FLAGS_overwrite_window_size) {
|
|
inserted_key_window.push_back(rand_num);
|
|
} else {
|
|
inserted_key_window.pop_front();
|
|
inserted_key_window.push_back(rand_num);
|
|
}
|
|
}
|
|
} else if (kNumDispAndPersEntries > 0) {
|
|
// Check if queue is non-empty and if we need to insert
|
|
// 'persistent' KV entries (KV entries that are never deleted)
|
|
// and delete disposable entries previously inserted.
|
|
if (!disposable_entries_q[id].empty() &&
|
|
(disposable_entries_q[id].front().first <
|
|
FLAGS_env->NowMicros())) {
|
|
// If we need to perform a "merge op" pattern,
|
|
// we first write all the persistent KV entries not targeted
|
|
// by deletes, and then we write the disposable entries deletes.
|
|
if (persistent_ent_and_del_index[id] <
|
|
FLAGS_persistent_entries_batch_size) {
|
|
// Generate key to insert.
|
|
rand_num =
|
|
key_gens[id]->Fetch(disposable_entries_q[id].front().second +
|
|
FLAGS_disposable_entries_batch_size +
|
|
persistent_ent_and_del_index[id]);
|
|
persistent_ent_and_del_index[id]++;
|
|
is_disposable_entry = false;
|
|
skip_for_loop = false;
|
|
} else if (persistent_ent_and_del_index[id] <
|
|
kNumDispAndPersEntries) {
|
|
// Find key of the entry to delete.
|
|
rand_num =
|
|
key_gens[id]->Fetch(disposable_entries_q[id].front().second +
|
|
(persistent_ent_and_del_index[id] -
|
|
FLAGS_persistent_entries_batch_size));
|
|
persistent_ent_and_del_index[id]++;
|
|
GenerateKeyFromInt(rand_num, FLAGS_num, &key);
|
|
// For the delete operation, everything happens here and we
|
|
// skip the rest of the for-loop, which is designed for
|
|
// inserts.
|
|
if (FLAGS_num_column_families <= 1) {
|
|
batch.Delete(key);
|
|
} else {
|
|
// We use same rand_num as seed for key and column family so
|
|
// that we can deterministically find the cfh corresponding to a
|
|
// particular key while reading the key.
|
|
batch.Delete(db_with_cfh->GetCfh(rand_num), key);
|
|
}
|
|
// A delete only includes Key+Timestamp (no value).
|
|
batch_bytes += key_size_ + user_timestamp_size_;
|
|
bytes += key_size_ + user_timestamp_size_;
|
|
num_selective_deletes++;
|
|
// Skip rest of the for-loop (j=0, j<entries_per_batch_,j++).
|
|
skip_for_loop = true;
|
|
} else {
|
|
assert(false); // should never reach this point.
|
|
}
|
|
// If disposable_entries_q needs to be updated (ie: when a selective
|
|
// insert+delete was successfully completed, pop the job out of the
|
|
// queue).
|
|
if (!disposable_entries_q[id].empty() &&
|
|
(disposable_entries_q[id].front().first <
|
|
FLAGS_env->NowMicros()) &&
|
|
persistent_ent_and_del_index[id] == kNumDispAndPersEntries) {
|
|
disposable_entries_q[id].pop();
|
|
persistent_ent_and_del_index[id] = 0;
|
|
}
|
|
|
|
// If we are deleting disposable entries, skip the rest of the
|
|
// for-loop since there is no key-value inserts at this moment in
|
|
// time.
|
|
if (skip_for_loop) {
|
|
continue;
|
|
}
|
|
|
|
}
|
|
// If no job is in the queue, then we keep inserting disposable KV
|
|
// entries that will be deleted later by a series of deletes.
|
|
else {
|
|
rand_num = key_gens[id]->Fetch(disposable_entries_index[id]);
|
|
disposable_entries_index[id]++;
|
|
is_disposable_entry = true;
|
|
if ((disposable_entries_index[id] %
|
|
FLAGS_disposable_entries_batch_size) == 0) {
|
|
// Skip the persistent KV entries inserts for now
|
|
disposable_entries_index[id] +=
|
|
FLAGS_persistent_entries_batch_size;
|
|
}
|
|
}
|
|
} else {
|
|
rand_num = key_gens[id]->Next();
|
|
}
|
|
GenerateKeyFromInt(rand_num, FLAGS_num, &key);
|
|
Slice val;
|
|
if (kNumDispAndPersEntries > 0) {
|
|
random_value = rnd_disposable_entry.RandomString(
|
|
is_disposable_entry ? FLAGS_disposable_entries_value_size
|
|
: FLAGS_persistent_entries_value_size);
|
|
val = Slice(random_value);
|
|
num_unique_keys++;
|
|
} else {
|
|
val = gen.Generate();
|
|
}
|
|
if (use_blob_db_) {
|
|
#ifndef ROCKSDB_LITE
|
|
// Stacked BlobDB
|
|
blob_db::BlobDB* blobdb =
|
|
static_cast<blob_db::BlobDB*>(db_with_cfh->db);
|
|
if (FLAGS_blob_db_max_ttl_range > 0) {
|
|
int ttl = rand() % FLAGS_blob_db_max_ttl_range;
|
|
s = blobdb->PutWithTTL(write_options_, key, val, ttl);
|
|
} else {
|
|
s = blobdb->Put(write_options_, key, val);
|
|
}
|
|
#endif // ROCKSDB_LITE
|
|
} else if (FLAGS_num_column_families <= 1) {
|
|
batch.Put(key, val);
|
|
} else {
|
|
// We use same rand_num as seed for key and column family so that we
|
|
// can deterministically find the cfh corresponding to a particular
|
|
// key while reading the key.
|
|
batch.Put(db_with_cfh->GetCfh(rand_num), key,
|
|
val);
|
|
}
|
|
batch_bytes += val.size() + key_size_ + user_timestamp_size_;
|
|
bytes += val.size() + key_size_ + user_timestamp_size_;
|
|
++num_written;
|
|
|
|
// If all disposable entries have been inserted, then we need to
|
|
// add in the job queue a call for 'persistent entry insertions +
|
|
// disposable entry deletions'.
|
|
if (kNumDispAndPersEntries > 0 && is_disposable_entry &&
|
|
((disposable_entries_index[id] % kNumDispAndPersEntries) == 0)) {
|
|
// Queue contains [timestamp, starting_idx],
|
|
// timestamp = current_time + delay (minimum aboslute time when to
|
|
// start inserting the selective deletes) starting_idx = index in the
|
|
// keygen of the rand_num to generate the key of the first KV entry to
|
|
// delete (= key of the first selective delete).
|
|
disposable_entries_q[id].push(std::make_pair(
|
|
FLAGS_env->NowMicros() +
|
|
FLAGS_disposable_entries_delete_delay /* timestamp */,
|
|
disposable_entries_index[id] - kNumDispAndPersEntries
|
|
/*starting idx*/));
|
|
}
|
|
if (writes_per_range_tombstone_ > 0 &&
|
|
num_written > writes_before_delete_range_ &&
|
|
(num_written - writes_before_delete_range_) /
|
|
writes_per_range_tombstone_ <=
|
|
max_num_range_tombstones_ &&
|
|
(num_written - writes_before_delete_range_) %
|
|
writes_per_range_tombstone_ ==
|
|
0) {
|
|
int64_t begin_num = key_gens[id]->Next();
|
|
if (FLAGS_expand_range_tombstones) {
|
|
for (int64_t offset = 0; offset < range_tombstone_width_;
|
|
++offset) {
|
|
GenerateKeyFromInt(begin_num + offset, FLAGS_num,
|
|
&expanded_keys[offset]);
|
|
if (use_blob_db_) {
|
|
#ifndef ROCKSDB_LITE
|
|
// Stacked BlobDB
|
|
s = db_with_cfh->db->Delete(write_options_,
|
|
expanded_keys[offset]);
|
|
#endif // ROCKSDB_LITE
|
|
} else if (FLAGS_num_column_families <= 1) {
|
|
batch.Delete(expanded_keys[offset]);
|
|
} else {
|
|
batch.Delete(db_with_cfh->GetCfh(rand_num),
|
|
expanded_keys[offset]);
|
|
}
|
|
}
|
|
} else {
|
|
GenerateKeyFromInt(begin_num, FLAGS_num, &begin_key);
|
|
GenerateKeyFromInt(begin_num + range_tombstone_width_, FLAGS_num,
|
|
&end_key);
|
|
if (use_blob_db_) {
|
|
#ifndef ROCKSDB_LITE
|
|
// Stacked BlobDB
|
|
s = db_with_cfh->db->DeleteRange(
|
|
write_options_, db_with_cfh->db->DefaultColumnFamily(),
|
|
begin_key, end_key);
|
|
#endif // ROCKSDB_LITE
|
|
} else if (FLAGS_num_column_families <= 1) {
|
|
batch.DeleteRange(begin_key, end_key);
|
|
} else {
|
|
batch.DeleteRange(db_with_cfh->GetCfh(rand_num), begin_key,
|
|
end_key);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (thread->shared->write_rate_limiter.get() != nullptr) {
|
|
thread->shared->write_rate_limiter->Request(
|
|
batch_bytes, Env::IO_HIGH,
|
|
nullptr /* stats */, RateLimiter::OpType::kWrite);
|
|
// Set time at which last op finished to Now() to hide latency and
|
|
// sleep from rate limiter. Also, do the check once per batch, not
|
|
// once per write.
|
|
thread->stats.ResetLastOpTime();
|
|
}
|
|
if (user_timestamp_size_ > 0) {
|
|
Slice user_ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
s = batch.AssignTimestamp(user_ts);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "assign timestamp to write batch: %s\n",
|
|
s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
}
|
|
if (!use_blob_db_) {
|
|
// Not stacked BlobDB
|
|
s = db_with_cfh->db->Write(write_options_, &batch);
|
|
}
|
|
thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db,
|
|
entries_per_batch_, kWrite);
|
|
if (FLAGS_sine_write_rate) {
|
|
uint64_t now = FLAGS_env->NowMicros();
|
|
|
|
uint64_t usecs_since_last;
|
|
if (now > thread->stats.GetSineInterval()) {
|
|
usecs_since_last = now - thread->stats.GetSineInterval();
|
|
} else {
|
|
usecs_since_last = 0;
|
|
}
|
|
|
|
if (usecs_since_last >
|
|
(FLAGS_sine_write_rate_interval_milliseconds * uint64_t{1000})) {
|
|
double usecs_since_start =
|
|
static_cast<double>(now - thread->stats.GetStart());
|
|
thread->stats.ResetSineInterval();
|
|
uint64_t write_rate =
|
|
static_cast<uint64_t>(SineRate(usecs_since_start / 1000000.0));
|
|
thread->shared->write_rate_limiter.reset(
|
|
NewGenericRateLimiter(write_rate));
|
|
}
|
|
}
|
|
if (!s.ok()) {
|
|
s = listener_->WaitForRecovery(600000000) ? Status::OK() : s;
|
|
}
|
|
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
}
|
|
if ((write_mode == UNIQUE_RANDOM) && (p > 0.0)) {
|
|
fprintf(stdout,
|
|
"Number of unique keys inserted: %" PRIu64
|
|
".\nNumber of overwrites: %" PRIu64 "\n",
|
|
num_unique_keys, num_overwrites);
|
|
} else if (kNumDispAndPersEntries > 0) {
|
|
fprintf(stdout,
|
|
"Number of unique keys inserted (disposable+persistent): %" PRIu64
|
|
".\nNumber of 'disposable entry delete': %" PRIu64 "\n",
|
|
num_written, num_selective_deletes);
|
|
}
|
|
thread->stats.AddBytes(bytes);
|
|
}
|
|
|
|
Status DoDeterministicCompact(ThreadState* thread,
|
|
CompactionStyle compaction_style,
|
|
WriteMode write_mode) {
|
|
#ifndef ROCKSDB_LITE
|
|
ColumnFamilyMetaData meta;
|
|
std::vector<DB*> db_list;
|
|
if (db_.db != nullptr) {
|
|
db_list.push_back(db_.db);
|
|
} else {
|
|
for (auto& db : multi_dbs_) {
|
|
db_list.push_back(db.db);
|
|
}
|
|
}
|
|
std::vector<Options> options_list;
|
|
for (auto db : db_list) {
|
|
options_list.push_back(db->GetOptions());
|
|
if (compaction_style != kCompactionStyleFIFO) {
|
|
db->SetOptions({{"disable_auto_compactions", "1"},
|
|
{"level0_slowdown_writes_trigger", "400000000"},
|
|
{"level0_stop_writes_trigger", "400000000"}});
|
|
} else {
|
|
db->SetOptions({{"disable_auto_compactions", "1"}});
|
|
}
|
|
}
|
|
|
|
assert(!db_list.empty());
|
|
auto num_db = db_list.size();
|
|
size_t num_levels = static_cast<size_t>(open_options_.num_levels);
|
|
size_t output_level = open_options_.num_levels - 1;
|
|
std::vector<std::vector<std::vector<SstFileMetaData>>> sorted_runs(num_db);
|
|
std::vector<size_t> num_files_at_level0(num_db, 0);
|
|
if (compaction_style == kCompactionStyleLevel) {
|
|
if (num_levels == 0) {
|
|
return Status::InvalidArgument("num_levels should be larger than 1");
|
|
}
|
|
bool should_stop = false;
|
|
while (!should_stop) {
|
|
if (sorted_runs[0].empty()) {
|
|
DoWrite(thread, write_mode);
|
|
} else {
|
|
DoWrite(thread, UNIQUE_RANDOM);
|
|
}
|
|
for (size_t i = 0; i < num_db; i++) {
|
|
auto db = db_list[i];
|
|
db->Flush(FlushOptions());
|
|
db->GetColumnFamilyMetaData(&meta);
|
|
if (num_files_at_level0[i] == meta.levels[0].files.size() ||
|
|
writes_ == 0) {
|
|
should_stop = true;
|
|
continue;
|
|
}
|
|
sorted_runs[i].emplace_back(
|
|
meta.levels[0].files.begin(),
|
|
meta.levels[0].files.end() - num_files_at_level0[i]);
|
|
num_files_at_level0[i] = meta.levels[0].files.size();
|
|
if (sorted_runs[i].back().size() == 1) {
|
|
should_stop = true;
|
|
continue;
|
|
}
|
|
if (sorted_runs[i].size() == output_level) {
|
|
auto& L1 = sorted_runs[i].back();
|
|
L1.erase(L1.begin(), L1.begin() + L1.size() / 3);
|
|
should_stop = true;
|
|
continue;
|
|
}
|
|
}
|
|
writes_ /= static_cast<int64_t>(open_options_.max_bytes_for_level_multiplier);
|
|
}
|
|
for (size_t i = 0; i < num_db; i++) {
|
|
if (sorted_runs[i].size() < num_levels - 1) {
|
|
fprintf(stderr, "n is too small to fill %" ROCKSDB_PRIszt " levels\n", num_levels);
|
|
exit(1);
|
|
}
|
|
}
|
|
for (size_t i = 0; i < num_db; i++) {
|
|
auto db = db_list[i];
|
|
auto compactionOptions = CompactionOptions();
|
|
compactionOptions.compression = FLAGS_compression_type_e;
|
|
auto options = db->GetOptions();
|
|
MutableCFOptions mutable_cf_options(options);
|
|
for (size_t j = 0; j < sorted_runs[i].size(); j++) {
|
|
compactionOptions.output_file_size_limit =
|
|
MaxFileSizeForLevel(mutable_cf_options,
|
|
static_cast<int>(output_level), compaction_style);
|
|
std::cout << sorted_runs[i][j].size() << std::endl;
|
|
db->CompactFiles(compactionOptions, {sorted_runs[i][j].back().name,
|
|
sorted_runs[i][j].front().name},
|
|
static_cast<int>(output_level - j) /*level*/);
|
|
}
|
|
}
|
|
} else if (compaction_style == kCompactionStyleUniversal) {
|
|
auto ratio = open_options_.compaction_options_universal.size_ratio;
|
|
bool should_stop = false;
|
|
while (!should_stop) {
|
|
if (sorted_runs[0].empty()) {
|
|
DoWrite(thread, write_mode);
|
|
} else {
|
|
DoWrite(thread, UNIQUE_RANDOM);
|
|
}
|
|
for (size_t i = 0; i < num_db; i++) {
|
|
auto db = db_list[i];
|
|
db->Flush(FlushOptions());
|
|
db->GetColumnFamilyMetaData(&meta);
|
|
if (num_files_at_level0[i] == meta.levels[0].files.size() ||
|
|
writes_ == 0) {
|
|
should_stop = true;
|
|
continue;
|
|
}
|
|
sorted_runs[i].emplace_back(
|
|
meta.levels[0].files.begin(),
|
|
meta.levels[0].files.end() - num_files_at_level0[i]);
|
|
num_files_at_level0[i] = meta.levels[0].files.size();
|
|
if (sorted_runs[i].back().size() == 1) {
|
|
should_stop = true;
|
|
continue;
|
|
}
|
|
num_files_at_level0[i] = meta.levels[0].files.size();
|
|
}
|
|
writes_ = static_cast<int64_t>(writes_* static_cast<double>(100) / (ratio + 200));
|
|
}
|
|
for (size_t i = 0; i < num_db; i++) {
|
|
if (sorted_runs[i].size() < num_levels) {
|
|
fprintf(stderr, "n is too small to fill %" ROCKSDB_PRIszt " levels\n", num_levels);
|
|
exit(1);
|
|
}
|
|
}
|
|
for (size_t i = 0; i < num_db; i++) {
|
|
auto db = db_list[i];
|
|
auto compactionOptions = CompactionOptions();
|
|
compactionOptions.compression = FLAGS_compression_type_e;
|
|
auto options = db->GetOptions();
|
|
MutableCFOptions mutable_cf_options(options);
|
|
for (size_t j = 0; j < sorted_runs[i].size(); j++) {
|
|
compactionOptions.output_file_size_limit =
|
|
MaxFileSizeForLevel(mutable_cf_options,
|
|
static_cast<int>(output_level), compaction_style);
|
|
db->CompactFiles(
|
|
compactionOptions,
|
|
{sorted_runs[i][j].back().name, sorted_runs[i][j].front().name},
|
|
(output_level > j ? static_cast<int>(output_level - j)
|
|
: 0) /*level*/);
|
|
}
|
|
}
|
|
} else if (compaction_style == kCompactionStyleFIFO) {
|
|
if (num_levels != 1) {
|
|
return Status::InvalidArgument(
|
|
"num_levels should be 1 for FIFO compaction");
|
|
}
|
|
if (FLAGS_num_multi_db != 0) {
|
|
return Status::InvalidArgument("Doesn't support multiDB");
|
|
}
|
|
auto db = db_list[0];
|
|
std::vector<std::string> file_names;
|
|
while (true) {
|
|
if (sorted_runs[0].empty()) {
|
|
DoWrite(thread, write_mode);
|
|
} else {
|
|
DoWrite(thread, UNIQUE_RANDOM);
|
|
}
|
|
db->Flush(FlushOptions());
|
|
db->GetColumnFamilyMetaData(&meta);
|
|
auto total_size = meta.levels[0].size;
|
|
if (total_size >=
|
|
db->GetOptions().compaction_options_fifo.max_table_files_size) {
|
|
for (auto file_meta : meta.levels[0].files) {
|
|
file_names.emplace_back(file_meta.name);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
// TODO(shuzhang1989): Investigate why CompactFiles not working
|
|
// auto compactionOptions = CompactionOptions();
|
|
// db->CompactFiles(compactionOptions, file_names, 0);
|
|
auto compactionOptions = CompactRangeOptions();
|
|
db->CompactRange(compactionOptions, nullptr, nullptr);
|
|
} else {
|
|
fprintf(stdout,
|
|
"%-12s : skipped (-compaction_stype=kCompactionStyleNone)\n",
|
|
"filldeterministic");
|
|
return Status::InvalidArgument("None compaction is not supported");
|
|
}
|
|
|
|
// Verify seqno and key range
|
|
// Note: the seqno get changed at the max level by implementation
|
|
// optimization, so skip the check of the max level.
|
|
#ifndef NDEBUG
|
|
for (size_t k = 0; k < num_db; k++) {
|
|
auto db = db_list[k];
|
|
db->GetColumnFamilyMetaData(&meta);
|
|
// verify the number of sorted runs
|
|
if (compaction_style == kCompactionStyleLevel) {
|
|
assert(num_levels - 1 == sorted_runs[k].size());
|
|
} else if (compaction_style == kCompactionStyleUniversal) {
|
|
assert(meta.levels[0].files.size() + num_levels - 1 ==
|
|
sorted_runs[k].size());
|
|
} else if (compaction_style == kCompactionStyleFIFO) {
|
|
// TODO(gzh): FIFO compaction
|
|
db->GetColumnFamilyMetaData(&meta);
|
|
auto total_size = meta.levels[0].size;
|
|
assert(total_size <=
|
|
db->GetOptions().compaction_options_fifo.max_table_files_size);
|
|
break;
|
|
}
|
|
|
|
// verify smallest/largest seqno and key range of each sorted run
|
|
auto max_level = num_levels - 1;
|
|
int level;
|
|
for (size_t i = 0; i < sorted_runs[k].size(); i++) {
|
|
level = static_cast<int>(max_level - i);
|
|
SequenceNumber sorted_run_smallest_seqno = kMaxSequenceNumber;
|
|
SequenceNumber sorted_run_largest_seqno = 0;
|
|
std::string sorted_run_smallest_key, sorted_run_largest_key;
|
|
bool first_key = true;
|
|
for (auto fileMeta : sorted_runs[k][i]) {
|
|
sorted_run_smallest_seqno =
|
|
std::min(sorted_run_smallest_seqno, fileMeta.smallest_seqno);
|
|
sorted_run_largest_seqno =
|
|
std::max(sorted_run_largest_seqno, fileMeta.largest_seqno);
|
|
if (first_key ||
|
|
db->DefaultColumnFamily()->GetComparator()->Compare(
|
|
fileMeta.smallestkey, sorted_run_smallest_key) < 0) {
|
|
sorted_run_smallest_key = fileMeta.smallestkey;
|
|
}
|
|
if (first_key ||
|
|
db->DefaultColumnFamily()->GetComparator()->Compare(
|
|
fileMeta.largestkey, sorted_run_largest_key) > 0) {
|
|
sorted_run_largest_key = fileMeta.largestkey;
|
|
}
|
|
first_key = false;
|
|
}
|
|
if (compaction_style == kCompactionStyleLevel ||
|
|
(compaction_style == kCompactionStyleUniversal && level > 0)) {
|
|
SequenceNumber level_smallest_seqno = kMaxSequenceNumber;
|
|
SequenceNumber level_largest_seqno = 0;
|
|
for (auto fileMeta : meta.levels[level].files) {
|
|
level_smallest_seqno =
|
|
std::min(level_smallest_seqno, fileMeta.smallest_seqno);
|
|
level_largest_seqno =
|
|
std::max(level_largest_seqno, fileMeta.largest_seqno);
|
|
}
|
|
assert(sorted_run_smallest_key ==
|
|
meta.levels[level].files.front().smallestkey);
|
|
assert(sorted_run_largest_key ==
|
|
meta.levels[level].files.back().largestkey);
|
|
if (level != static_cast<int>(max_level)) {
|
|
// compaction at max_level would change sequence number
|
|
assert(sorted_run_smallest_seqno == level_smallest_seqno);
|
|
assert(sorted_run_largest_seqno == level_largest_seqno);
|
|
}
|
|
} else if (compaction_style == kCompactionStyleUniversal) {
|
|
// level <= 0 means sorted runs on level 0
|
|
auto level0_file =
|
|
meta.levels[0].files[sorted_runs[k].size() - 1 - i];
|
|
assert(sorted_run_smallest_key == level0_file.smallestkey);
|
|
assert(sorted_run_largest_key == level0_file.largestkey);
|
|
if (level != static_cast<int>(max_level)) {
|
|
assert(sorted_run_smallest_seqno == level0_file.smallest_seqno);
|
|
assert(sorted_run_largest_seqno == level0_file.largest_seqno);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
// print the size of each sorted_run
|
|
for (size_t k = 0; k < num_db; k++) {
|
|
auto db = db_list[k];
|
|
fprintf(stdout,
|
|
"---------------------- DB %" ROCKSDB_PRIszt " LSM ---------------------\n", k);
|
|
db->GetColumnFamilyMetaData(&meta);
|
|
for (auto& levelMeta : meta.levels) {
|
|
if (levelMeta.files.empty()) {
|
|
continue;
|
|
}
|
|
if (levelMeta.level == 0) {
|
|
for (auto& fileMeta : levelMeta.files) {
|
|
fprintf(stdout, "Level[%d]: %s(size: %" PRIi64 " bytes)\n",
|
|
levelMeta.level, fileMeta.name.c_str(), fileMeta.size);
|
|
}
|
|
} else {
|
|
fprintf(stdout, "Level[%d]: %s - %s(total size: %" PRIi64 " bytes)\n",
|
|
levelMeta.level, levelMeta.files.front().name.c_str(),
|
|
levelMeta.files.back().name.c_str(), levelMeta.size);
|
|
}
|
|
}
|
|
}
|
|
for (size_t i = 0; i < num_db; i++) {
|
|
db_list[i]->SetOptions(
|
|
{{"disable_auto_compactions",
|
|
std::to_string(options_list[i].disable_auto_compactions)},
|
|
{"level0_slowdown_writes_trigger",
|
|
std::to_string(options_list[i].level0_slowdown_writes_trigger)},
|
|
{"level0_stop_writes_trigger",
|
|
std::to_string(options_list[i].level0_stop_writes_trigger)}});
|
|
}
|
|
return Status::OK();
|
|
#else
|
|
(void)thread;
|
|
(void)compaction_style;
|
|
(void)write_mode;
|
|
fprintf(stderr, "Rocksdb Lite doesn't support filldeterministic\n");
|
|
return Status::NotSupported(
|
|
"Rocksdb Lite doesn't support filldeterministic");
|
|
#endif // ROCKSDB_LITE
|
|
}
|
|
|
|
void ReadSequential(ThreadState* thread) {
|
|
if (db_.db != nullptr) {
|
|
ReadSequential(thread, db_.db);
|
|
} else {
|
|
for (const auto& db_with_cfh : multi_dbs_) {
|
|
ReadSequential(thread, db_with_cfh.db);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ReadSequential(ThreadState* thread, DB* db) {
|
|
ReadOptions options(FLAGS_verify_checksum, true);
|
|
options.tailing = FLAGS_use_tailing_iterator;
|
|
std::unique_ptr<char[]> ts_guard;
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
|
|
options.timestamp = &ts;
|
|
}
|
|
|
|
Iterator* iter = db->NewIterator(options);
|
|
int64_t i = 0;
|
|
int64_t bytes = 0;
|
|
for (iter->SeekToFirst(); i < reads_ && iter->Valid(); iter->Next()) {
|
|
bytes += iter->key().size() + iter->value().size();
|
|
thread->stats.FinishedOps(nullptr, db, 1, kRead);
|
|
++i;
|
|
|
|
if (thread->shared->read_rate_limiter.get() != nullptr &&
|
|
i % 1024 == 1023) {
|
|
thread->shared->read_rate_limiter->Request(1024, Env::IO_HIGH,
|
|
nullptr /* stats */,
|
|
RateLimiter::OpType::kRead);
|
|
}
|
|
}
|
|
|
|
delete iter;
|
|
thread->stats.AddBytes(bytes);
|
|
if (FLAGS_perf_level > ROCKSDB_NAMESPACE::PerfLevel::kDisable) {
|
|
thread->stats.AddMessage(std::string("PERF_CONTEXT:\n") +
|
|
get_perf_context()->ToString());
|
|
}
|
|
}
|
|
|
|
void ReadToRowCache(ThreadState* thread) {
|
|
int64_t read = 0;
|
|
int64_t found = 0;
|
|
int64_t bytes = 0;
|
|
int64_t key_rand = 0;
|
|
ReadOptions options(FLAGS_verify_checksum, true);
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
PinnableSlice pinnable_val;
|
|
|
|
while (key_rand < FLAGS_num) {
|
|
DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread);
|
|
// We use same key_rand as seed for key and column family so that we can
|
|
// deterministically find the cfh corresponding to a particular key, as it
|
|
// is done in DoWrite method.
|
|
GenerateKeyFromInt(key_rand, FLAGS_num, &key);
|
|
key_rand++;
|
|
read++;
|
|
Status s;
|
|
if (FLAGS_num_column_families > 1) {
|
|
s = db_with_cfh->db->Get(options, db_with_cfh->GetCfh(key_rand), key,
|
|
&pinnable_val);
|
|
} else {
|
|
pinnable_val.Reset();
|
|
s = db_with_cfh->db->Get(options,
|
|
db_with_cfh->db->DefaultColumnFamily(), key,
|
|
&pinnable_val);
|
|
}
|
|
|
|
if (s.ok()) {
|
|
found++;
|
|
bytes += key.size() + pinnable_val.size();
|
|
} else if (!s.IsNotFound()) {
|
|
fprintf(stderr, "Get returned an error: %s\n", s.ToString().c_str());
|
|
abort();
|
|
}
|
|
|
|
if (thread->shared->read_rate_limiter.get() != nullptr &&
|
|
read % 256 == 255) {
|
|
thread->shared->read_rate_limiter->Request(
|
|
256, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
|
|
}
|
|
|
|
thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kRead);
|
|
}
|
|
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)\n", found,
|
|
read);
|
|
|
|
thread->stats.AddBytes(bytes);
|
|
thread->stats.AddMessage(msg);
|
|
|
|
if (FLAGS_perf_level > ROCKSDB_NAMESPACE::PerfLevel::kDisable) {
|
|
thread->stats.AddMessage(std::string("PERF_CONTEXT:\n") +
|
|
get_perf_context()->ToString());
|
|
}
|
|
}
|
|
|
|
void ReadReverse(ThreadState* thread) {
|
|
if (db_.db != nullptr) {
|
|
ReadReverse(thread, db_.db);
|
|
} else {
|
|
for (const auto& db_with_cfh : multi_dbs_) {
|
|
ReadReverse(thread, db_with_cfh.db);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ReadReverse(ThreadState* thread, DB* db) {
|
|
Iterator* iter = db->NewIterator(ReadOptions(FLAGS_verify_checksum, true));
|
|
int64_t i = 0;
|
|
int64_t bytes = 0;
|
|
for (iter->SeekToLast(); i < reads_ && iter->Valid(); iter->Prev()) {
|
|
bytes += iter->key().size() + iter->value().size();
|
|
thread->stats.FinishedOps(nullptr, db, 1, kRead);
|
|
++i;
|
|
if (thread->shared->read_rate_limiter.get() != nullptr &&
|
|
i % 1024 == 1023) {
|
|
thread->shared->read_rate_limiter->Request(1024, Env::IO_HIGH,
|
|
nullptr /* stats */,
|
|
RateLimiter::OpType::kRead);
|
|
}
|
|
}
|
|
delete iter;
|
|
thread->stats.AddBytes(bytes);
|
|
}
|
|
|
|
void ReadRandomFast(ThreadState* thread) {
|
|
int64_t read = 0;
|
|
int64_t found = 0;
|
|
int64_t nonexist = 0;
|
|
ReadOptions options(FLAGS_verify_checksum, true);
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
std::string value;
|
|
Slice ts;
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
DB* db = SelectDBWithCfh(thread)->db;
|
|
|
|
int64_t pot = 1;
|
|
while (pot < FLAGS_num) {
|
|
pot <<= 1;
|
|
}
|
|
|
|
Duration duration(FLAGS_duration, reads_);
|
|
do {
|
|
for (int i = 0; i < 100; ++i) {
|
|
int64_t key_rand = thread->rand.Next() & (pot - 1);
|
|
GenerateKeyFromInt(key_rand, FLAGS_num, &key);
|
|
++read;
|
|
std::string ts_ret;
|
|
std::string* ts_ptr = nullptr;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->GetTimestampForRead(thread->rand,
|
|
ts_guard.get());
|
|
options.timestamp = &ts;
|
|
ts_ptr = &ts_ret;
|
|
}
|
|
auto status = db->Get(options, key, &value, ts_ptr);
|
|
if (status.ok()) {
|
|
++found;
|
|
} else if (!status.IsNotFound()) {
|
|
fprintf(stderr, "Get returned an error: %s\n",
|
|
status.ToString().c_str());
|
|
abort();
|
|
}
|
|
if (key_rand >= FLAGS_num) {
|
|
++nonexist;
|
|
}
|
|
}
|
|
if (thread->shared->read_rate_limiter.get() != nullptr) {
|
|
thread->shared->read_rate_limiter->Request(
|
|
100, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
|
|
}
|
|
|
|
thread->stats.FinishedOps(nullptr, db, 100, kRead);
|
|
} while (!duration.Done(100));
|
|
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found, "
|
|
"issued %" PRIu64 " non-exist keys)\n",
|
|
found, read, nonexist);
|
|
|
|
thread->stats.AddMessage(msg);
|
|
|
|
if (FLAGS_perf_level > ROCKSDB_NAMESPACE::PerfLevel::kDisable) {
|
|
thread->stats.AddMessage(std::string("PERF_CONTEXT:\n") +
|
|
get_perf_context()->ToString());
|
|
}
|
|
}
|
|
|
|
int64_t GetRandomKey(Random64* rand) {
|
|
uint64_t rand_int = rand->Next();
|
|
int64_t key_rand;
|
|
if (read_random_exp_range_ == 0) {
|
|
key_rand = rand_int % FLAGS_num;
|
|
} else {
|
|
const uint64_t kBigInt = static_cast<uint64_t>(1U) << 62;
|
|
long double order = -static_cast<long double>(rand_int % kBigInt) /
|
|
static_cast<long double>(kBigInt) *
|
|
read_random_exp_range_;
|
|
long double exp_ran = std::exp(order);
|
|
uint64_t rand_num =
|
|
static_cast<int64_t>(exp_ran * static_cast<long double>(FLAGS_num));
|
|
// Map to a different number to avoid locality.
|
|
const uint64_t kBigPrime = 0x5bd1e995;
|
|
// Overflow is like %(2^64). Will have little impact of results.
|
|
key_rand = static_cast<int64_t>((rand_num * kBigPrime) % FLAGS_num);
|
|
}
|
|
return key_rand;
|
|
}
|
|
|
|
void ReadRandom(ThreadState* thread) {
|
|
int64_t read = 0;
|
|
int64_t found = 0;
|
|
int64_t bytes = 0;
|
|
int num_keys = 0;
|
|
int64_t key_rand = 0;
|
|
ReadOptions options(FLAGS_verify_checksum, true);
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
PinnableSlice pinnable_val;
|
|
std::unique_ptr<char[]> ts_guard;
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
|
|
Duration duration(FLAGS_duration, reads_);
|
|
while (!duration.Done(1)) {
|
|
DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread);
|
|
// We use same key_rand as seed for key and column family so that we can
|
|
// deterministically find the cfh corresponding to a particular key, as it
|
|
// is done in DoWrite method.
|
|
if (entries_per_batch_ > 1 && FLAGS_multiread_stride) {
|
|
if (++num_keys == entries_per_batch_) {
|
|
num_keys = 0;
|
|
key_rand = GetRandomKey(&thread->rand);
|
|
if ((key_rand + (entries_per_batch_ - 1) * FLAGS_multiread_stride) >=
|
|
FLAGS_num) {
|
|
key_rand = FLAGS_num - entries_per_batch_ * FLAGS_multiread_stride;
|
|
}
|
|
} else {
|
|
key_rand += FLAGS_multiread_stride;
|
|
}
|
|
} else {
|
|
key_rand = GetRandomKey(&thread->rand);
|
|
}
|
|
GenerateKeyFromInt(key_rand, FLAGS_num, &key);
|
|
read++;
|
|
std::string ts_ret;
|
|
std::string* ts_ptr = nullptr;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
|
|
options.timestamp = &ts;
|
|
ts_ptr = &ts_ret;
|
|
}
|
|
Status s;
|
|
pinnable_val.Reset();
|
|
if (FLAGS_num_column_families > 1) {
|
|
s = db_with_cfh->db->Get(options, db_with_cfh->GetCfh(key_rand), key,
|
|
&pinnable_val, ts_ptr);
|
|
} else {
|
|
s = db_with_cfh->db->Get(options,
|
|
db_with_cfh->db->DefaultColumnFamily(), key,
|
|
&pinnable_val, ts_ptr);
|
|
}
|
|
if (s.ok()) {
|
|
found++;
|
|
bytes += key.size() + pinnable_val.size() + user_timestamp_size_;
|
|
} else if (!s.IsNotFound()) {
|
|
fprintf(stderr, "Get returned an error: %s\n", s.ToString().c_str());
|
|
abort();
|
|
}
|
|
|
|
if (thread->shared->read_rate_limiter.get() != nullptr &&
|
|
read % 256 == 255) {
|
|
thread->shared->read_rate_limiter->Request(
|
|
256, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
|
|
}
|
|
|
|
thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kRead);
|
|
}
|
|
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)\n",
|
|
found, read);
|
|
|
|
thread->stats.AddBytes(bytes);
|
|
thread->stats.AddMessage(msg);
|
|
|
|
if (FLAGS_perf_level > ROCKSDB_NAMESPACE::PerfLevel::kDisable) {
|
|
thread->stats.AddMessage(std::string("PERF_CONTEXT:\n") +
|
|
get_perf_context()->ToString());
|
|
}
|
|
}
|
|
|
|
// Calls MultiGet over a list of keys from a random distribution.
|
|
// Returns the total number of keys found.
|
|
void MultiReadRandom(ThreadState* thread) {
|
|
int64_t read = 0;
|
|
int64_t bytes = 0;
|
|
int64_t num_multireads = 0;
|
|
int64_t found = 0;
|
|
ReadOptions options(FLAGS_verify_checksum, true);
|
|
std::vector<Slice> keys;
|
|
std::vector<std::unique_ptr<const char[]> > key_guards;
|
|
std::vector<std::string> values(entries_per_batch_);
|
|
PinnableSlice* pin_values = new PinnableSlice[entries_per_batch_];
|
|
std::unique_ptr<PinnableSlice[]> pin_values_guard(pin_values);
|
|
std::vector<Status> stat_list(entries_per_batch_);
|
|
while (static_cast<int64_t>(keys.size()) < entries_per_batch_) {
|
|
key_guards.push_back(std::unique_ptr<const char[]>());
|
|
keys.push_back(AllocateKey(&key_guards.back()));
|
|
}
|
|
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
|
|
Duration duration(FLAGS_duration, reads_);
|
|
while (!duration.Done(entries_per_batch_)) {
|
|
DB* db = SelectDB(thread);
|
|
if (FLAGS_multiread_stride) {
|
|
int64_t key = GetRandomKey(&thread->rand);
|
|
if ((key + (entries_per_batch_ - 1) * FLAGS_multiread_stride) >=
|
|
static_cast<int64_t>(FLAGS_num)) {
|
|
key = FLAGS_num - entries_per_batch_ * FLAGS_multiread_stride;
|
|
}
|
|
for (int64_t i = 0; i < entries_per_batch_; ++i) {
|
|
GenerateKeyFromInt(key, FLAGS_num, &keys[i]);
|
|
key += FLAGS_multiread_stride;
|
|
}
|
|
} else {
|
|
for (int64_t i = 0; i < entries_per_batch_; ++i) {
|
|
GenerateKeyFromInt(GetRandomKey(&thread->rand), FLAGS_num, &keys[i]);
|
|
}
|
|
}
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
|
|
options.timestamp = &ts;
|
|
}
|
|
if (!FLAGS_multiread_batched) {
|
|
std::vector<Status> statuses = db->MultiGet(options, keys, &values);
|
|
assert(static_cast<int64_t>(statuses.size()) == entries_per_batch_);
|
|
|
|
read += entries_per_batch_;
|
|
num_multireads++;
|
|
for (int64_t i = 0; i < entries_per_batch_; ++i) {
|
|
if (statuses[i].ok()) {
|
|
bytes += keys[i].size() + values[i].size() + user_timestamp_size_;
|
|
++found;
|
|
} else if (!statuses[i].IsNotFound()) {
|
|
fprintf(stderr, "MultiGet returned an error: %s\n",
|
|
statuses[i].ToString().c_str());
|
|
abort();
|
|
}
|
|
}
|
|
} else {
|
|
db->MultiGet(options, db->DefaultColumnFamily(), keys.size(),
|
|
keys.data(), pin_values, stat_list.data());
|
|
|
|
read += entries_per_batch_;
|
|
num_multireads++;
|
|
for (int64_t i = 0; i < entries_per_batch_; ++i) {
|
|
if (stat_list[i].ok()) {
|
|
bytes +=
|
|
keys[i].size() + pin_values[i].size() + user_timestamp_size_;
|
|
++found;
|
|
} else if (!stat_list[i].IsNotFound()) {
|
|
fprintf(stderr, "MultiGet returned an error: %s\n",
|
|
stat_list[i].ToString().c_str());
|
|
abort();
|
|
}
|
|
stat_list[i] = Status::OK();
|
|
pin_values[i].Reset();
|
|
}
|
|
}
|
|
if (thread->shared->read_rate_limiter.get() != nullptr &&
|
|
num_multireads % 256 == 255) {
|
|
thread->shared->read_rate_limiter->Request(
|
|
256 * entries_per_batch_, Env::IO_HIGH, nullptr /* stats */,
|
|
RateLimiter::OpType::kRead);
|
|
}
|
|
thread->stats.FinishedOps(nullptr, db, entries_per_batch_, kRead);
|
|
}
|
|
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)",
|
|
found, read);
|
|
thread->stats.AddBytes(bytes);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
// Calls ApproximateSize over random key ranges.
|
|
void ApproximateSizeRandom(ThreadState* thread) {
|
|
int64_t size_sum = 0;
|
|
int64_t num_sizes = 0;
|
|
const size_t batch_size = entries_per_batch_;
|
|
std::vector<Range> ranges;
|
|
std::vector<Slice> lkeys;
|
|
std::vector<std::unique_ptr<const char[]>> lkey_guards;
|
|
std::vector<Slice> rkeys;
|
|
std::vector<std::unique_ptr<const char[]>> rkey_guards;
|
|
std::vector<uint64_t> sizes;
|
|
while (ranges.size() < batch_size) {
|
|
// Ugly without C++17 return from emplace_back
|
|
lkey_guards.emplace_back();
|
|
rkey_guards.emplace_back();
|
|
lkeys.emplace_back(AllocateKey(&lkey_guards.back()));
|
|
rkeys.emplace_back(AllocateKey(&rkey_guards.back()));
|
|
ranges.emplace_back(lkeys.back(), rkeys.back());
|
|
sizes.push_back(0);
|
|
}
|
|
Duration duration(FLAGS_duration, reads_);
|
|
while (!duration.Done(1)) {
|
|
DB* db = SelectDB(thread);
|
|
for (size_t i = 0; i < batch_size; ++i) {
|
|
int64_t lkey = GetRandomKey(&thread->rand);
|
|
int64_t rkey = GetRandomKey(&thread->rand);
|
|
if (lkey > rkey) {
|
|
std::swap(lkey, rkey);
|
|
}
|
|
GenerateKeyFromInt(lkey, FLAGS_num, &lkeys[i]);
|
|
GenerateKeyFromInt(rkey, FLAGS_num, &rkeys[i]);
|
|
}
|
|
db->GetApproximateSizes(&ranges[0], static_cast<int>(entries_per_batch_),
|
|
&sizes[0]);
|
|
num_sizes += entries_per_batch_;
|
|
for (int64_t size : sizes) {
|
|
size_sum += size;
|
|
}
|
|
thread->stats.FinishedOps(nullptr, db, entries_per_batch_, kOthers);
|
|
}
|
|
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "(Avg approx size=%g)",
|
|
static_cast<double>(size_sum) / static_cast<double>(num_sizes));
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
// The inverse function of Pareto distribution
|
|
int64_t ParetoCdfInversion(double u, double theta, double k, double sigma) {
|
|
double ret;
|
|
if (k == 0.0) {
|
|
ret = theta - sigma * std::log(u);
|
|
} else {
|
|
ret = theta + sigma * (std::pow(u, -1 * k) - 1) / k;
|
|
}
|
|
return static_cast<int64_t>(ceil(ret));
|
|
}
|
|
// The inverse function of power distribution (y=ax^b)
|
|
int64_t PowerCdfInversion(double u, double a, double b) {
|
|
double ret;
|
|
ret = std::pow((u / a), (1 / b));
|
|
return static_cast<int64_t>(ceil(ret));
|
|
}
|
|
|
|
// Add the noice to the QPS
|
|
double AddNoise(double origin, double noise_ratio) {
|
|
if (noise_ratio < 0.0 || noise_ratio > 1.0) {
|
|
return origin;
|
|
}
|
|
int band_int = static_cast<int>(FLAGS_sine_a);
|
|
double delta = (rand() % band_int - band_int / 2) * noise_ratio;
|
|
if (origin + delta < 0) {
|
|
return origin;
|
|
} else {
|
|
return (origin + delta);
|
|
}
|
|
}
|
|
|
|
// Decide the ratio of different query types
|
|
// 0 Get, 1 Put, 2 Seek, 3 SeekForPrev, 4 Delete, 5 SingleDelete, 6 merge
|
|
class QueryDecider {
|
|
public:
|
|
std::vector<int> type_;
|
|
std::vector<double> ratio_;
|
|
int range_;
|
|
|
|
QueryDecider() {}
|
|
~QueryDecider() {}
|
|
|
|
Status Initiate(std::vector<double> ratio_input) {
|
|
int range_max = 1000;
|
|
double sum = 0.0;
|
|
for (auto& ratio : ratio_input) {
|
|
sum += ratio;
|
|
}
|
|
range_ = 0;
|
|
for (auto& ratio : ratio_input) {
|
|
range_ += static_cast<int>(ceil(range_max * (ratio / sum)));
|
|
type_.push_back(range_);
|
|
ratio_.push_back(ratio / sum);
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
int GetType(int64_t rand_num) {
|
|
if (rand_num < 0) {
|
|
rand_num = rand_num * (-1);
|
|
}
|
|
assert(range_ != 0);
|
|
int pos = static_cast<int>(rand_num % range_);
|
|
for (int i = 0; i < static_cast<int>(type_.size()); i++) {
|
|
if (pos < type_[i]) {
|
|
return i;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
// KeyrangeUnit is the struct of a keyrange. It is used in a keyrange vector
|
|
// to transfer a random value to one keyrange based on the hotness.
|
|
struct KeyrangeUnit {
|
|
int64_t keyrange_start;
|
|
int64_t keyrange_access;
|
|
int64_t keyrange_keys;
|
|
};
|
|
|
|
// From our observations, the prefix hotness (key-range hotness) follows
|
|
// the two-term-exponential distribution: f(x) = a*exp(b*x) + c*exp(d*x).
|
|
// However, we cannot directly use the inverse function to decide a
|
|
// key-range from a random distribution. To achieve it, we create a list of
|
|
// KeyrangeUnit, each KeyrangeUnit occupies a range of integers whose size is
|
|
// decided based on the hotness of the key-range. When a random value is
|
|
// generated based on uniform distribution, we map it to the KeyrangeUnit Vec
|
|
// and one KeyrangeUnit is selected. The probability of a KeyrangeUnit being
|
|
// selected is the same as the hotness of this KeyrangeUnit. After that, the
|
|
// key can be randomly allocated to the key-range of this KeyrangeUnit, or we
|
|
// can based on the power distribution (y=ax^b) to generate the offset of
|
|
// the key in the selected key-range. In this way, we generate the keyID
|
|
// based on the hotness of the prefix and also the key hotness distribution.
|
|
class GenerateTwoTermExpKeys {
|
|
public:
|
|
// Avoid uninitialized warning-as-error in some compilers
|
|
int64_t keyrange_rand_max_ = 0;
|
|
int64_t keyrange_size_ = 0;
|
|
int64_t keyrange_num_ = 0;
|
|
std::vector<KeyrangeUnit> keyrange_set_;
|
|
|
|
// Initiate the KeyrangeUnit vector and calculate the size of each
|
|
// KeyrangeUnit.
|
|
Status InitiateExpDistribution(int64_t total_keys, double prefix_a,
|
|
double prefix_b, double prefix_c,
|
|
double prefix_d) {
|
|
int64_t amplify = 0;
|
|
int64_t keyrange_start = 0;
|
|
if (FLAGS_keyrange_num <= 0) {
|
|
keyrange_num_ = 1;
|
|
} else {
|
|
keyrange_num_ = FLAGS_keyrange_num;
|
|
}
|
|
keyrange_size_ = total_keys / keyrange_num_;
|
|
|
|
// Calculate the key-range shares size based on the input parameters
|
|
for (int64_t pfx = keyrange_num_; pfx >= 1; pfx--) {
|
|
// Step 1. Calculate the probability that this key range will be
|
|
// accessed in a query. It is based on the two-term expoential
|
|
// distribution
|
|
double keyrange_p = prefix_a * std::exp(prefix_b * pfx) +
|
|
prefix_c * std::exp(prefix_d * pfx);
|
|
if (keyrange_p < std::pow(10.0, -16.0)) {
|
|
keyrange_p = 0.0;
|
|
}
|
|
// Step 2. Calculate the amplify
|
|
// In order to allocate a query to a key-range based on the random
|
|
// number generated for this query, we need to extend the probability
|
|
// of each key range from [0,1] to [0, amplify]. Amplify is calculated
|
|
// by 1/(smallest key-range probability). In this way, we ensure that
|
|
// all key-ranges are assigned with an Integer that >=0
|
|
if (amplify == 0 && keyrange_p > 0) {
|
|
amplify = static_cast<int64_t>(std::floor(1 / keyrange_p)) + 1;
|
|
}
|
|
|
|
// Step 3. For each key-range, we calculate its position in the
|
|
// [0, amplify] range, including the start, the size (keyrange_access)
|
|
KeyrangeUnit p_unit;
|
|
p_unit.keyrange_start = keyrange_start;
|
|
if (0.0 >= keyrange_p) {
|
|
p_unit.keyrange_access = 0;
|
|
} else {
|
|
p_unit.keyrange_access =
|
|
static_cast<int64_t>(std::floor(amplify * keyrange_p));
|
|
}
|
|
p_unit.keyrange_keys = keyrange_size_;
|
|
keyrange_set_.push_back(p_unit);
|
|
keyrange_start += p_unit.keyrange_access;
|
|
}
|
|
keyrange_rand_max_ = keyrange_start;
|
|
|
|
// Step 4. Shuffle the key-ranges randomly
|
|
// Since the access probability is calculated from small to large,
|
|
// If we do not re-allocate them, hot key-ranges are always at the end
|
|
// and cold key-ranges are at the begin of the key space. Therefore, the
|
|
// key-ranges are shuffled and the rand seed is only decide by the
|
|
// key-range hotness distribution. With the same distribution parameters
|
|
// the shuffle results are the same.
|
|
Random64 rand_loca(keyrange_rand_max_);
|
|
for (int64_t i = 0; i < FLAGS_keyrange_num; i++) {
|
|
int64_t pos = rand_loca.Next() % FLAGS_keyrange_num;
|
|
assert(i >= 0 && i < static_cast<int64_t>(keyrange_set_.size()) &&
|
|
pos >= 0 && pos < static_cast<int64_t>(keyrange_set_.size()));
|
|
std::swap(keyrange_set_[i], keyrange_set_[pos]);
|
|
}
|
|
|
|
// Step 5. Recalculate the prefix start postion after shuffling
|
|
int64_t offset = 0;
|
|
for (auto& p_unit : keyrange_set_) {
|
|
p_unit.keyrange_start = offset;
|
|
offset += p_unit.keyrange_access;
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
// Generate the Key ID according to the input ini_rand and key distribution
|
|
int64_t DistGetKeyID(int64_t ini_rand, double key_dist_a,
|
|
double key_dist_b) {
|
|
int64_t keyrange_rand = ini_rand % keyrange_rand_max_;
|
|
|
|
// Calculate and select one key-range that contains the new key
|
|
int64_t start = 0, end = static_cast<int64_t>(keyrange_set_.size());
|
|
while (start + 1 < end) {
|
|
int64_t mid = start + (end - start) / 2;
|
|
assert(mid >= 0 && mid < static_cast<int64_t>(keyrange_set_.size()));
|
|
if (keyrange_rand < keyrange_set_[mid].keyrange_start) {
|
|
end = mid;
|
|
} else {
|
|
start = mid;
|
|
}
|
|
}
|
|
int64_t keyrange_id = start;
|
|
|
|
// Select one key in the key-range and compose the keyID
|
|
int64_t key_offset = 0, key_seed;
|
|
if (key_dist_a == 0.0 || key_dist_b == 0.0) {
|
|
key_offset = ini_rand % keyrange_size_;
|
|
} else {
|
|
double u =
|
|
static_cast<double>(ini_rand % keyrange_size_) / keyrange_size_;
|
|
key_seed = static_cast<int64_t>(
|
|
ceil(std::pow((u / key_dist_a), (1 / key_dist_b))));
|
|
Random64 rand_key(key_seed);
|
|
key_offset = rand_key.Next() % keyrange_size_;
|
|
}
|
|
return keyrange_size_ * keyrange_id + key_offset;
|
|
}
|
|
};
|
|
|
|
// The social graph workload mixed with Get, Put, Iterator queries.
|
|
// The value size and iterator length follow Pareto distribution.
|
|
// The overall key access follow power distribution. If user models the
|
|
// workload based on different key-ranges (or different prefixes), user
|
|
// can use two-term-exponential distribution to fit the workload. User
|
|
// needs to decide the ratio between Get, Put, Iterator queries before
|
|
// starting the benchmark.
|
|
void MixGraph(ThreadState* thread) {
|
|
int64_t read = 0; // including single gets and Next of iterators
|
|
int64_t gets = 0;
|
|
int64_t puts = 0;
|
|
int64_t found = 0;
|
|
int64_t seek = 0;
|
|
int64_t seek_found = 0;
|
|
int64_t bytes = 0;
|
|
const int64_t default_value_max = 1 * 1024 * 1024;
|
|
int64_t value_max = default_value_max;
|
|
int64_t scan_len_max = FLAGS_mix_max_scan_len;
|
|
double write_rate = 1000000.0;
|
|
double read_rate = 1000000.0;
|
|
bool use_prefix_modeling = false;
|
|
bool use_random_modeling = false;
|
|
GenerateTwoTermExpKeys gen_exp;
|
|
std::vector<double> ratio{FLAGS_mix_get_ratio, FLAGS_mix_put_ratio,
|
|
FLAGS_mix_seek_ratio};
|
|
char value_buffer[default_value_max];
|
|
QueryDecider query;
|
|
RandomGenerator gen;
|
|
Status s;
|
|
if (value_max > FLAGS_mix_max_value_size) {
|
|
value_max = FLAGS_mix_max_value_size;
|
|
}
|
|
|
|
ReadOptions options(FLAGS_verify_checksum, true);
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
PinnableSlice pinnable_val;
|
|
query.Initiate(ratio);
|
|
|
|
// the limit of qps initiation
|
|
if (FLAGS_sine_mix_rate) {
|
|
thread->shared->read_rate_limiter.reset(
|
|
NewGenericRateLimiter(static_cast<int64_t>(read_rate)));
|
|
thread->shared->write_rate_limiter.reset(
|
|
NewGenericRateLimiter(static_cast<int64_t>(write_rate)));
|
|
}
|
|
|
|
// Decide if user wants to use prefix based key generation
|
|
if (FLAGS_keyrange_dist_a != 0.0 || FLAGS_keyrange_dist_b != 0.0 ||
|
|
FLAGS_keyrange_dist_c != 0.0 || FLAGS_keyrange_dist_d != 0.0) {
|
|
use_prefix_modeling = true;
|
|
gen_exp.InitiateExpDistribution(
|
|
FLAGS_num, FLAGS_keyrange_dist_a, FLAGS_keyrange_dist_b,
|
|
FLAGS_keyrange_dist_c, FLAGS_keyrange_dist_d);
|
|
}
|
|
if (FLAGS_key_dist_a == 0 || FLAGS_key_dist_b == 0) {
|
|
use_random_modeling = true;
|
|
}
|
|
|
|
Duration duration(FLAGS_duration, reads_);
|
|
while (!duration.Done(1)) {
|
|
DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread);
|
|
int64_t ini_rand, rand_v, key_rand, key_seed;
|
|
ini_rand = GetRandomKey(&thread->rand);
|
|
rand_v = ini_rand % FLAGS_num;
|
|
double u = static_cast<double>(rand_v) / FLAGS_num;
|
|
|
|
// Generate the keyID based on the key hotness and prefix hotness
|
|
if (use_random_modeling) {
|
|
key_rand = ini_rand;
|
|
} else if (use_prefix_modeling) {
|
|
key_rand =
|
|
gen_exp.DistGetKeyID(ini_rand, FLAGS_key_dist_a, FLAGS_key_dist_b);
|
|
} else {
|
|
key_seed = PowerCdfInversion(u, FLAGS_key_dist_a, FLAGS_key_dist_b);
|
|
Random64 rand(key_seed);
|
|
key_rand = static_cast<int64_t>(rand.Next()) % FLAGS_num;
|
|
}
|
|
GenerateKeyFromInt(key_rand, FLAGS_num, &key);
|
|
int query_type = query.GetType(rand_v);
|
|
|
|
// change the qps
|
|
uint64_t now = FLAGS_env->NowMicros();
|
|
uint64_t usecs_since_last;
|
|
if (now > thread->stats.GetSineInterval()) {
|
|
usecs_since_last = now - thread->stats.GetSineInterval();
|
|
} else {
|
|
usecs_since_last = 0;
|
|
}
|
|
|
|
if (FLAGS_sine_mix_rate &&
|
|
usecs_since_last >
|
|
(FLAGS_sine_mix_rate_interval_milliseconds * uint64_t{1000})) {
|
|
double usecs_since_start =
|
|
static_cast<double>(now - thread->stats.GetStart());
|
|
thread->stats.ResetSineInterval();
|
|
double mix_rate_with_noise = AddNoise(
|
|
SineRate(usecs_since_start / 1000000.0), FLAGS_sine_mix_rate_noise);
|
|
read_rate = mix_rate_with_noise * (query.ratio_[0] + query.ratio_[2]);
|
|
write_rate = mix_rate_with_noise * query.ratio_[1];
|
|
|
|
if (read_rate > 0) {
|
|
thread->shared->read_rate_limiter->SetBytesPerSecond(
|
|
static_cast<int64_t>(read_rate));
|
|
}
|
|
if (write_rate > 0) {
|
|
thread->shared->write_rate_limiter->SetBytesPerSecond(
|
|
static_cast<int64_t>(write_rate));
|
|
}
|
|
}
|
|
// Start the query
|
|
if (query_type == 0) {
|
|
// the Get query
|
|
gets++;
|
|
read++;
|
|
if (FLAGS_num_column_families > 1) {
|
|
s = db_with_cfh->db->Get(options, db_with_cfh->GetCfh(key_rand), key,
|
|
&pinnable_val);
|
|
} else {
|
|
pinnable_val.Reset();
|
|
s = db_with_cfh->db->Get(options,
|
|
db_with_cfh->db->DefaultColumnFamily(), key,
|
|
&pinnable_val);
|
|
}
|
|
|
|
if (s.ok()) {
|
|
found++;
|
|
bytes += key.size() + pinnable_val.size();
|
|
} else if (!s.IsNotFound()) {
|
|
fprintf(stderr, "Get returned an error: %s\n", s.ToString().c_str());
|
|
abort();
|
|
}
|
|
|
|
if (thread->shared->read_rate_limiter && read % 100 == 0) {
|
|
thread->shared->read_rate_limiter->Request(100, Env::IO_HIGH,
|
|
nullptr /*stats*/);
|
|
}
|
|
thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kRead);
|
|
} else if (query_type == 1) {
|
|
// the Put query
|
|
puts++;
|
|
int64_t val_size = ParetoCdfInversion(
|
|
u, FLAGS_value_theta, FLAGS_value_k, FLAGS_value_sigma);
|
|
if (val_size < 0) {
|
|
val_size = 10;
|
|
} else if (val_size > value_max) {
|
|
val_size = val_size % value_max;
|
|
}
|
|
s = db_with_cfh->db->Put(
|
|
write_options_, key,
|
|
gen.Generate(static_cast<unsigned int>(val_size)));
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
|
|
if (thread->shared->write_rate_limiter && puts % 100 == 0) {
|
|
thread->shared->write_rate_limiter->Request(100, Env::IO_HIGH,
|
|
nullptr /*stats*/);
|
|
}
|
|
thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kWrite);
|
|
} else if (query_type == 2) {
|
|
// Seek query
|
|
if (db_with_cfh->db != nullptr) {
|
|
Iterator* single_iter = nullptr;
|
|
single_iter = db_with_cfh->db->NewIterator(options);
|
|
if (single_iter != nullptr) {
|
|
single_iter->Seek(key);
|
|
seek++;
|
|
read++;
|
|
if (single_iter->Valid() && single_iter->key().compare(key) == 0) {
|
|
seek_found++;
|
|
}
|
|
int64_t scan_length =
|
|
ParetoCdfInversion(u, FLAGS_iter_theta, FLAGS_iter_k,
|
|
FLAGS_iter_sigma) %
|
|
scan_len_max;
|
|
for (int64_t j = 0; j < scan_length && single_iter->Valid(); j++) {
|
|
Slice value = single_iter->value();
|
|
memcpy(value_buffer, value.data(),
|
|
std::min(value.size(), sizeof(value_buffer)));
|
|
bytes += single_iter->key().size() + single_iter->value().size();
|
|
single_iter->Next();
|
|
assert(single_iter->status().ok());
|
|
}
|
|
}
|
|
delete single_iter;
|
|
}
|
|
thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kSeek);
|
|
}
|
|
}
|
|
char msg[256];
|
|
snprintf(msg, sizeof(msg),
|
|
"( Gets:%" PRIu64 " Puts:%" PRIu64 " Seek:%" PRIu64 " of %" PRIu64
|
|
" in %" PRIu64 " found)\n",
|
|
gets, puts, seek, found, read);
|
|
|
|
thread->stats.AddBytes(bytes);
|
|
thread->stats.AddMessage(msg);
|
|
|
|
if (FLAGS_perf_level > ROCKSDB_NAMESPACE::PerfLevel::kDisable) {
|
|
thread->stats.AddMessage(std::string("PERF_CONTEXT:\n") +
|
|
get_perf_context()->ToString());
|
|
}
|
|
}
|
|
|
|
void IteratorCreation(ThreadState* thread) {
|
|
Duration duration(FLAGS_duration, reads_);
|
|
ReadOptions options(FLAGS_verify_checksum, true);
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
while (!duration.Done(1)) {
|
|
DB* db = SelectDB(thread);
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
|
|
options.timestamp = &ts;
|
|
}
|
|
Iterator* iter = db->NewIterator(options);
|
|
delete iter;
|
|
thread->stats.FinishedOps(nullptr, db, 1, kOthers);
|
|
}
|
|
}
|
|
|
|
void IteratorCreationWhileWriting(ThreadState* thread) {
|
|
if (thread->tid > 0) {
|
|
IteratorCreation(thread);
|
|
} else {
|
|
BGWriter(thread, kWrite);
|
|
}
|
|
}
|
|
|
|
void SeekRandom(ThreadState* thread) {
|
|
int64_t read = 0;
|
|
int64_t found = 0;
|
|
int64_t bytes = 0;
|
|
ReadOptions options(FLAGS_verify_checksum, true);
|
|
options.total_order_seek = FLAGS_total_order_seek;
|
|
options.prefix_same_as_start = FLAGS_prefix_same_as_start;
|
|
options.tailing = FLAGS_use_tailing_iterator;
|
|
options.readahead_size = FLAGS_readahead_size;
|
|
std::unique_ptr<char[]> ts_guard;
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
|
|
options.timestamp = &ts;
|
|
}
|
|
|
|
std::vector<Iterator*> tailing_iters;
|
|
if (FLAGS_use_tailing_iterator) {
|
|
if (db_.db != nullptr) {
|
|
tailing_iters.push_back(db_.db->NewIterator(options));
|
|
} else {
|
|
for (const auto& db_with_cfh : multi_dbs_) {
|
|
tailing_iters.push_back(db_with_cfh.db->NewIterator(options));
|
|
}
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
|
|
std::unique_ptr<const char[]> upper_bound_key_guard;
|
|
Slice upper_bound = AllocateKey(&upper_bound_key_guard);
|
|
std::unique_ptr<const char[]> lower_bound_key_guard;
|
|
Slice lower_bound = AllocateKey(&lower_bound_key_guard);
|
|
|
|
Duration duration(FLAGS_duration, reads_);
|
|
char value_buffer[256];
|
|
while (!duration.Done(1)) {
|
|
int64_t seek_pos = thread->rand.Next() % FLAGS_num;
|
|
GenerateKeyFromIntForSeek(static_cast<uint64_t>(seek_pos), FLAGS_num,
|
|
&key);
|
|
if (FLAGS_max_scan_distance != 0) {
|
|
if (FLAGS_reverse_iterator) {
|
|
GenerateKeyFromInt(
|
|
static_cast<uint64_t>(std::max(
|
|
static_cast<int64_t>(0), seek_pos - FLAGS_max_scan_distance)),
|
|
FLAGS_num, &lower_bound);
|
|
options.iterate_lower_bound = &lower_bound;
|
|
} else {
|
|
auto min_num =
|
|
std::min(FLAGS_num, seek_pos + FLAGS_max_scan_distance);
|
|
GenerateKeyFromInt(static_cast<uint64_t>(min_num), FLAGS_num,
|
|
&upper_bound);
|
|
options.iterate_upper_bound = &upper_bound;
|
|
}
|
|
}
|
|
|
|
// Pick a Iterator to use
|
|
size_t db_idx_to_use =
|
|
(db_.db == nullptr)
|
|
? (size_t{thread->rand.Next()} % multi_dbs_.size())
|
|
: 0;
|
|
std::unique_ptr<Iterator> single_iter;
|
|
Iterator* iter_to_use;
|
|
if (FLAGS_use_tailing_iterator) {
|
|
iter_to_use = tailing_iters[db_idx_to_use];
|
|
} else {
|
|
if (db_.db != nullptr) {
|
|
single_iter.reset(db_.db->NewIterator(options));
|
|
} else {
|
|
single_iter.reset(multi_dbs_[db_idx_to_use].db->NewIterator(options));
|
|
}
|
|
iter_to_use = single_iter.get();
|
|
}
|
|
|
|
iter_to_use->Seek(key);
|
|
read++;
|
|
if (iter_to_use->Valid() && iter_to_use->key().compare(key) == 0) {
|
|
found++;
|
|
}
|
|
|
|
for (int j = 0; j < FLAGS_seek_nexts && iter_to_use->Valid(); ++j) {
|
|
// Copy out iterator's value to make sure we read them.
|
|
Slice value = iter_to_use->value();
|
|
memcpy(value_buffer, value.data(),
|
|
std::min(value.size(), sizeof(value_buffer)));
|
|
bytes += iter_to_use->key().size() + iter_to_use->value().size();
|
|
|
|
if (!FLAGS_reverse_iterator) {
|
|
iter_to_use->Next();
|
|
} else {
|
|
iter_to_use->Prev();
|
|
}
|
|
assert(iter_to_use->status().ok());
|
|
}
|
|
|
|
if (thread->shared->read_rate_limiter.get() != nullptr &&
|
|
read % 256 == 255) {
|
|
thread->shared->read_rate_limiter->Request(
|
|
256, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
|
|
}
|
|
|
|
thread->stats.FinishedOps(&db_, db_.db, 1, kSeek);
|
|
}
|
|
for (auto iter : tailing_iters) {
|
|
delete iter;
|
|
}
|
|
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)\n",
|
|
found, read);
|
|
thread->stats.AddBytes(bytes);
|
|
thread->stats.AddMessage(msg);
|
|
if (FLAGS_perf_level > ROCKSDB_NAMESPACE::PerfLevel::kDisable) {
|
|
thread->stats.AddMessage(std::string("PERF_CONTEXT:\n") +
|
|
get_perf_context()->ToString());
|
|
}
|
|
}
|
|
|
|
void SeekRandomWhileWriting(ThreadState* thread) {
|
|
if (thread->tid > 0) {
|
|
SeekRandom(thread);
|
|
} else {
|
|
BGWriter(thread, kWrite);
|
|
}
|
|
}
|
|
|
|
void SeekRandomWhileMerging(ThreadState* thread) {
|
|
if (thread->tid > 0) {
|
|
SeekRandom(thread);
|
|
} else {
|
|
BGWriter(thread, kMerge);
|
|
}
|
|
}
|
|
|
|
void DoDelete(ThreadState* thread, bool seq) {
|
|
WriteBatch batch(/*reserved_bytes=*/0, /*max_bytes=*/0,
|
|
user_timestamp_size_);
|
|
Duration duration(seq ? 0 : FLAGS_duration, deletes_);
|
|
int64_t i = 0;
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
std::unique_ptr<char[]> ts_guard;
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
|
|
while (!duration.Done(entries_per_batch_)) {
|
|
DB* db = SelectDB(thread);
|
|
batch.Clear();
|
|
for (int64_t j = 0; j < entries_per_batch_; ++j) {
|
|
const int64_t k = seq ? i + j : (thread->rand.Next() % FLAGS_num);
|
|
GenerateKeyFromInt(k, FLAGS_num, &key);
|
|
batch.Delete(key);
|
|
}
|
|
Status s;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
s = batch.AssignTimestamp(ts);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "assign timestamp: %s\n", s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
}
|
|
s = db->Write(write_options_, &batch);
|
|
thread->stats.FinishedOps(nullptr, db, entries_per_batch_, kDelete);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "del error: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
i += entries_per_batch_;
|
|
}
|
|
}
|
|
|
|
void DeleteSeq(ThreadState* thread) {
|
|
DoDelete(thread, true);
|
|
}
|
|
|
|
void DeleteRandom(ThreadState* thread) {
|
|
DoDelete(thread, false);
|
|
}
|
|
|
|
void ReadWhileWriting(ThreadState* thread) {
|
|
if (thread->tid > 0) {
|
|
ReadRandom(thread);
|
|
} else {
|
|
BGWriter(thread, kWrite);
|
|
}
|
|
}
|
|
|
|
void ReadWhileMerging(ThreadState* thread) {
|
|
if (thread->tid > 0) {
|
|
ReadRandom(thread);
|
|
} else {
|
|
BGWriter(thread, kMerge);
|
|
}
|
|
}
|
|
|
|
void BGWriter(ThreadState* thread, enum OperationType write_merge) {
|
|
// Special thread that keeps writing until other threads are done.
|
|
RandomGenerator gen;
|
|
int64_t bytes = 0;
|
|
|
|
std::unique_ptr<RateLimiter> write_rate_limiter;
|
|
if (FLAGS_benchmark_write_rate_limit > 0) {
|
|
write_rate_limiter.reset(
|
|
NewGenericRateLimiter(FLAGS_benchmark_write_rate_limit));
|
|
}
|
|
|
|
// Don't merge stats from this thread with the readers.
|
|
thread->stats.SetExcludeFromMerge();
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
uint32_t written = 0;
|
|
bool hint_printed = false;
|
|
|
|
while (true) {
|
|
DB* db = SelectDB(thread);
|
|
{
|
|
MutexLock l(&thread->shared->mu);
|
|
if (FLAGS_finish_after_writes && written == writes_) {
|
|
fprintf(stderr, "Exiting the writer after %u writes...\n", written);
|
|
break;
|
|
}
|
|
if (thread->shared->num_done + 1 >= thread->shared->num_initialized) {
|
|
// Other threads have finished
|
|
if (FLAGS_finish_after_writes) {
|
|
// Wait for the writes to be finished
|
|
if (!hint_printed) {
|
|
fprintf(stderr, "Reads are finished. Have %d more writes to do\n",
|
|
static_cast<int>(writes_) - written);
|
|
hint_printed = true;
|
|
}
|
|
} else {
|
|
// Finish the write immediately
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
|
|
Status s;
|
|
|
|
Slice val = gen.Generate();
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
write_options_.timestamp = &ts;
|
|
}
|
|
if (write_merge == kWrite) {
|
|
s = db->Put(write_options_, key, val);
|
|
} else {
|
|
s = db->Merge(write_options_, key, val);
|
|
}
|
|
// Restore write_options_
|
|
if (user_timestamp_size_ > 0) {
|
|
write_options_.timestamp = nullptr;
|
|
}
|
|
written++;
|
|
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "put or merge error: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
bytes += key.size() + val.size() + user_timestamp_size_;
|
|
thread->stats.FinishedOps(&db_, db_.db, 1, kWrite);
|
|
|
|
if (FLAGS_benchmark_write_rate_limit > 0) {
|
|
write_rate_limiter->Request(
|
|
key.size() + val.size(), Env::IO_HIGH,
|
|
nullptr /* stats */, RateLimiter::OpType::kWrite);
|
|
}
|
|
}
|
|
thread->stats.AddBytes(bytes);
|
|
}
|
|
|
|
void ReadWhileScanning(ThreadState* thread) {
|
|
if (thread->tid > 0) {
|
|
ReadRandom(thread);
|
|
} else {
|
|
BGScan(thread);
|
|
}
|
|
}
|
|
|
|
void BGScan(ThreadState* thread) {
|
|
if (FLAGS_num_multi_db > 0) {
|
|
fprintf(stderr, "Not supporting multiple DBs.\n");
|
|
abort();
|
|
}
|
|
assert(db_.db != nullptr);
|
|
ReadOptions read_options;
|
|
std::unique_ptr<char[]> ts_guard;
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
|
|
read_options.timestamp = &ts;
|
|
}
|
|
Iterator* iter = db_.db->NewIterator(read_options);
|
|
|
|
fprintf(stderr, "num reads to do %" PRIu64 "\n", reads_);
|
|
Duration duration(FLAGS_duration, reads_);
|
|
uint64_t num_seek_to_first = 0;
|
|
uint64_t num_next = 0;
|
|
while (!duration.Done(1)) {
|
|
if (!iter->Valid()) {
|
|
iter->SeekToFirst();
|
|
num_seek_to_first++;
|
|
} else if (!iter->status().ok()) {
|
|
fprintf(stderr, "Iterator error: %s\n",
|
|
iter->status().ToString().c_str());
|
|
abort();
|
|
} else {
|
|
iter->Next();
|
|
num_next++;
|
|
}
|
|
|
|
thread->stats.FinishedOps(&db_, db_.db, 1, kSeek);
|
|
}
|
|
delete iter;
|
|
}
|
|
|
|
// Given a key K and value V, this puts (K+"0", V), (K+"1", V), (K+"2", V)
|
|
// in DB atomically i.e in a single batch. Also refer GetMany.
|
|
Status PutMany(DB* db, const WriteOptions& writeoptions, const Slice& key,
|
|
const Slice& value) {
|
|
std::string suffixes[3] = {"2", "1", "0"};
|
|
std::string keys[3];
|
|
|
|
WriteBatch batch(/*reserved_bytes=*/0, /*max_bytes=*/0,
|
|
user_timestamp_size_);
|
|
Status s;
|
|
for (int i = 0; i < 3; i++) {
|
|
keys[i] = key.ToString() + suffixes[i];
|
|
batch.Put(keys[i], value);
|
|
}
|
|
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
Slice ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
s = batch.AssignTimestamp(ts);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "assign timestamp to batch: %s\n",
|
|
s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
}
|
|
|
|
s = db->Write(writeoptions, &batch);
|
|
return s;
|
|
}
|
|
|
|
|
|
// Given a key K, this deletes (K+"0", V), (K+"1", V), (K+"2", V)
|
|
// in DB atomically i.e in a single batch. Also refer GetMany.
|
|
Status DeleteMany(DB* db, const WriteOptions& writeoptions,
|
|
const Slice& key) {
|
|
std::string suffixes[3] = {"1", "2", "0"};
|
|
std::string keys[3];
|
|
|
|
WriteBatch batch(0, 0, user_timestamp_size_);
|
|
Status s;
|
|
for (int i = 0; i < 3; i++) {
|
|
keys[i] = key.ToString() + suffixes[i];
|
|
batch.Delete(keys[i]);
|
|
}
|
|
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
Slice ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
s = batch.AssignTimestamp(ts);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "assign timestamp to batch: %s\n",
|
|
s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
}
|
|
|
|
s = db->Write(writeoptions, &batch);
|
|
return s;
|
|
}
|
|
|
|
// Given a key K and value V, this gets values for K+"0", K+"1" and K+"2"
|
|
// in the same snapshot, and verifies that all the values are identical.
|
|
// ASSUMES that PutMany was used to put (K, V) into the DB.
|
|
Status GetMany(DB* db, const ReadOptions& readoptions, const Slice& key,
|
|
std::string* value) {
|
|
std::string suffixes[3] = {"0", "1", "2"};
|
|
std::string keys[3];
|
|
Slice key_slices[3];
|
|
std::string values[3];
|
|
ReadOptions readoptionscopy = readoptions;
|
|
|
|
std::unique_ptr<char[]> ts_guard;
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
readoptionscopy.timestamp = &ts;
|
|
}
|
|
|
|
readoptionscopy.snapshot = db->GetSnapshot();
|
|
Status s;
|
|
for (int i = 0; i < 3; i++) {
|
|
keys[i] = key.ToString() + suffixes[i];
|
|
key_slices[i] = keys[i];
|
|
s = db->Get(readoptionscopy, key_slices[i], value);
|
|
if (!s.ok() && !s.IsNotFound()) {
|
|
fprintf(stderr, "get error: %s\n", s.ToString().c_str());
|
|
values[i] = "";
|
|
// we continue after error rather than exiting so that we can
|
|
// find more errors if any
|
|
} else if (s.IsNotFound()) {
|
|
values[i] = "";
|
|
} else {
|
|
values[i] = *value;
|
|
}
|
|
}
|
|
db->ReleaseSnapshot(readoptionscopy.snapshot);
|
|
|
|
if ((values[0] != values[1]) || (values[1] != values[2])) {
|
|
fprintf(stderr, "inconsistent values for key %s: %s, %s, %s\n",
|
|
key.ToString().c_str(), values[0].c_str(), values[1].c_str(),
|
|
values[2].c_str());
|
|
// we continue after error rather than exiting so that we can
|
|
// find more errors if any
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
// Differs from readrandomwriterandom in the following ways:
|
|
// (a) Uses GetMany/PutMany to read/write key values. Refer to those funcs.
|
|
// (b) Does deletes as well (per FLAGS_deletepercent)
|
|
// (c) In order to achieve high % of 'found' during lookups, and to do
|
|
// multiple writes (including puts and deletes) it uses upto
|
|
// FLAGS_numdistinct distinct keys instead of FLAGS_num distinct keys.
|
|
// (d) Does not have a MultiGet option.
|
|
void RandomWithVerify(ThreadState* thread) {
|
|
ReadOptions options(FLAGS_verify_checksum, true);
|
|
RandomGenerator gen;
|
|
std::string value;
|
|
int64_t found = 0;
|
|
int get_weight = 0;
|
|
int put_weight = 0;
|
|
int delete_weight = 0;
|
|
int64_t gets_done = 0;
|
|
int64_t puts_done = 0;
|
|
int64_t deletes_done = 0;
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
|
|
// the number of iterations is the larger of read_ or write_
|
|
for (int64_t i = 0; i < readwrites_; i++) {
|
|
DB* db = SelectDB(thread);
|
|
if (get_weight == 0 && put_weight == 0 && delete_weight == 0) {
|
|
// one batch completed, reinitialize for next batch
|
|
get_weight = FLAGS_readwritepercent;
|
|
delete_weight = FLAGS_deletepercent;
|
|
put_weight = 100 - get_weight - delete_weight;
|
|
}
|
|
GenerateKeyFromInt(thread->rand.Next() % FLAGS_numdistinct,
|
|
FLAGS_numdistinct, &key);
|
|
if (get_weight > 0) {
|
|
// do all the gets first
|
|
Status s = GetMany(db, options, key, &value);
|
|
if (!s.ok() && !s.IsNotFound()) {
|
|
fprintf(stderr, "getmany error: %s\n", s.ToString().c_str());
|
|
// we continue after error rather than exiting so that we can
|
|
// find more errors if any
|
|
} else if (!s.IsNotFound()) {
|
|
found++;
|
|
}
|
|
get_weight--;
|
|
gets_done++;
|
|
thread->stats.FinishedOps(&db_, db_.db, 1, kRead);
|
|
} else if (put_weight > 0) {
|
|
// then do all the corresponding number of puts
|
|
// for all the gets we have done earlier
|
|
Status s = PutMany(db, write_options_, key, gen.Generate());
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "putmany error: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
put_weight--;
|
|
puts_done++;
|
|
thread->stats.FinishedOps(&db_, db_.db, 1, kWrite);
|
|
} else if (delete_weight > 0) {
|
|
Status s = DeleteMany(db, write_options_, key);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "deletemany error: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
delete_weight--;
|
|
deletes_done++;
|
|
thread->stats.FinishedOps(&db_, db_.db, 1, kDelete);
|
|
}
|
|
}
|
|
char msg[128];
|
|
snprintf(msg, sizeof(msg),
|
|
"( get:%" PRIu64 " put:%" PRIu64 " del:%" PRIu64 " total:%" \
|
|
PRIu64 " found:%" PRIu64 ")",
|
|
gets_done, puts_done, deletes_done, readwrites_, found);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
// This is different from ReadWhileWriting because it does not use
|
|
// an extra thread.
|
|
void ReadRandomWriteRandom(ThreadState* thread) {
|
|
ReadOptions options(FLAGS_verify_checksum, true);
|
|
RandomGenerator gen;
|
|
std::string value;
|
|
int64_t found = 0;
|
|
int get_weight = 0;
|
|
int put_weight = 0;
|
|
int64_t reads_done = 0;
|
|
int64_t writes_done = 0;
|
|
Duration duration(FLAGS_duration, readwrites_);
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
|
|
// the number of iterations is the larger of read_ or write_
|
|
while (!duration.Done(1)) {
|
|
DB* db = SelectDB(thread);
|
|
GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
|
|
if (get_weight == 0 && put_weight == 0) {
|
|
// one batch completed, reinitialize for next batch
|
|
get_weight = FLAGS_readwritepercent;
|
|
put_weight = 100 - get_weight;
|
|
}
|
|
if (get_weight > 0) {
|
|
// do all the gets first
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->GetTimestampForRead(thread->rand,
|
|
ts_guard.get());
|
|
options.timestamp = &ts;
|
|
}
|
|
Status s = db->Get(options, key, &value);
|
|
if (!s.ok() && !s.IsNotFound()) {
|
|
fprintf(stderr, "get error: %s\n", s.ToString().c_str());
|
|
// we continue after error rather than exiting so that we can
|
|
// find more errors if any
|
|
} else if (!s.IsNotFound()) {
|
|
found++;
|
|
}
|
|
get_weight--;
|
|
reads_done++;
|
|
thread->stats.FinishedOps(nullptr, db, 1, kRead);
|
|
} else if (put_weight > 0) {
|
|
// then do all the corresponding number of puts
|
|
// for all the gets we have done earlier
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
write_options_.timestamp = &ts;
|
|
}
|
|
Status s = db->Put(write_options_, key, gen.Generate());
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
put_weight--;
|
|
writes_done++;
|
|
thread->stats.FinishedOps(nullptr, db, 1, kWrite);
|
|
}
|
|
}
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "( reads:%" PRIu64 " writes:%" PRIu64 \
|
|
" total:%" PRIu64 " found:%" PRIu64 ")",
|
|
reads_done, writes_done, readwrites_, found);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
//
|
|
// Read-modify-write for random keys
|
|
void UpdateRandom(ThreadState* thread) {
|
|
ReadOptions options(FLAGS_verify_checksum, true);
|
|
RandomGenerator gen;
|
|
std::string value;
|
|
int64_t found = 0;
|
|
int64_t bytes = 0;
|
|
Duration duration(FLAGS_duration, readwrites_);
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
// the number of iterations is the larger of read_ or write_
|
|
while (!duration.Done(1)) {
|
|
DB* db = SelectDB(thread);
|
|
GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
// Read with newest timestamp because we are doing rmw.
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
options.timestamp = &ts;
|
|
}
|
|
|
|
auto status = db->Get(options, key, &value);
|
|
if (status.ok()) {
|
|
++found;
|
|
bytes += key.size() + value.size() + user_timestamp_size_;
|
|
} else if (!status.IsNotFound()) {
|
|
fprintf(stderr, "Get returned an error: %s\n",
|
|
status.ToString().c_str());
|
|
abort();
|
|
}
|
|
|
|
if (thread->shared->write_rate_limiter) {
|
|
thread->shared->write_rate_limiter->Request(
|
|
key.size() + value.size(), Env::IO_HIGH, nullptr /*stats*/,
|
|
RateLimiter::OpType::kWrite);
|
|
}
|
|
|
|
Slice val = gen.Generate();
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
write_options_.timestamp = &ts;
|
|
}
|
|
Status s = db->Put(write_options_, key, val);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
bytes += key.size() + val.size() + user_timestamp_size_;
|
|
thread->stats.FinishedOps(nullptr, db, 1, kUpdate);
|
|
}
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg),
|
|
"( updates:%" PRIu64 " found:%" PRIu64 ")", readwrites_, found);
|
|
thread->stats.AddBytes(bytes);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
// Read-XOR-write for random keys. Xors the existing value with a randomly
|
|
// generated value, and stores the result. Assuming A in the array of bytes
|
|
// representing the existing value, we generate an array B of the same size,
|
|
// then compute C = A^B as C[i]=A[i]^B[i], and store C
|
|
void XORUpdateRandom(ThreadState* thread) {
|
|
ReadOptions options(FLAGS_verify_checksum, true);
|
|
RandomGenerator gen;
|
|
std::string existing_value;
|
|
int64_t found = 0;
|
|
Duration duration(FLAGS_duration, readwrites_);
|
|
|
|
BytesXOROperator xor_operator;
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
// the number of iterations is the larger of read_ or write_
|
|
while (!duration.Done(1)) {
|
|
DB* db = SelectDB(thread);
|
|
GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
options.timestamp = &ts;
|
|
}
|
|
|
|
auto status = db->Get(options, key, &existing_value);
|
|
if (status.ok()) {
|
|
++found;
|
|
} else if (!status.IsNotFound()) {
|
|
fprintf(stderr, "Get returned an error: %s\n",
|
|
status.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
|
|
Slice value = gen.Generate(static_cast<unsigned int>(existing_value.size()));
|
|
std::string new_value;
|
|
|
|
if (status.ok()) {
|
|
Slice existing_value_slice = Slice(existing_value);
|
|
xor_operator.XOR(&existing_value_slice, value, &new_value);
|
|
} else {
|
|
xor_operator.XOR(nullptr, value, &new_value);
|
|
}
|
|
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
write_options_.timestamp = &ts;
|
|
}
|
|
|
|
Status s = db->Put(write_options_, key, Slice(new_value));
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
thread->stats.FinishedOps(nullptr, db, 1);
|
|
}
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg),
|
|
"( updates:%" PRIu64 " found:%" PRIu64 ")", readwrites_, found);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
// Read-modify-write for random keys.
|
|
// Each operation causes the key grow by value_size (simulating an append).
|
|
// Generally used for benchmarking against merges of similar type
|
|
void AppendRandom(ThreadState* thread) {
|
|
ReadOptions options(FLAGS_verify_checksum, true);
|
|
RandomGenerator gen;
|
|
std::string value;
|
|
int64_t found = 0;
|
|
int64_t bytes = 0;
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
// The number of iterations is the larger of read_ or write_
|
|
Duration duration(FLAGS_duration, readwrites_);
|
|
while (!duration.Done(1)) {
|
|
DB* db = SelectDB(thread);
|
|
GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
options.timestamp = &ts;
|
|
}
|
|
|
|
auto status = db->Get(options, key, &value);
|
|
if (status.ok()) {
|
|
++found;
|
|
bytes += key.size() + value.size() + user_timestamp_size_;
|
|
} else if (!status.IsNotFound()) {
|
|
fprintf(stderr, "Get returned an error: %s\n",
|
|
status.ToString().c_str());
|
|
abort();
|
|
} else {
|
|
// If not existing, then just assume an empty string of data
|
|
value.clear();
|
|
}
|
|
|
|
// Update the value (by appending data)
|
|
Slice operand = gen.Generate();
|
|
if (value.size() > 0) {
|
|
// Use a delimiter to match the semantics for StringAppendOperator
|
|
value.append(1,',');
|
|
}
|
|
value.append(operand.data(), operand.size());
|
|
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
write_options_.timestamp = &ts;
|
|
}
|
|
|
|
// Write back to the database
|
|
Status s = db->Put(write_options_, key, value);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
bytes += key.size() + value.size() + user_timestamp_size_;
|
|
thread->stats.FinishedOps(nullptr, db, 1, kUpdate);
|
|
}
|
|
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "( updates:%" PRIu64 " found:%" PRIu64 ")",
|
|
readwrites_, found);
|
|
thread->stats.AddBytes(bytes);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
// Read-modify-write for random keys (using MergeOperator)
|
|
// The merge operator to use should be defined by FLAGS_merge_operator
|
|
// Adjust FLAGS_value_size so that the keys are reasonable for this operator
|
|
// Assumes that the merge operator is non-null (i.e.: is well-defined)
|
|
//
|
|
// For example, use FLAGS_merge_operator="uint64add" and FLAGS_value_size=8
|
|
// to simulate random additions over 64-bit integers using merge.
|
|
//
|
|
// The number of merges on the same key can be controlled by adjusting
|
|
// FLAGS_merge_keys.
|
|
void MergeRandom(ThreadState* thread) {
|
|
RandomGenerator gen;
|
|
int64_t bytes = 0;
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
// The number of iterations is the larger of read_ or write_
|
|
Duration duration(FLAGS_duration, readwrites_);
|
|
while (!duration.Done(1)) {
|
|
DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread);
|
|
int64_t key_rand = thread->rand.Next() % merge_keys_;
|
|
GenerateKeyFromInt(key_rand, merge_keys_, &key);
|
|
|
|
Status s;
|
|
Slice val = gen.Generate();
|
|
if (FLAGS_num_column_families > 1) {
|
|
s = db_with_cfh->db->Merge(write_options_,
|
|
db_with_cfh->GetCfh(key_rand), key,
|
|
val);
|
|
} else {
|
|
s = db_with_cfh->db->Merge(write_options_,
|
|
db_with_cfh->db->DefaultColumnFamily(), key,
|
|
val);
|
|
}
|
|
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "merge error: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
bytes += key.size() + val.size();
|
|
thread->stats.FinishedOps(nullptr, db_with_cfh->db, 1, kMerge);
|
|
}
|
|
|
|
// Print some statistics
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "( updates:%" PRIu64 ")", readwrites_);
|
|
thread->stats.AddBytes(bytes);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
// Read and merge random keys. The amount of reads and merges are controlled
|
|
// by adjusting FLAGS_num and FLAGS_mergereadpercent. The number of distinct
|
|
// keys (and thus also the number of reads and merges on the same key) can be
|
|
// adjusted with FLAGS_merge_keys.
|
|
//
|
|
// As with MergeRandom, the merge operator to use should be defined by
|
|
// FLAGS_merge_operator.
|
|
void ReadRandomMergeRandom(ThreadState* thread) {
|
|
ReadOptions options(FLAGS_verify_checksum, true);
|
|
RandomGenerator gen;
|
|
std::string value;
|
|
int64_t num_hits = 0;
|
|
int64_t num_gets = 0;
|
|
int64_t num_merges = 0;
|
|
size_t max_length = 0;
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
// the number of iterations is the larger of read_ or write_
|
|
Duration duration(FLAGS_duration, readwrites_);
|
|
while (!duration.Done(1)) {
|
|
DB* db = SelectDB(thread);
|
|
GenerateKeyFromInt(thread->rand.Next() % merge_keys_, merge_keys_, &key);
|
|
|
|
bool do_merge = int(thread->rand.Next() % 100) < FLAGS_mergereadpercent;
|
|
|
|
if (do_merge) {
|
|
Status s = db->Merge(write_options_, key, gen.Generate());
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "merge error: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
num_merges++;
|
|
thread->stats.FinishedOps(nullptr, db, 1, kMerge);
|
|
} else {
|
|
Status s = db->Get(options, key, &value);
|
|
if (value.length() > max_length)
|
|
max_length = value.length();
|
|
|
|
if (!s.ok() && !s.IsNotFound()) {
|
|
fprintf(stderr, "get error: %s\n", s.ToString().c_str());
|
|
// we continue after error rather than exiting so that we can
|
|
// find more errors if any
|
|
} else if (!s.IsNotFound()) {
|
|
num_hits++;
|
|
}
|
|
num_gets++;
|
|
thread->stats.FinishedOps(nullptr, db, 1, kRead);
|
|
}
|
|
}
|
|
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg),
|
|
"(reads:%" PRIu64 " merges:%" PRIu64 " total:%" PRIu64
|
|
" hits:%" PRIu64 " maxlength:%" ROCKSDB_PRIszt ")",
|
|
num_gets, num_merges, readwrites_, num_hits, max_length);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
void WriteSeqSeekSeq(ThreadState* thread) {
|
|
writes_ = FLAGS_num;
|
|
DoWrite(thread, SEQUENTIAL);
|
|
// exclude writes from the ops/sec calculation
|
|
thread->stats.Start(thread->tid);
|
|
|
|
DB* db = SelectDB(thread);
|
|
ReadOptions read_opts(FLAGS_verify_checksum, true);
|
|
std::unique_ptr<char[]> ts_guard;
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
|
|
read_opts.timestamp = &ts;
|
|
}
|
|
std::unique_ptr<Iterator> iter(db->NewIterator(read_opts));
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
for (int64_t i = 0; i < FLAGS_num; ++i) {
|
|
GenerateKeyFromInt(i, FLAGS_num, &key);
|
|
iter->Seek(key);
|
|
assert(iter->Valid() && iter->key() == key);
|
|
thread->stats.FinishedOps(nullptr, db, 1, kSeek);
|
|
|
|
for (int j = 0; j < FLAGS_seek_nexts && i + 1 < FLAGS_num; ++j) {
|
|
if (!FLAGS_reverse_iterator) {
|
|
iter->Next();
|
|
} else {
|
|
iter->Prev();
|
|
}
|
|
GenerateKeyFromInt(++i, FLAGS_num, &key);
|
|
assert(iter->Valid() && iter->key() == key);
|
|
thread->stats.FinishedOps(nullptr, db, 1, kSeek);
|
|
}
|
|
|
|
iter->Seek(key);
|
|
assert(iter->Valid() && iter->key() == key);
|
|
thread->stats.FinishedOps(nullptr, db, 1, kSeek);
|
|
}
|
|
}
|
|
|
|
bool binary_search(std::vector<int>& data, int start, int end, int key) {
|
|
if (data.empty()) return false;
|
|
if (start > end) return false;
|
|
int mid = start + (end - start) / 2;
|
|
if (mid > static_cast<int>(data.size()) - 1) return false;
|
|
if (data[mid] == key) {
|
|
return true;
|
|
} else if (data[mid] > key) {
|
|
return binary_search(data, start, mid - 1, key);
|
|
} else {
|
|
return binary_search(data, mid + 1, end, key);
|
|
}
|
|
}
|
|
|
|
// Does a bunch of merge operations for a key(key1) where the merge operand
|
|
// is a sorted list. Next performance comparison is done between doing a Get
|
|
// for key1 followed by searching for another key(key2) in the large sorted
|
|
// list vs calling GetMergeOperands for key1 and then searching for the key2
|
|
// in all the sorted sub-lists. Later case is expected to be a lot faster.
|
|
void GetMergeOperands(ThreadState* thread) {
|
|
DB* db = SelectDB(thread);
|
|
const int kTotalValues = 100000;
|
|
const int kListSize = 100;
|
|
std::string key = "my_key";
|
|
std::string value;
|
|
|
|
for (int i = 1; i < kTotalValues; i++) {
|
|
if (i % kListSize == 0) {
|
|
// Remove trailing ','
|
|
value.pop_back();
|
|
db->Merge(WriteOptions(), key, value);
|
|
value.clear();
|
|
} else {
|
|
value.append(std::to_string(i)).append(",");
|
|
}
|
|
}
|
|
|
|
SortList s;
|
|
std::vector<int> data;
|
|
// This value can be experimented with and it will demonstrate the
|
|
// perf difference between doing a Get and searching for lookup_key in the
|
|
// resultant large sorted list vs doing GetMergeOperands and searching
|
|
// for lookup_key within this resultant sorted sub-lists.
|
|
int lookup_key = 1;
|
|
|
|
// Get API call
|
|
std::cout << "--- Get API call --- \n";
|
|
PinnableSlice p_slice;
|
|
uint64_t st = FLAGS_env->NowNanos();
|
|
db->Get(ReadOptions(), db->DefaultColumnFamily(), key, &p_slice);
|
|
s.MakeVector(data, p_slice);
|
|
bool found =
|
|
binary_search(data, 0, static_cast<int>(data.size() - 1), lookup_key);
|
|
std::cout << "Found key? " << std::to_string(found) << "\n";
|
|
uint64_t sp = FLAGS_env->NowNanos();
|
|
std::cout << "Get: " << (sp - st) / 1000000000.0 << " seconds\n";
|
|
std::string* dat_ = p_slice.GetSelf();
|
|
std::cout << "Sample data from Get API call: " << dat_->substr(0, 10)
|
|
<< "\n";
|
|
data.clear();
|
|
|
|
// GetMergeOperands API call
|
|
std::cout << "--- GetMergeOperands API --- \n";
|
|
std::vector<PinnableSlice> a_slice((kTotalValues / kListSize) + 1);
|
|
st = FLAGS_env->NowNanos();
|
|
int number_of_operands = 0;
|
|
GetMergeOperandsOptions get_merge_operands_options;
|
|
get_merge_operands_options.expected_max_number_of_operands =
|
|
(kTotalValues / 100) + 1;
|
|
db->GetMergeOperands(ReadOptions(), db->DefaultColumnFamily(), key,
|
|
a_slice.data(), &get_merge_operands_options,
|
|
&number_of_operands);
|
|
for (PinnableSlice& psl : a_slice) {
|
|
s.MakeVector(data, psl);
|
|
found =
|
|
binary_search(data, 0, static_cast<int>(data.size() - 1), lookup_key);
|
|
data.clear();
|
|
if (found) break;
|
|
}
|
|
std::cout << "Found key? " << std::to_string(found) << "\n";
|
|
sp = FLAGS_env->NowNanos();
|
|
std::cout << "Get Merge operands: " << (sp - st) / 1000000000.0
|
|
<< " seconds \n";
|
|
int to_print = 0;
|
|
std::cout << "Sample data from GetMergeOperands API call: ";
|
|
for (PinnableSlice& psl : a_slice) {
|
|
std::cout << "List: " << to_print << " : " << *psl.GetSelf() << "\n";
|
|
if (to_print++ > 2) break;
|
|
}
|
|
}
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
// This benchmark stress tests Transactions. For a given --duration (or
|
|
// total number of --writes, a Transaction will perform a read-modify-write
|
|
// to increment the value of a key in each of N(--transaction-sets) sets of
|
|
// keys (where each set has --num keys). If --threads is set, this will be
|
|
// done in parallel.
|
|
//
|
|
// To test transactions, use --transaction_db=true. Not setting this
|
|
// parameter
|
|
// will run the same benchmark without transactions.
|
|
//
|
|
// RandomTransactionVerify() will then validate the correctness of the results
|
|
// by checking if the sum of all keys in each set is the same.
|
|
void RandomTransaction(ThreadState* thread) {
|
|
ReadOptions options(FLAGS_verify_checksum, true);
|
|
Duration duration(FLAGS_duration, readwrites_);
|
|
ReadOptions read_options(FLAGS_verify_checksum, true);
|
|
uint16_t num_prefix_ranges = static_cast<uint16_t>(FLAGS_transaction_sets);
|
|
uint64_t transactions_done = 0;
|
|
|
|
if (num_prefix_ranges == 0 || num_prefix_ranges > 9999) {
|
|
fprintf(stderr, "invalid value for transaction_sets\n");
|
|
abort();
|
|
}
|
|
|
|
TransactionOptions txn_options;
|
|
txn_options.lock_timeout = FLAGS_transaction_lock_timeout;
|
|
txn_options.set_snapshot = FLAGS_transaction_set_snapshot;
|
|
|
|
RandomTransactionInserter inserter(&thread->rand, write_options_,
|
|
read_options, FLAGS_num,
|
|
num_prefix_ranges);
|
|
|
|
if (FLAGS_num_multi_db > 1) {
|
|
fprintf(stderr,
|
|
"Cannot run RandomTransaction benchmark with "
|
|
"FLAGS_multi_db > 1.");
|
|
abort();
|
|
}
|
|
|
|
while (!duration.Done(1)) {
|
|
bool success;
|
|
|
|
// RandomTransactionInserter will attempt to insert a key for each
|
|
// # of FLAGS_transaction_sets
|
|
if (FLAGS_optimistic_transaction_db) {
|
|
success = inserter.OptimisticTransactionDBInsert(db_.opt_txn_db);
|
|
} else if (FLAGS_transaction_db) {
|
|
TransactionDB* txn_db = reinterpret_cast<TransactionDB*>(db_.db);
|
|
success = inserter.TransactionDBInsert(txn_db, txn_options);
|
|
} else {
|
|
success = inserter.DBInsert(db_.db);
|
|
}
|
|
|
|
if (!success) {
|
|
fprintf(stderr, "Unexpected error: %s\n",
|
|
inserter.GetLastStatus().ToString().c_str());
|
|
abort();
|
|
}
|
|
|
|
thread->stats.FinishedOps(nullptr, db_.db, 1, kOthers);
|
|
transactions_done++;
|
|
}
|
|
|
|
char msg[100];
|
|
if (FLAGS_optimistic_transaction_db || FLAGS_transaction_db) {
|
|
snprintf(msg, sizeof(msg),
|
|
"( transactions:%" PRIu64 " aborts:%" PRIu64 ")",
|
|
transactions_done, inserter.GetFailureCount());
|
|
} else {
|
|
snprintf(msg, sizeof(msg), "( batches:%" PRIu64 " )", transactions_done);
|
|
}
|
|
thread->stats.AddMessage(msg);
|
|
|
|
if (FLAGS_perf_level > ROCKSDB_NAMESPACE::PerfLevel::kDisable) {
|
|
thread->stats.AddMessage(std::string("PERF_CONTEXT:\n") +
|
|
get_perf_context()->ToString());
|
|
}
|
|
thread->stats.AddBytes(static_cast<int64_t>(inserter.GetBytesInserted()));
|
|
}
|
|
|
|
// Verifies consistency of data after RandomTransaction() has been run.
|
|
// Since each iteration of RandomTransaction() incremented a key in each set
|
|
// by the same value, the sum of the keys in each set should be the same.
|
|
void RandomTransactionVerify() {
|
|
if (!FLAGS_transaction_db && !FLAGS_optimistic_transaction_db) {
|
|
// transactions not used, nothing to verify.
|
|
return;
|
|
}
|
|
|
|
Status s =
|
|
RandomTransactionInserter::Verify(db_.db,
|
|
static_cast<uint16_t>(FLAGS_transaction_sets));
|
|
|
|
if (s.ok()) {
|
|
fprintf(stdout, "RandomTransactionVerify Success.\n");
|
|
} else {
|
|
fprintf(stdout, "RandomTransactionVerify FAILED!!\n");
|
|
}
|
|
}
|
|
#endif // ROCKSDB_LITE
|
|
|
|
// Writes and deletes random keys without overwriting keys.
|
|
//
|
|
// This benchmark is intended to partially replicate the behavior of MyRocks
|
|
// secondary indices: All data is stored in keys and updates happen by
|
|
// deleting the old version of the key and inserting the new version.
|
|
void RandomReplaceKeys(ThreadState* thread) {
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
std::unique_ptr<char[]> ts_guard;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts_guard.reset(new char[user_timestamp_size_]);
|
|
}
|
|
std::vector<uint32_t> counters(FLAGS_numdistinct, 0);
|
|
size_t max_counter = 50;
|
|
RandomGenerator gen;
|
|
|
|
Status s;
|
|
DB* db = SelectDB(thread);
|
|
for (int64_t i = 0; i < FLAGS_numdistinct; i++) {
|
|
GenerateKeyFromInt(i * max_counter, FLAGS_num, &key);
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
write_options_.timestamp = &ts;
|
|
}
|
|
s = db->Put(write_options_, key, gen.Generate());
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Operation failed: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
db->GetSnapshot();
|
|
|
|
std::default_random_engine generator;
|
|
std::normal_distribution<double> distribution(FLAGS_numdistinct / 2.0,
|
|
FLAGS_stddev);
|
|
Duration duration(FLAGS_duration, FLAGS_num);
|
|
while (!duration.Done(1)) {
|
|
int64_t rnd_id = static_cast<int64_t>(distribution(generator));
|
|
int64_t key_id = std::max(std::min(FLAGS_numdistinct - 1, rnd_id),
|
|
static_cast<int64_t>(0));
|
|
GenerateKeyFromInt(key_id * max_counter + counters[key_id], FLAGS_num,
|
|
&key);
|
|
Slice ts;
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
write_options_.timestamp = &ts;
|
|
}
|
|
s = FLAGS_use_single_deletes ? db->SingleDelete(write_options_, key)
|
|
: db->Delete(write_options_, key);
|
|
if (s.ok()) {
|
|
counters[key_id] = (counters[key_id] + 1) % max_counter;
|
|
GenerateKeyFromInt(key_id * max_counter + counters[key_id], FLAGS_num,
|
|
&key);
|
|
if (user_timestamp_size_ > 0) {
|
|
ts = mock_app_clock_->Allocate(ts_guard.get());
|
|
write_options_.timestamp = &ts;
|
|
}
|
|
s = db->Put(write_options_, key, Slice());
|
|
}
|
|
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Operation failed: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
|
|
thread->stats.FinishedOps(nullptr, db, 1, kOthers);
|
|
}
|
|
|
|
char msg[200];
|
|
snprintf(msg, sizeof(msg),
|
|
"use single deletes: %d, "
|
|
"standard deviation: %lf\n",
|
|
FLAGS_use_single_deletes, FLAGS_stddev);
|
|
thread->stats.AddMessage(msg);
|
|
}
|
|
|
|
void TimeSeriesReadOrDelete(ThreadState* thread, bool do_deletion) {
|
|
ReadOptions options(FLAGS_verify_checksum, true);
|
|
int64_t read = 0;
|
|
int64_t found = 0;
|
|
int64_t bytes = 0;
|
|
|
|
Iterator* iter = nullptr;
|
|
// Only work on single database
|
|
assert(db_.db != nullptr);
|
|
iter = db_.db->NewIterator(options);
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
|
|
char value_buffer[256];
|
|
while (true) {
|
|
{
|
|
MutexLock l(&thread->shared->mu);
|
|
if (thread->shared->num_done >= 1) {
|
|
// Write thread have finished
|
|
break;
|
|
}
|
|
}
|
|
if (!FLAGS_use_tailing_iterator) {
|
|
delete iter;
|
|
iter = db_.db->NewIterator(options);
|
|
}
|
|
// Pick a Iterator to use
|
|
|
|
int64_t key_id = thread->rand.Next() % FLAGS_key_id_range;
|
|
GenerateKeyFromInt(key_id, FLAGS_num, &key);
|
|
// Reset last 8 bytes to 0
|
|
char* start = const_cast<char*>(key.data());
|
|
start += key.size() - 8;
|
|
memset(start, 0, 8);
|
|
++read;
|
|
|
|
bool key_found = false;
|
|
// Seek the prefix
|
|
for (iter->Seek(key); iter->Valid() && iter->key().starts_with(key);
|
|
iter->Next()) {
|
|
key_found = true;
|
|
// Copy out iterator's value to make sure we read them.
|
|
if (do_deletion) {
|
|
bytes += iter->key().size();
|
|
if (KeyExpired(timestamp_emulator_.get(), iter->key())) {
|
|
thread->stats.FinishedOps(&db_, db_.db, 1, kDelete);
|
|
db_.db->Delete(write_options_, iter->key());
|
|
} else {
|
|
break;
|
|
}
|
|
} else {
|
|
bytes += iter->key().size() + iter->value().size();
|
|
thread->stats.FinishedOps(&db_, db_.db, 1, kRead);
|
|
Slice value = iter->value();
|
|
memcpy(value_buffer, value.data(),
|
|
std::min(value.size(), sizeof(value_buffer)));
|
|
|
|
assert(iter->status().ok());
|
|
}
|
|
}
|
|
found += key_found;
|
|
|
|
if (thread->shared->read_rate_limiter.get() != nullptr) {
|
|
thread->shared->read_rate_limiter->Request(
|
|
1, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
|
|
}
|
|
}
|
|
delete iter;
|
|
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)", found,
|
|
read);
|
|
thread->stats.AddBytes(bytes);
|
|
thread->stats.AddMessage(msg);
|
|
if (FLAGS_perf_level > ROCKSDB_NAMESPACE::PerfLevel::kDisable) {
|
|
thread->stats.AddMessage(std::string("PERF_CONTEXT:\n") +
|
|
get_perf_context()->ToString());
|
|
}
|
|
}
|
|
|
|
void TimeSeriesWrite(ThreadState* thread) {
|
|
// Special thread that keeps writing until other threads are done.
|
|
RandomGenerator gen;
|
|
int64_t bytes = 0;
|
|
|
|
// Don't merge stats from this thread with the readers.
|
|
thread->stats.SetExcludeFromMerge();
|
|
|
|
std::unique_ptr<RateLimiter> write_rate_limiter;
|
|
if (FLAGS_benchmark_write_rate_limit > 0) {
|
|
write_rate_limiter.reset(
|
|
NewGenericRateLimiter(FLAGS_benchmark_write_rate_limit));
|
|
}
|
|
|
|
std::unique_ptr<const char[]> key_guard;
|
|
Slice key = AllocateKey(&key_guard);
|
|
|
|
Duration duration(FLAGS_duration, writes_);
|
|
while (!duration.Done(1)) {
|
|
DB* db = SelectDB(thread);
|
|
|
|
uint64_t key_id = thread->rand.Next() % FLAGS_key_id_range;
|
|
// Write key id
|
|
GenerateKeyFromInt(key_id, FLAGS_num, &key);
|
|
// Write timestamp
|
|
|
|
char* start = const_cast<char*>(key.data());
|
|
char* pos = start + 8;
|
|
int bytes_to_fill =
|
|
std::min(key_size_ - static_cast<int>(pos - start), 8);
|
|
uint64_t timestamp_value = timestamp_emulator_->Get();
|
|
if (port::kLittleEndian) {
|
|
for (int i = 0; i < bytes_to_fill; ++i) {
|
|
pos[i] = (timestamp_value >> ((bytes_to_fill - i - 1) << 3)) & 0xFF;
|
|
}
|
|
} else {
|
|
memcpy(pos, static_cast<void*>(×tamp_value), bytes_to_fill);
|
|
}
|
|
|
|
timestamp_emulator_->Inc();
|
|
|
|
Status s;
|
|
Slice val = gen.Generate();
|
|
s = db->Put(write_options_, key, val);
|
|
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
|
|
ErrorExit();
|
|
}
|
|
bytes = key.size() + val.size();
|
|
thread->stats.FinishedOps(&db_, db_.db, 1, kWrite);
|
|
thread->stats.AddBytes(bytes);
|
|
|
|
if (FLAGS_benchmark_write_rate_limit > 0) {
|
|
write_rate_limiter->Request(
|
|
key.size() + val.size(), Env::IO_HIGH,
|
|
nullptr /* stats */, RateLimiter::OpType::kWrite);
|
|
}
|
|
}
|
|
}
|
|
|
|
void TimeSeries(ThreadState* thread) {
|
|
if (thread->tid > 0) {
|
|
bool do_deletion = FLAGS_expire_style == "delete" &&
|
|
thread->tid <= FLAGS_num_deletion_threads;
|
|
TimeSeriesReadOrDelete(thread, do_deletion);
|
|
} else {
|
|
TimeSeriesWrite(thread);
|
|
thread->stats.Stop();
|
|
thread->stats.Report("timeseries write");
|
|
}
|
|
}
|
|
|
|
void Compact(ThreadState* thread) {
|
|
DB* db = SelectDB(thread);
|
|
CompactRangeOptions cro;
|
|
cro.bottommost_level_compaction =
|
|
BottommostLevelCompaction::kForceOptimized;
|
|
db->CompactRange(cro, nullptr, nullptr);
|
|
}
|
|
|
|
void CompactAll() {
|
|
if (db_.db != nullptr) {
|
|
db_.db->CompactRange(CompactRangeOptions(), nullptr, nullptr);
|
|
}
|
|
for (const auto& db_with_cfh : multi_dbs_) {
|
|
db_with_cfh.db->CompactRange(CompactRangeOptions(), nullptr, nullptr);
|
|
}
|
|
}
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
void WaitForCompactionHelper(DBWithColumnFamilies& db) {
|
|
// This is an imperfect way of waiting for compaction. The loop and sleep
|
|
// is done because a thread that finishes a compaction job should get a
|
|
// chance to pickup a new compaction job.
|
|
|
|
std::vector<std::string> keys = {DB::Properties::kMemTableFlushPending,
|
|
DB::Properties::kNumRunningFlushes,
|
|
DB::Properties::kCompactionPending,
|
|
DB::Properties::kNumRunningCompactions};
|
|
|
|
fprintf(stdout, "waitforcompaction(%s): started\n",
|
|
db.db->GetName().c_str());
|
|
|
|
while (true) {
|
|
bool retry = false;
|
|
|
|
for (const auto& k : keys) {
|
|
uint64_t v;
|
|
if (!db.db->GetIntProperty(k, &v)) {
|
|
fprintf(stderr, "waitforcompaction(%s): GetIntProperty(%s) failed\n",
|
|
db.db->GetName().c_str(), k.c_str());
|
|
exit(1);
|
|
} else if (v > 0) {
|
|
fprintf(stdout,
|
|
"waitforcompaction(%s): active(%s). Sleep 10 seconds\n",
|
|
db.db->GetName().c_str(), k.c_str());
|
|
FLAGS_env->SleepForMicroseconds(10 * 1000000);
|
|
retry = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!retry) {
|
|
fprintf(stdout, "waitforcompaction(%s): finished\n",
|
|
db.db->GetName().c_str());
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void WaitForCompaction() {
|
|
// Give background threads a chance to wake
|
|
FLAGS_env->SleepForMicroseconds(5 * 1000000);
|
|
|
|
// I am skeptical that this check race free. I hope that checking twice
|
|
// reduces the chance.
|
|
if (db_.db != nullptr) {
|
|
WaitForCompactionHelper(db_);
|
|
WaitForCompactionHelper(db_);
|
|
} else {
|
|
for (auto& db_with_cfh : multi_dbs_) {
|
|
WaitForCompactionHelper(db_with_cfh);
|
|
WaitForCompactionHelper(db_with_cfh);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool CompactLevelHelper(DBWithColumnFamilies& db_with_cfh, int from_level) {
|
|
std::vector<LiveFileMetaData> files;
|
|
db_with_cfh.db->GetLiveFilesMetaData(&files);
|
|
|
|
assert(from_level == 0 || from_level == 1);
|
|
|
|
int real_from_level = from_level;
|
|
if (real_from_level > 0) {
|
|
// With dynamic leveled compaction the first level with data beyond L0
|
|
// might not be L1.
|
|
real_from_level = std::numeric_limits<int>::max();
|
|
|
|
for (auto& f : files) {
|
|
if (f.level > 0 && f.level < real_from_level) real_from_level = f.level;
|
|
}
|
|
|
|
if (real_from_level == std::numeric_limits<int>::max()) {
|
|
fprintf(stdout, "compact%d found 0 files to compact\n", from_level);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// The goal is to compact from from_level to the level that follows it,
|
|
// and with dynamic leveled compaction the next level might not be
|
|
// real_from_level+1
|
|
int next_level = std::numeric_limits<int>::max();
|
|
|
|
std::vector<std::string> files_to_compact;
|
|
for (auto& f : files) {
|
|
if (f.level == real_from_level)
|
|
files_to_compact.push_back(f.name);
|
|
else if (f.level > real_from_level && f.level < next_level)
|
|
next_level = f.level;
|
|
}
|
|
|
|
if (files_to_compact.empty()) {
|
|
fprintf(stdout, "compact%d found 0 files to compact\n", from_level);
|
|
return true;
|
|
} else if (next_level == std::numeric_limits<int>::max()) {
|
|
// There is no data beyond real_from_level. So we are done.
|
|
fprintf(stdout, "compact%d found no data beyond L%d\n", from_level,
|
|
real_from_level);
|
|
return true;
|
|
}
|
|
|
|
fprintf(stdout, "compact%d found %d files to compact from L%d to L%d\n",
|
|
from_level, static_cast<int>(files_to_compact.size()),
|
|
real_from_level, next_level);
|
|
|
|
ROCKSDB_NAMESPACE::CompactionOptions options;
|
|
// Lets RocksDB use the configured compression for this level
|
|
options.compression = ROCKSDB_NAMESPACE::kDisableCompressionOption;
|
|
|
|
ROCKSDB_NAMESPACE::ColumnFamilyDescriptor cfDesc;
|
|
db_with_cfh.db->DefaultColumnFamily()->GetDescriptor(&cfDesc);
|
|
options.output_file_size_limit = cfDesc.options.target_file_size_base;
|
|
|
|
Status status =
|
|
db_with_cfh.db->CompactFiles(options, files_to_compact, next_level);
|
|
if (!status.ok()) {
|
|
// This can fail for valid reasons including the operation was aborted
|
|
// or a filename is invalid because background compaction removed it.
|
|
// Having read the current cases for which an error is raised I prefer
|
|
// not to figure out whether an exception should be thrown here.
|
|
fprintf(stderr, "compact%d CompactFiles failed: %s\n", from_level,
|
|
status.ToString().c_str());
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void CompactLevel(int from_level) {
|
|
if (db_.db != nullptr) {
|
|
while (!CompactLevelHelper(db_, from_level)) WaitForCompaction();
|
|
}
|
|
for (auto& db_with_cfh : multi_dbs_) {
|
|
while (!CompactLevelHelper(db_with_cfh, from_level)) WaitForCompaction();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void Flush() {
|
|
FlushOptions flush_opt;
|
|
flush_opt.wait = true;
|
|
|
|
if (db_.db != nullptr) {
|
|
Status s = db_.db->Flush(flush_opt, db_.cfh);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Flush failed: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
} else {
|
|
for (const auto& db_with_cfh : multi_dbs_) {
|
|
Status s = db_with_cfh.db->Flush(flush_opt, db_with_cfh.cfh);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Flush failed: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
fprintf(stdout, "flush memtable\n");
|
|
}
|
|
|
|
void ResetStats() {
|
|
if (db_.db != nullptr) {
|
|
db_.db->ResetStats();
|
|
}
|
|
for (const auto& db_with_cfh : multi_dbs_) {
|
|
db_with_cfh.db->ResetStats();
|
|
}
|
|
}
|
|
|
|
void PrintStatsHistory() {
|
|
if (db_.db != nullptr) {
|
|
PrintStatsHistoryImpl(db_.db, false);
|
|
}
|
|
for (const auto& db_with_cfh : multi_dbs_) {
|
|
PrintStatsHistoryImpl(db_with_cfh.db, true);
|
|
}
|
|
}
|
|
|
|
void PrintStatsHistoryImpl(DB* db, bool print_header) {
|
|
if (print_header) {
|
|
fprintf(stdout, "\n==== DB: %s ===\n", db->GetName().c_str());
|
|
}
|
|
|
|
std::unique_ptr<StatsHistoryIterator> shi;
|
|
Status s = db->GetStatsHistory(0, port::kMaxUint64, &shi);
|
|
if (!s.ok()) {
|
|
fprintf(stdout, "%s\n", s.ToString().c_str());
|
|
return;
|
|
}
|
|
assert(shi);
|
|
while (shi->Valid()) {
|
|
uint64_t stats_time = shi->GetStatsTime();
|
|
fprintf(stdout, "------ %s ------\n",
|
|
TimeToHumanString(static_cast<int>(stats_time)).c_str());
|
|
for (auto& entry : shi->GetStatsMap()) {
|
|
fprintf(stdout, " %" PRIu64 " %s %" PRIu64 "\n", stats_time,
|
|
entry.first.c_str(), entry.second);
|
|
}
|
|
shi->Next();
|
|
}
|
|
}
|
|
|
|
void PrintStats(const char* key) {
|
|
if (db_.db != nullptr) {
|
|
PrintStats(db_.db, key, false);
|
|
}
|
|
for (const auto& db_with_cfh : multi_dbs_) {
|
|
PrintStats(db_with_cfh.db, key, true);
|
|
}
|
|
}
|
|
|
|
void PrintStats(DB* db, const char* key, bool print_header = false) {
|
|
if (print_header) {
|
|
fprintf(stdout, "\n==== DB: %s ===\n", db->GetName().c_str());
|
|
}
|
|
std::string stats;
|
|
if (!db->GetProperty(key, &stats)) {
|
|
stats = "(failed)";
|
|
}
|
|
fprintf(stdout, "\n%s\n", stats.c_str());
|
|
}
|
|
|
|
void PrintStats(const std::vector<std::string>& keys) {
|
|
if (db_.db != nullptr) {
|
|
PrintStats(db_.db, keys);
|
|
}
|
|
for (const auto& db_with_cfh : multi_dbs_) {
|
|
PrintStats(db_with_cfh.db, keys, true);
|
|
}
|
|
}
|
|
|
|
void PrintStats(DB* db, const std::vector<std::string>& keys,
|
|
bool print_header = false) {
|
|
if (print_header) {
|
|
fprintf(stdout, "\n==== DB: %s ===\n", db->GetName().c_str());
|
|
}
|
|
|
|
for (const auto& key : keys) {
|
|
std::string stats;
|
|
if (!db->GetProperty(key, &stats)) {
|
|
stats = "(failed)";
|
|
}
|
|
fprintf(stdout, "%s: %s\n", key.c_str(), stats.c_str());
|
|
}
|
|
}
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
|
|
void Replay(ThreadState* thread) {
|
|
if (db_.db != nullptr) {
|
|
Replay(thread, &db_);
|
|
}
|
|
}
|
|
|
|
void Replay(ThreadState* /*thread*/, DBWithColumnFamilies* db_with_cfh) {
|
|
Status s;
|
|
std::unique_ptr<TraceReader> trace_reader;
|
|
s = NewFileTraceReader(FLAGS_env, EnvOptions(), FLAGS_trace_file,
|
|
&trace_reader);
|
|
if (!s.ok()) {
|
|
fprintf(
|
|
stderr,
|
|
"Encountered an error creating a TraceReader from the trace file. "
|
|
"Error: %s\n",
|
|
s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
std::unique_ptr<Replayer> replayer;
|
|
s = db_with_cfh->db->NewDefaultReplayer(db_with_cfh->cfh,
|
|
std::move(trace_reader), &replayer);
|
|
if (!s.ok()) {
|
|
fprintf(stderr,
|
|
"Encountered an error creating a default Replayer. "
|
|
"Error: %s\n",
|
|
s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
s = replayer->Prepare();
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Prepare for replay failed. Error: %s\n",
|
|
s.ToString().c_str());
|
|
}
|
|
s = replayer->Replay(
|
|
ReplayOptions(static_cast<uint32_t>(FLAGS_trace_replay_threads),
|
|
FLAGS_trace_replay_fast_forward),
|
|
nullptr);
|
|
replayer.reset();
|
|
if (s.ok()) {
|
|
fprintf(stdout, "Replay completed from trace_file: %s\n",
|
|
FLAGS_trace_file.c_str());
|
|
} else {
|
|
fprintf(stderr, "Replay failed. Error: %s\n", s.ToString().c_str());
|
|
}
|
|
}
|
|
|
|
#endif // ROCKSDB_LITE
|
|
};
|
|
|
|
int db_bench_tool(int argc, char** argv) {
|
|
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
|
|
ConfigOptions config_options;
|
|
static bool initialized = false;
|
|
if (!initialized) {
|
|
SetUsageMessage(std::string("\nUSAGE:\n") + std::string(argv[0]) +
|
|
" [OPTIONS]...");
|
|
initialized = true;
|
|
}
|
|
ParseCommandLineFlags(&argc, &argv, true);
|
|
FLAGS_compaction_style_e =
|
|
(ROCKSDB_NAMESPACE::CompactionStyle)FLAGS_compaction_style;
|
|
#ifndef ROCKSDB_LITE
|
|
if (FLAGS_statistics && !FLAGS_statistics_string.empty()) {
|
|
fprintf(stderr,
|
|
"Cannot provide both --statistics and --statistics_string.\n");
|
|
exit(1);
|
|
}
|
|
if (!FLAGS_statistics_string.empty()) {
|
|
Status s = Statistics::CreateFromString(config_options,
|
|
FLAGS_statistics_string, &dbstats);
|
|
if (dbstats == nullptr) {
|
|
fprintf(stderr,
|
|
"No Statistics registered matching string: %s status=%s\n",
|
|
FLAGS_statistics_string.c_str(), s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
}
|
|
#endif // ROCKSDB_LITE
|
|
if (FLAGS_statistics) {
|
|
dbstats = ROCKSDB_NAMESPACE::CreateDBStatistics();
|
|
}
|
|
if (dbstats) {
|
|
dbstats->set_stats_level(static_cast<StatsLevel>(FLAGS_stats_level));
|
|
}
|
|
FLAGS_compaction_pri_e =
|
|
(ROCKSDB_NAMESPACE::CompactionPri)FLAGS_compaction_pri;
|
|
|
|
std::vector<std::string> fanout = ROCKSDB_NAMESPACE::StringSplit(
|
|
FLAGS_max_bytes_for_level_multiplier_additional, ',');
|
|
for (size_t j = 0; j < fanout.size(); j++) {
|
|
FLAGS_max_bytes_for_level_multiplier_additional_v.push_back(
|
|
#ifndef CYGWIN
|
|
std::stoi(fanout[j]));
|
|
#else
|
|
stoi(fanout[j]));
|
|
#endif
|
|
}
|
|
|
|
FLAGS_compression_type_e =
|
|
StringToCompressionType(FLAGS_compression_type.c_str());
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
// Stacked BlobDB
|
|
FLAGS_blob_db_compression_type_e =
|
|
StringToCompressionType(FLAGS_blob_db_compression_type.c_str());
|
|
|
|
int env_opts =
|
|
!FLAGS_hdfs.empty() + !FLAGS_env_uri.empty() + !FLAGS_fs_uri.empty();
|
|
if (env_opts > 1) {
|
|
fprintf(stderr,
|
|
"Error: --hdfs, --env_uri and --fs_uri are mutually exclusive\n");
|
|
exit(1);
|
|
}
|
|
|
|
if (env_opts == 1) {
|
|
Status s = Env::CreateFromUri(config_options, FLAGS_env_uri, FLAGS_fs_uri,
|
|
&FLAGS_env, &env_guard);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Failed creating env: %s\n", s.ToString().c_str());
|
|
exit(1);
|
|
}
|
|
} else if (FLAGS_simulate_hybrid_fs_file != "") {
|
|
//**TODO: Make the simulate fs something that can be loaded
|
|
// from the ObjectRegistry...
|
|
static std::shared_ptr<ROCKSDB_NAMESPACE::Env> composite_env =
|
|
NewCompositeEnv(std::make_shared<SimulatedHybridFileSystem>(
|
|
FileSystem::Default(), FLAGS_simulate_hybrid_fs_file));
|
|
FLAGS_env = composite_env.get();
|
|
}
|
|
#endif // ROCKSDB_LITE
|
|
if (FLAGS_use_existing_keys && !FLAGS_use_existing_db) {
|
|
fprintf(stderr,
|
|
"`-use_existing_db` must be true for `-use_existing_keys` to be "
|
|
"settable\n");
|
|
exit(1);
|
|
}
|
|
|
|
if (!FLAGS_hdfs.empty()) {
|
|
FLAGS_env = new ROCKSDB_NAMESPACE::HdfsEnv(FLAGS_hdfs);
|
|
}
|
|
|
|
if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "NONE"))
|
|
FLAGS_compaction_fadvice_e = ROCKSDB_NAMESPACE::Options::NONE;
|
|
else if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "NORMAL"))
|
|
FLAGS_compaction_fadvice_e = ROCKSDB_NAMESPACE::Options::NORMAL;
|
|
else if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "SEQUENTIAL"))
|
|
FLAGS_compaction_fadvice_e = ROCKSDB_NAMESPACE::Options::SEQUENTIAL;
|
|
else if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "WILLNEED"))
|
|
FLAGS_compaction_fadvice_e = ROCKSDB_NAMESPACE::Options::WILLNEED;
|
|
else {
|
|
fprintf(stdout, "Unknown compaction fadvice:%s\n",
|
|
FLAGS_compaction_fadvice.c_str());
|
|
}
|
|
|
|
FLAGS_value_size_distribution_type_e =
|
|
StringToDistributionType(FLAGS_value_size_distribution_type.c_str());
|
|
|
|
// Note options sanitization may increase thread pool sizes according to
|
|
// max_background_flushes/max_background_compactions/max_background_jobs
|
|
FLAGS_env->SetBackgroundThreads(FLAGS_num_high_pri_threads,
|
|
ROCKSDB_NAMESPACE::Env::Priority::HIGH);
|
|
FLAGS_env->SetBackgroundThreads(FLAGS_num_bottom_pri_threads,
|
|
ROCKSDB_NAMESPACE::Env::Priority::BOTTOM);
|
|
FLAGS_env->SetBackgroundThreads(FLAGS_num_low_pri_threads,
|
|
ROCKSDB_NAMESPACE::Env::Priority::LOW);
|
|
|
|
// Choose a location for the test database if none given with --db=<path>
|
|
if (FLAGS_db.empty()) {
|
|
std::string default_db_path;
|
|
FLAGS_env->GetTestDirectory(&default_db_path);
|
|
default_db_path += "/dbbench";
|
|
FLAGS_db = default_db_path;
|
|
}
|
|
|
|
if (FLAGS_stats_interval_seconds > 0) {
|
|
// When both are set then FLAGS_stats_interval determines the frequency
|
|
// at which the timer is checked for FLAGS_stats_interval_seconds
|
|
FLAGS_stats_interval = 1000;
|
|
}
|
|
|
|
if (FLAGS_seek_missing_prefix && FLAGS_prefix_size <= 8) {
|
|
fprintf(stderr, "prefix_size > 8 required by --seek_missing_prefix\n");
|
|
exit(1);
|
|
}
|
|
|
|
ROCKSDB_NAMESPACE::Benchmark benchmark;
|
|
benchmark.Run();
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
if (FLAGS_print_malloc_stats) {
|
|
std::string stats_string;
|
|
ROCKSDB_NAMESPACE::DumpMallocStats(&stats_string);
|
|
fprintf(stdout, "Malloc stats:\n%s\n", stats_string.c_str());
|
|
}
|
|
#endif // ROCKSDB_LITE
|
|
|
|
return 0;
|
|
}
|
|
} // namespace ROCKSDB_NAMESPACE
|
|
#endif
|