rocksdb/table/block_based
Peter Dillinger 239d17a19c Support optimize_filters_for_memory for Ribbon filter (#7774)
Summary:
Primarily this change refactors the optimize_filters_for_memory
code for Bloom filters, based on malloc_usable_size, to also work for
Ribbon filters.

This change also replaces the somewhat slow but general
BuiltinFilterBitsBuilder::ApproximateNumEntries with
implementation-specific versions for Ribbon (new) and Legacy Bloom
(based on a recently deleted version). The reason is to emphasize
speed in ApproximateNumEntries rather than 100% accuracy.

Justification: ApproximateNumEntries (formerly CalculateNumEntry) is
only used by RocksDB for range-partitioned filters, called each time we
start to construct one. (In theory, it should be possible to reuse the
estimate, but the abstractions provided by FilterPolicy don't really
make that workable.) But this is only used as a heuristic estimate for
hitting a desired partitioned filter size because of alignment to data
blocks, which have various numbers of unique keys or prefixes. The two
factors lead us to prioritize reasonable speed over 100% accuracy.

optimize_filters_for_memory adds extra complication, because precisely
calculating num_entries for some allowed number of bytes depends on state
with optimize_filters_for_memory enabled. And the allocator-agnostic
implementation of optimize_filters_for_memory, using malloc_usable_size,
means we would have to actually allocate memory, many times, just to
precisely determine how many entries (keys) could be added and stay below
some size budget, for the current state. (In a draft, I got this
working, and then realized the balance of speed vs. accuracy was all
wrong.)

So related to that, I have made CalculateSpace, an internal-only API
only used for testing, non-authoritative also if
optimize_filters_for_memory is enabled. This simplifies some code.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/7774

Test Plan:
unit test updated, and for FilterSize test, range of tested
values is greatly expanded (still super fast)

Also tested `db_bench -benchmarks=fillrandom,stats -bloom_bits=10 -num=1000000 -partition_index_and_filters -format_version=5 [-optimize_filters_for_memory] [-use_ribbon_filter]` with temporary debug output of generated filter sizes.

Bloom+optimize_filters_for_memory:

      1 Filter size: 197 (224 in memory)
    134 Filter size: 3525 (3584 in memory)
    107 Filter size: 4037 (4096 in memory)
    Total on disk: 904,506
    Total in memory: 918,752

Ribbon+optimize_filters_for_memory:

      1 Filter size: 3061 (3072 in memory)
    110 Filter size: 3573 (3584 in memory)
     58 Filter size: 4085 (4096 in memory)
    Total on disk: 633,021 (-30.0%)
    Total in memory: 634,880 (-30.9%)

Bloom (no offm):

      1 Filter size: 261 (320 in memory)
      1 Filter size: 3333 (3584 in memory)
    240 Filter size: 3717 (4096 in memory)
    Total on disk: 895,674 (-1% on disk vs. +offm; known tolerable overhead of offm)
    Total in memory: 986,944 (+7.4% vs. +offm)

Ribbon (no offm):

      1 Filter size: 2949 (3072 in memory)
      1 Filter size: 3381 (3584 in memory)
    167 Filter size: 3701 (4096 in memory)
    Total on disk: 624,397 (-30.3% vs. Bloom)
    Total in memory: 690,688 (-30.0% vs. Bloom)

Note that optimize_filters_for_memory is even more effective for Ribbon filter than for cache-local Bloom, because it can close the unused memory gap even tighter than Bloom filter, because of 16 byte increments for Ribbon vs. 64 byte increments for Bloom.

Reviewed By: jay-zhuang

Differential Revision: D25592970

Pulled By: pdillinger

fbshipit-source-id: 606fdaa025bb790d7e9c21601e8ea86e10541912
2020-12-18 14:31:03 -08:00
..
2020-07-09 14:35:17 -07:00
2020-10-28 23:22:27 -07:00
2020-09-30 20:24:23 -07:00