rocksdb/db/db_test.cc
Dhruba Borthakur ae36e509f8 The BackupAPI should also list the length of the manifest file.
Summary:
The GetLiveFiles() api lists the set of sst files and the current
MANIFEST file. But the database continues to append new data to the
MANIFEST file even when the application is backing it up to the
backup location. This means that the database-version that is
stored in the MANIFEST FILE in the backup location
does not correspond to the sst files returned by GetLiveFiles.

This API adds a new parameter to GetLiveFiles. This new parmeter
returns the current size of the MANIFEST file.

Test Plan: Unit test attached.

Reviewers: heyongqiang

Reviewed By: heyongqiang

Differential Revision: https://reviews.facebook.net/D5631
2012-09-25 03:13:25 -07:00

2250 lines
64 KiB
C++

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <algorithm>
#include "leveldb/db.h"
#include "leveldb/filter_policy.h"
#include "db/db_impl.h"
#include "db/filename.h"
#include "db/version_set.h"
#include "db/write_batch_internal.h"
#include "leveldb/cache.h"
#include "leveldb/env.h"
#include "leveldb/table.h"
#include "util/hash.h"
#include "util/logging.h"
#include "util/mutexlock.h"
#include "util/testharness.h"
#include "util/testutil.h"
namespace leveldb {
static std::string RandomString(Random* rnd, int len) {
std::string r;
test::RandomString(rnd, len, &r);
return r;
}
namespace {
class AtomicCounter {
private:
port::Mutex mu_;
int count_;
public:
AtomicCounter() : count_(0) { }
void Increment() {
MutexLock l(&mu_);
count_++;
}
int Read() {
MutexLock l(&mu_);
return count_;
}
void Reset() {
MutexLock l(&mu_);
count_ = 0;
}
};
}
// Special Env used to delay background operations
class SpecialEnv : public EnvWrapper {
public:
// sstable Sync() calls are blocked while this pointer is non-NULL.
port::AtomicPointer delay_sstable_sync_;
// Simulate no-space errors while this pointer is non-NULL.
port::AtomicPointer no_space_;
// Simulate non-writable file system while this pointer is non-NULL
port::AtomicPointer non_writable_;
bool count_random_reads_;
AtomicCounter random_read_counter_;
AtomicCounter sleep_counter_;
explicit SpecialEnv(Env* base) : EnvWrapper(base) {
delay_sstable_sync_.Release_Store(NULL);
no_space_.Release_Store(NULL);
non_writable_.Release_Store(NULL);
count_random_reads_ = false;
}
Status NewWritableFile(const std::string& f, WritableFile** r) {
class SSTableFile : public WritableFile {
private:
SpecialEnv* env_;
WritableFile* base_;
public:
SSTableFile(SpecialEnv* env, WritableFile* base)
: env_(env),
base_(base) {
}
~SSTableFile() { delete base_; }
Status Append(const Slice& data) {
if (env_->no_space_.Acquire_Load() != NULL) {
// Drop writes on the floor
return Status::OK();
} else {
return base_->Append(data);
}
}
Status Close() { return base_->Close(); }
Status Flush() { return base_->Flush(); }
Status Sync() {
while (env_->delay_sstable_sync_.Acquire_Load() != NULL) {
env_->SleepForMicroseconds(100000);
}
return base_->Sync();
}
};
if (non_writable_.Acquire_Load() != NULL) {
return Status::IOError("simulated write error");
}
Status s = target()->NewWritableFile(f, r);
if (s.ok()) {
if (strstr(f.c_str(), ".sst") != NULL) {
*r = new SSTableFile(this, *r);
}
}
return s;
}
Status NewRandomAccessFile(const std::string& f, RandomAccessFile** r) {
class CountingFile : public RandomAccessFile {
private:
RandomAccessFile* target_;
AtomicCounter* counter_;
public:
CountingFile(RandomAccessFile* target, AtomicCounter* counter)
: target_(target), counter_(counter) {
}
virtual ~CountingFile() { delete target_; }
virtual Status Read(uint64_t offset, size_t n, Slice* result,
char* scratch) const {
counter_->Increment();
return target_->Read(offset, n, result, scratch);
}
};
Status s = target()->NewRandomAccessFile(f, r);
if (s.ok() && count_random_reads_) {
*r = new CountingFile(*r, &random_read_counter_);
}
return s;
}
virtual void SleepForMicroseconds(int micros) {
sleep_counter_.Increment();
target()->SleepForMicroseconds(micros);
}
};
class DBTest {
private:
const FilterPolicy* filter_policy_;
// Sequence of option configurations to try
enum OptionConfig {
kDefault,
kFilter,
kUncompressed,
kNumLevel_3,
kDBLogDir,
kEnd
};
int option_config_;
public:
std::string dbname_;
SpecialEnv* env_;
DB* db_;
Options last_options_;
DBTest() : option_config_(kDefault),
env_(new SpecialEnv(Env::Default())) {
filter_policy_ = NewBloomFilterPolicy(10);
dbname_ = test::TmpDir() + "/db_test";
DestroyDB(dbname_, Options());
db_ = NULL;
Reopen();
}
~DBTest() {
delete db_;
DestroyDB(dbname_, Options());
delete env_;
delete filter_policy_;
}
// Switch to a fresh database with the next option configuration to
// test. Return false if there are no more configurations to test.
bool ChangeOptions() {
option_config_++;
if (option_config_ >= kEnd) {
return false;
} else {
DestroyAndReopen();
return true;
}
}
// Return the current option configuration.
Options CurrentOptions() {
Options options;
switch (option_config_) {
case kFilter:
options.filter_policy = filter_policy_;
break;
case kUncompressed:
options.compression = kNoCompression;
break;
case kNumLevel_3:
options.num_levels = 3;
break;
case kDBLogDir:
options.db_log_dir = test::TmpDir();
break;
default:
break;
}
return options;
}
DBImpl* dbfull() {
return reinterpret_cast<DBImpl*>(db_);
}
void Reopen(Options* options = NULL) {
ASSERT_OK(TryReopen(options));
}
void Close() {
delete db_;
db_ = NULL;
}
void DestroyAndReopen(Options* options = NULL) {
delete db_;
db_ = NULL;
DestroyDB(dbname_, Options());
ASSERT_OK(TryReopen(options));
}
Status PureReopen(Options* options, DB** db) {
return DB::Open(*options, dbname_, db);
}
Status TryReopen(Options* options) {
delete db_;
db_ = NULL;
Options opts;
if (options != NULL) {
opts = *options;
} else {
opts = CurrentOptions();
opts.create_if_missing = true;
}
last_options_ = opts;
return DB::Open(opts, dbname_, &db_);
}
Status Put(const std::string& k, const std::string& v) {
return db_->Put(WriteOptions(), k, v);
}
Status Delete(const std::string& k) {
return db_->Delete(WriteOptions(), k);
}
std::string Get(const std::string& k, const Snapshot* snapshot = NULL) {
ReadOptions options;
options.snapshot = snapshot;
std::string result;
Status s = db_->Get(options, k, &result);
if (s.IsNotFound()) {
result = "NOT_FOUND";
} else if (!s.ok()) {
result = s.ToString();
}
return result;
}
// Return a string that contains all key,value pairs in order,
// formatted like "(k1->v1)(k2->v2)".
std::string Contents() {
std::vector<std::string> forward;
std::string result;
Iterator* iter = db_->NewIterator(ReadOptions());
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
std::string s = IterStatus(iter);
result.push_back('(');
result.append(s);
result.push_back(')');
forward.push_back(s);
}
// Check reverse iteration results are the reverse of forward results
int matched = 0;
for (iter->SeekToLast(); iter->Valid(); iter->Prev()) {
ASSERT_LT(matched, forward.size());
ASSERT_EQ(IterStatus(iter), forward[forward.size() - matched - 1]);
matched++;
}
ASSERT_EQ(matched, forward.size());
delete iter;
return result;
}
std::string AllEntriesFor(const Slice& user_key) {
Iterator* iter = dbfull()->TEST_NewInternalIterator();
InternalKey target(user_key, kMaxSequenceNumber, kTypeValue);
iter->Seek(target.Encode());
std::string result;
if (!iter->status().ok()) {
result = iter->status().ToString();
} else {
result = "[ ";
bool first = true;
while (iter->Valid()) {
ParsedInternalKey ikey;
if (!ParseInternalKey(iter->key(), &ikey)) {
result += "CORRUPTED";
} else {
if (last_options_.comparator->Compare(ikey.user_key, user_key) != 0) {
break;
}
if (!first) {
result += ", ";
}
first = false;
switch (ikey.type) {
case kTypeValue:
result += iter->value().ToString();
break;
case kTypeDeletion:
result += "DEL";
break;
}
}
iter->Next();
}
if (!first) {
result += " ";
}
result += "]";
}
delete iter;
return result;
}
int NumTableFilesAtLevel(int level) {
std::string property;
ASSERT_TRUE(
db_->GetProperty("leveldb.num-files-at-level" + NumberToString(level),
&property));
return atoi(property.c_str());
}
int TotalTableFiles() {
int result = 0;
for (int level = 0; level < db_->NumberLevels(); level++) {
result += NumTableFilesAtLevel(level);
}
return result;
}
// Return spread of files per level
std::string FilesPerLevel() {
std::string result;
int last_non_zero_offset = 0;
for (int level = 0; level < db_->NumberLevels(); level++) {
int f = NumTableFilesAtLevel(level);
char buf[100];
snprintf(buf, sizeof(buf), "%s%d", (level ? "," : ""), f);
result += buf;
if (f > 0) {
last_non_zero_offset = result.size();
}
}
result.resize(last_non_zero_offset);
return result;
}
int CountFiles() {
std::vector<std::string> files;
env_->GetChildren(dbname_, &files);
return static_cast<int>(files.size());
}
uint64_t Size(const Slice& start, const Slice& limit) {
Range r(start, limit);
uint64_t size;
db_->GetApproximateSizes(&r, 1, &size);
return size;
}
void Compact(const Slice& start, const Slice& limit) {
db_->CompactRange(&start, &limit);
}
// Do n memtable compactions, each of which produces an sstable
// covering the range [small,large].
void MakeTables(int n, const std::string& small, const std::string& large) {
for (int i = 0; i < n; i++) {
Put(small, "begin");
Put(large, "end");
dbfull()->TEST_CompactMemTable();
}
}
// Prevent pushing of new sstables into deeper levels by adding
// tables that cover a specified range to all levels.
void FillLevels(const std::string& smallest, const std::string& largest) {
MakeTables(db_->NumberLevels(), smallest, largest);
}
void DumpFileCounts(const char* label) {
fprintf(stderr, "---\n%s:\n", label);
fprintf(stderr, "maxoverlap: %lld\n",
static_cast<long long>(
dbfull()->TEST_MaxNextLevelOverlappingBytes()));
for (int level = 0; level < db_->NumberLevels(); level++) {
int num = NumTableFilesAtLevel(level);
if (num > 0) {
fprintf(stderr, " level %3d : %d files\n", level, num);
}
}
}
std::string DumpSSTableList() {
std::string property;
db_->GetProperty("leveldb.sstables", &property);
return property;
}
std::string IterStatus(Iterator* iter) {
std::string result;
if (iter->Valid()) {
result = iter->key().ToString() + "->" + iter->value().ToString();
} else {
result = "(invalid)";
}
return result;
}
};
TEST(DBTest, Empty) {
do {
ASSERT_TRUE(db_ != NULL);
ASSERT_EQ("NOT_FOUND", Get("foo"));
} while (ChangeOptions());
}
TEST(DBTest, ReadWrite) {
do {
ASSERT_OK(Put("foo", "v1"));
ASSERT_EQ("v1", Get("foo"));
ASSERT_OK(Put("bar", "v2"));
ASSERT_OK(Put("foo", "v3"));
ASSERT_EQ("v3", Get("foo"));
ASSERT_EQ("v2", Get("bar"));
} while (ChangeOptions());
}
TEST(DBTest, PutDeleteGet) {
do {
ASSERT_OK(db_->Put(WriteOptions(), "foo", "v1"));
ASSERT_EQ("v1", Get("foo"));
ASSERT_OK(db_->Put(WriteOptions(), "foo", "v2"));
ASSERT_EQ("v2", Get("foo"));
ASSERT_OK(db_->Delete(WriteOptions(), "foo"));
ASSERT_EQ("NOT_FOUND", Get("foo"));
} while (ChangeOptions());
}
TEST(DBTest, GetFromImmutableLayer) {
do {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000; // Small write buffer
Reopen(&options);
ASSERT_OK(Put("foo", "v1"));
ASSERT_EQ("v1", Get("foo"));
env_->delay_sstable_sync_.Release_Store(env_); // Block sync calls
Put("k1", std::string(100000, 'x')); // Fill memtable
Put("k2", std::string(100000, 'y')); // Trigger compaction
ASSERT_EQ("v1", Get("foo"));
env_->delay_sstable_sync_.Release_Store(NULL); // Release sync calls
} while (ChangeOptions());
}
TEST(DBTest, GetFromVersions) {
do {
ASSERT_OK(Put("foo", "v1"));
dbfull()->TEST_CompactMemTable();
ASSERT_EQ("v1", Get("foo"));
} while (ChangeOptions());
}
TEST(DBTest, GetSnapshot) {
do {
// Try with both a short key and a long key
for (int i = 0; i < 2; i++) {
std::string key = (i == 0) ? std::string("foo") : std::string(200, 'x');
ASSERT_OK(Put(key, "v1"));
const Snapshot* s1 = db_->GetSnapshot();
ASSERT_OK(Put(key, "v2"));
ASSERT_EQ("v2", Get(key));
ASSERT_EQ("v1", Get(key, s1));
dbfull()->TEST_CompactMemTable();
ASSERT_EQ("v2", Get(key));
ASSERT_EQ("v1", Get(key, s1));
db_->ReleaseSnapshot(s1);
}
} while (ChangeOptions());
}
TEST(DBTest, GetLevel0Ordering) {
do {
// Check that we process level-0 files in correct order. The code
// below generates two level-0 files where the earlier one comes
// before the later one in the level-0 file list since the earlier
// one has a smaller "smallest" key.
ASSERT_OK(Put("bar", "b"));
ASSERT_OK(Put("foo", "v1"));
dbfull()->TEST_CompactMemTable();
ASSERT_OK(Put("foo", "v2"));
dbfull()->TEST_CompactMemTable();
ASSERT_EQ("v2", Get("foo"));
} while (ChangeOptions());
}
TEST(DBTest, GetOrderedByLevels) {
do {
ASSERT_OK(Put("foo", "v1"));
Compact("a", "z");
ASSERT_EQ("v1", Get("foo"));
ASSERT_OK(Put("foo", "v2"));
ASSERT_EQ("v2", Get("foo"));
dbfull()->TEST_CompactMemTable();
ASSERT_EQ("v2", Get("foo"));
} while (ChangeOptions());
}
TEST(DBTest, GetPicksCorrectFile) {
do {
// Arrange to have multiple files in a non-level-0 level.
ASSERT_OK(Put("a", "va"));
Compact("a", "b");
ASSERT_OK(Put("x", "vx"));
Compact("x", "y");
ASSERT_OK(Put("f", "vf"));
Compact("f", "g");
ASSERT_EQ("va", Get("a"));
ASSERT_EQ("vf", Get("f"));
ASSERT_EQ("vx", Get("x"));
} while (ChangeOptions());
}
TEST(DBTest, GetEncountersEmptyLevel) {
do {
// Arrange for the following to happen:
// * sstable A in level 0
// * nothing in level 1
// * sstable B in level 2
// Then do enough Get() calls to arrange for an automatic compaction
// of sstable A. A bug would cause the compaction to be marked as
// occuring at level 1 (instead of the correct level 0).
// Step 1: First place sstables in levels 0 and 2
int compaction_count = 0;
while (NumTableFilesAtLevel(0) == 0 ||
NumTableFilesAtLevel(2) == 0) {
ASSERT_LE(compaction_count, 100) << "could not fill levels 0 and 2";
compaction_count++;
Put("a", "begin");
Put("z", "end");
dbfull()->TEST_CompactMemTable();
}
// Step 2: clear level 1 if necessary.
dbfull()->TEST_CompactRange(1, NULL, NULL);
ASSERT_EQ(NumTableFilesAtLevel(0), 1);
ASSERT_EQ(NumTableFilesAtLevel(1), 0);
ASSERT_EQ(NumTableFilesAtLevel(2), 1);
// Step 3: read a bunch of times
for (int i = 0; i < 1000; i++) {
ASSERT_EQ("NOT_FOUND", Get("missing"));
}
// Step 4: Wait for compaction to finish
env_->SleepForMicroseconds(1000000);
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
} while (ChangeOptions());
}
TEST(DBTest, IterEmpty) {
Iterator* iter = db_->NewIterator(ReadOptions());
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->Seek("foo");
ASSERT_EQ(IterStatus(iter), "(invalid)");
delete iter;
}
TEST(DBTest, IterSingle) {
ASSERT_OK(Put("a", "va"));
Iterator* iter = db_->NewIterator(ReadOptions());
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->Seek("");
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->Seek("a");
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->Seek("b");
ASSERT_EQ(IterStatus(iter), "(invalid)");
delete iter;
}
TEST(DBTest, IterMulti) {
ASSERT_OK(Put("a", "va"));
ASSERT_OK(Put("b", "vb"));
ASSERT_OK(Put("c", "vc"));
Iterator* iter = db_->NewIterator(ReadOptions());
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Next();
ASSERT_EQ(IterStatus(iter), "b->vb");
iter->Next();
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "b->vb");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->Seek("");
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Seek("a");
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Seek("ax");
ASSERT_EQ(IterStatus(iter), "b->vb");
iter->Seek("b");
ASSERT_EQ(IterStatus(iter), "b->vb");
iter->Seek("z");
ASSERT_EQ(IterStatus(iter), "(invalid)");
// Switch from reverse to forward
iter->SeekToLast();
iter->Prev();
iter->Prev();
iter->Next();
ASSERT_EQ(IterStatus(iter), "b->vb");
// Switch from forward to reverse
iter->SeekToFirst();
iter->Next();
iter->Next();
iter->Prev();
ASSERT_EQ(IterStatus(iter), "b->vb");
// Make sure iter stays at snapshot
ASSERT_OK(Put("a", "va2"));
ASSERT_OK(Put("a2", "va3"));
ASSERT_OK(Put("b", "vb2"));
ASSERT_OK(Put("c", "vc2"));
ASSERT_OK(Delete("b"));
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Next();
ASSERT_EQ(IterStatus(iter), "b->vb");
iter->Next();
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "b->vb");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "(invalid)");
delete iter;
}
TEST(DBTest, IterSmallAndLargeMix) {
ASSERT_OK(Put("a", "va"));
ASSERT_OK(Put("b", std::string(100000, 'b')));
ASSERT_OK(Put("c", "vc"));
ASSERT_OK(Put("d", std::string(100000, 'd')));
ASSERT_OK(Put("e", std::string(100000, 'e')));
Iterator* iter = db_->NewIterator(ReadOptions());
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Next();
ASSERT_EQ(IterStatus(iter), "b->" + std::string(100000, 'b'));
iter->Next();
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Next();
ASSERT_EQ(IterStatus(iter), "d->" + std::string(100000, 'd'));
iter->Next();
ASSERT_EQ(IterStatus(iter), "e->" + std::string(100000, 'e'));
iter->Next();
ASSERT_EQ(IterStatus(iter), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter), "e->" + std::string(100000, 'e'));
iter->Prev();
ASSERT_EQ(IterStatus(iter), "d->" + std::string(100000, 'd'));
iter->Prev();
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "b->" + std::string(100000, 'b'));
iter->Prev();
ASSERT_EQ(IterStatus(iter), "a->va");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "(invalid)");
delete iter;
}
TEST(DBTest, IterMultiWithDelete) {
do {
ASSERT_OK(Put("a", "va"));
ASSERT_OK(Put("b", "vb"));
ASSERT_OK(Put("c", "vc"));
ASSERT_OK(Delete("b"));
ASSERT_EQ("NOT_FOUND", Get("b"));
Iterator* iter = db_->NewIterator(ReadOptions());
iter->Seek("c");
ASSERT_EQ(IterStatus(iter), "c->vc");
iter->Prev();
ASSERT_EQ(IterStatus(iter), "a->va");
delete iter;
} while (ChangeOptions());
}
TEST(DBTest, Recover) {
do {
ASSERT_OK(Put("foo", "v1"));
ASSERT_OK(Put("baz", "v5"));
Reopen();
ASSERT_EQ("v1", Get("foo"));
ASSERT_EQ("v1", Get("foo"));
ASSERT_EQ("v5", Get("baz"));
ASSERT_OK(Put("bar", "v2"));
ASSERT_OK(Put("foo", "v3"));
Reopen();
ASSERT_EQ("v3", Get("foo"));
ASSERT_OK(Put("foo", "v4"));
ASSERT_EQ("v4", Get("foo"));
ASSERT_EQ("v2", Get("bar"));
ASSERT_EQ("v5", Get("baz"));
} while (ChangeOptions());
}
TEST(DBTest, RollLog) {
do {
ASSERT_OK(Put("foo", "v1"));
ASSERT_OK(Put("baz", "v5"));
Reopen();
for (int i = 0; i < 10; i++) {
Reopen();
}
ASSERT_OK(Put("foo", "v4"));
for (int i = 0; i < 10; i++) {
Reopen();
}
} while (ChangeOptions());
}
TEST(DBTest, WAL) {
Options options = CurrentOptions();
WriteOptions writeOpt = WriteOptions();
writeOpt.disableWAL = true;
ASSERT_OK(dbfull()->Put(writeOpt, "foo", "v1"));
ASSERT_OK(dbfull()->Put(writeOpt, "bar", "v1"));
Reopen();
ASSERT_EQ("NOT_FOUND", Get("foo"));
ASSERT_EQ("NOT_FOUND", Get("bar"));
writeOpt.disableWAL = false;
ASSERT_OK(dbfull()->Put(writeOpt, "bar", "v2"));
writeOpt.disableWAL = true;
ASSERT_OK(dbfull()->Put(writeOpt, "foo", "v2"));
Reopen();
// We garantee the 'bar' will be there
// because its put has WAL enabled.
// But 'foo' may or may not be there.
ASSERT_EQ("v2", Get("bar"));
writeOpt.disableWAL = true;
ASSERT_OK(dbfull()->Put(writeOpt, "bar", "v3"));
writeOpt.disableWAL = false;
ASSERT_OK(dbfull()->Put(writeOpt, "foo", "v3"));
Reopen();
// 'foo' should be there because its put
// has WAL enabled.
ASSERT_EQ("v3", Get("foo"));
}
TEST(DBTest, CheckLock) {
DB* localdb;
Options options = CurrentOptions();
ASSERT_TRUE(TryReopen(&options).ok());
ASSERT_TRUE(!(PureReopen(&options, &localdb).ok())); // second open should fail
}
TEST(DBTest, FLUSH) {
Options options = CurrentOptions();
WriteOptions writeOpt = WriteOptions();
writeOpt.disableWAL = true;
ASSERT_OK(dbfull()->Put(writeOpt, "foo", "v1"));
// this will not flush the last 2 writes
dbfull()->Flush(FlushOptions());
ASSERT_OK(dbfull()->Put(writeOpt, "bar", "v1"));
Reopen();
ASSERT_EQ("v1", Get("foo"));
ASSERT_EQ("NOT_FOUND", Get("bar"));
writeOpt.disableWAL = true;
ASSERT_OK(dbfull()->Put(writeOpt, "bar", "v2"));
ASSERT_OK(dbfull()->Put(writeOpt, "foo", "v2"));
dbfull()->Flush(FlushOptions());
Reopen();
ASSERT_EQ("v2", Get("bar"));
ASSERT_EQ("v2", Get("foo"));
writeOpt.disableWAL = false;
ASSERT_OK(dbfull()->Put(writeOpt, "bar", "v3"));
ASSERT_OK(dbfull()->Put(writeOpt, "foo", "v3"));
dbfull()->Flush(FlushOptions());
Reopen();
// 'foo' should be there because its put
// has WAL enabled.
ASSERT_EQ("v3", Get("foo"));
ASSERT_EQ("v3", Get("bar"));
}
TEST(DBTest, RecoveryWithEmptyLog) {
do {
ASSERT_OK(Put("foo", "v1"));
ASSERT_OK(Put("foo", "v2"));
Reopen();
Reopen();
ASSERT_OK(Put("foo", "v3"));
Reopen();
ASSERT_EQ("v3", Get("foo"));
} while (ChangeOptions());
}
// Check that writes done during a memtable compaction are recovered
// if the database is shutdown during the memtable compaction.
TEST(DBTest, RecoverDuringMemtableCompaction) {
do {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 1000000;
Reopen(&options);
// Trigger a long memtable compaction and reopen the database during it
ASSERT_OK(Put("foo", "v1")); // Goes to 1st log file
ASSERT_OK(Put("big1", std::string(10000000, 'x'))); // Fills memtable
ASSERT_OK(Put("big2", std::string(1000, 'y'))); // Triggers compaction
ASSERT_OK(Put("bar", "v2")); // Goes to new log file
Reopen(&options);
ASSERT_EQ("v1", Get("foo"));
ASSERT_EQ("v2", Get("bar"));
ASSERT_EQ(std::string(10000000, 'x'), Get("big1"));
ASSERT_EQ(std::string(1000, 'y'), Get("big2"));
} while (ChangeOptions());
}
static std::string Key(int i) {
char buf[100];
snprintf(buf, sizeof(buf), "key%06d", i);
return std::string(buf);
}
TEST(DBTest, MinorCompactionsHappen) {
Options options = CurrentOptions();
options.write_buffer_size = 10000;
Reopen(&options);
const int N = 500;
int starting_num_tables = TotalTableFiles();
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(i), Key(i) + std::string(1000, 'v')));
}
int ending_num_tables = TotalTableFiles();
ASSERT_GT(ending_num_tables, starting_num_tables);
for (int i = 0; i < N; i++) {
ASSERT_EQ(Key(i) + std::string(1000, 'v'), Get(Key(i)));
}
Reopen();
for (int i = 0; i < N; i++) {
ASSERT_EQ(Key(i) + std::string(1000, 'v'), Get(Key(i)));
}
}
TEST(DBTest, RecoverWithLargeLog) {
{
Options options = CurrentOptions();
Reopen(&options);
ASSERT_OK(Put("big1", std::string(200000, '1')));
ASSERT_OK(Put("big2", std::string(200000, '2')));
ASSERT_OK(Put("small3", std::string(10, '3')));
ASSERT_OK(Put("small4", std::string(10, '4')));
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
}
// Make sure that if we re-open with a small write buffer size that
// we flush table files in the middle of a large log file.
Options options = CurrentOptions();
options.write_buffer_size = 100000;
Reopen(&options);
ASSERT_EQ(NumTableFilesAtLevel(0), 3);
ASSERT_EQ(std::string(200000, '1'), Get("big1"));
ASSERT_EQ(std::string(200000, '2'), Get("big2"));
ASSERT_EQ(std::string(10, '3'), Get("small3"));
ASSERT_EQ(std::string(10, '4'), Get("small4"));
ASSERT_GT(NumTableFilesAtLevel(0), 1);
}
TEST(DBTest, CompactionsGenerateMultipleFiles) {
Options options = CurrentOptions();
options.write_buffer_size = 100000000; // Large write buffer
Reopen(&options);
Random rnd(301);
// Write 8MB (80 values, each 100K)
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
std::vector<std::string> values;
for (int i = 0; i < 80; i++) {
values.push_back(RandomString(&rnd, 100000));
ASSERT_OK(Put(Key(i), values[i]));
}
// Reopening moves updates to level-0
Reopen(&options);
dbfull()->TEST_CompactRange(0, NULL, NULL);
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
ASSERT_GT(NumTableFilesAtLevel(1), 1);
for (int i = 0; i < 80; i++) {
ASSERT_EQ(Get(Key(i)), values[i]);
}
}
TEST(DBTest, CompactionTrigger) {
Options options = CurrentOptions();
options.write_buffer_size = 100<<10; //100KB
options.num_levels = 3;
options.max_mem_compaction_level = 0;
options.level0_file_num_compaction_trigger = 3;
Reopen(&options);
Random rnd(301);
for (int num = 0;
num < options.level0_file_num_compaction_trigger - 1;
num++)
{
std::vector<std::string> values;
// Write 120KB (12 values, each 10K)
for (int i = 0; i < 12; i++) {
values.push_back(RandomString(&rnd, 10000));
ASSERT_OK(Put(Key(i), values[i]));
}
dbfull()->TEST_WaitForCompactMemTable();
ASSERT_EQ(NumTableFilesAtLevel(0), num + 1);
}
//generate one more file in level-0, and should trigger level-0 compaction
std::vector<std::string> values;
for (int i = 0; i < 12; i++) {
values.push_back(RandomString(&rnd, 10000));
ASSERT_OK(Put(Key(i), values[i]));
}
dbfull()->TEST_WaitForCompact();
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
ASSERT_EQ(NumTableFilesAtLevel(1), 1);
}
TEST(DBTest, RepeatedWritesToSameKey) {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000; // Small write buffer
Reopen(&options);
// We must have at most one file per level except for level-0,
// which may have up to kL0_StopWritesTrigger files.
const int kMaxFiles = dbfull()->NumberLevels() +
dbfull()->Level0StopWriteTrigger();
Random rnd(301);
std::string value = RandomString(&rnd, 2 * options.write_buffer_size);
for (int i = 0; i < 5 * kMaxFiles; i++) {
Put("key", value);
ASSERT_LE(TotalTableFiles(), kMaxFiles);
fprintf(stderr, "after %d: %d files\n", int(i+1), TotalTableFiles());
}
}
TEST(DBTest, SparseMerge) {
Options options = CurrentOptions();
options.compression = kNoCompression;
Reopen(&options);
FillLevels("A", "Z");
// Suppose there is:
// small amount of data with prefix A
// large amount of data with prefix B
// small amount of data with prefix C
// and that recent updates have made small changes to all three prefixes.
// Check that we do not do a compaction that merges all of B in one shot.
const std::string value(1000, 'x');
Put("A", "va");
// Write approximately 100MB of "B" values
for (int i = 0; i < 100000; i++) {
char key[100];
snprintf(key, sizeof(key), "B%010d", i);
Put(key, value);
}
Put("C", "vc");
dbfull()->TEST_CompactMemTable();
dbfull()->TEST_CompactRange(0, NULL, NULL);
// Make sparse update
Put("A", "va2");
Put("B100", "bvalue2");
Put("C", "vc2");
dbfull()->TEST_CompactMemTable();
// Compactions should not cause us to create a situation where
// a file overlaps too much data at the next level.
ASSERT_LE(dbfull()->TEST_MaxNextLevelOverlappingBytes(), 20*1048576);
dbfull()->TEST_CompactRange(0, NULL, NULL);
ASSERT_LE(dbfull()->TEST_MaxNextLevelOverlappingBytes(), 20*1048576);
dbfull()->TEST_CompactRange(1, NULL, NULL);
ASSERT_LE(dbfull()->TEST_MaxNextLevelOverlappingBytes(), 20*1048576);
}
static bool Between(uint64_t val, uint64_t low, uint64_t high) {
bool result = (val >= low) && (val <= high);
if (!result) {
fprintf(stderr, "Value %llu is not in range [%llu, %llu]\n",
(unsigned long long)(val),
(unsigned long long)(low),
(unsigned long long)(high));
}
return result;
}
TEST(DBTest, ApproximateSizes) {
do {
Options options = CurrentOptions();
options.write_buffer_size = 100000000; // Large write buffer
options.compression = kNoCompression;
DestroyAndReopen();
ASSERT_TRUE(Between(Size("", "xyz"), 0, 0));
Reopen(&options);
ASSERT_TRUE(Between(Size("", "xyz"), 0, 0));
// Write 8MB (80 values, each 100K)
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
const int N = 80;
static const int S1 = 100000;
static const int S2 = 105000; // Allow some expansion from metadata
Random rnd(301);
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(i), RandomString(&rnd, S1)));
}
// 0 because GetApproximateSizes() does not account for memtable space
ASSERT_TRUE(Between(Size("", Key(50)), 0, 0));
// Check sizes across recovery by reopening a few times
for (int run = 0; run < 3; run++) {
Reopen(&options);
for (int compact_start = 0; compact_start < N; compact_start += 10) {
for (int i = 0; i < N; i += 10) {
ASSERT_TRUE(Between(Size("", Key(i)), S1*i, S2*i));
ASSERT_TRUE(Between(Size("", Key(i)+".suffix"), S1*(i+1), S2*(i+1)));
ASSERT_TRUE(Between(Size(Key(i), Key(i+10)), S1*10, S2*10));
}
ASSERT_TRUE(Between(Size("", Key(50)), S1*50, S2*50));
ASSERT_TRUE(Between(Size("", Key(50)+".suffix"), S1*50, S2*50));
std::string cstart_str = Key(compact_start);
std::string cend_str = Key(compact_start + 9);
Slice cstart = cstart_str;
Slice cend = cend_str;
dbfull()->TEST_CompactRange(0, &cstart, &cend);
}
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
ASSERT_GT(NumTableFilesAtLevel(1), 0);
}
} while (ChangeOptions());
}
TEST(DBTest, ApproximateSizes_MixOfSmallAndLarge) {
do {
Options options = CurrentOptions();
options.compression = kNoCompression;
Reopen();
Random rnd(301);
std::string big1 = RandomString(&rnd, 100000);
ASSERT_OK(Put(Key(0), RandomString(&rnd, 10000)));
ASSERT_OK(Put(Key(1), RandomString(&rnd, 10000)));
ASSERT_OK(Put(Key(2), big1));
ASSERT_OK(Put(Key(3), RandomString(&rnd, 10000)));
ASSERT_OK(Put(Key(4), big1));
ASSERT_OK(Put(Key(5), RandomString(&rnd, 10000)));
ASSERT_OK(Put(Key(6), RandomString(&rnd, 300000)));
ASSERT_OK(Put(Key(7), RandomString(&rnd, 10000)));
// Check sizes across recovery by reopening a few times
for (int run = 0; run < 3; run++) {
Reopen(&options);
ASSERT_TRUE(Between(Size("", Key(0)), 0, 0));
ASSERT_TRUE(Between(Size("", Key(1)), 10000, 11000));
ASSERT_TRUE(Between(Size("", Key(2)), 20000, 21000));
ASSERT_TRUE(Between(Size("", Key(3)), 120000, 121000));
ASSERT_TRUE(Between(Size("", Key(4)), 130000, 131000));
ASSERT_TRUE(Between(Size("", Key(5)), 230000, 231000));
ASSERT_TRUE(Between(Size("", Key(6)), 240000, 241000));
ASSERT_TRUE(Between(Size("", Key(7)), 540000, 541000));
ASSERT_TRUE(Between(Size("", Key(8)), 550000, 560000));
ASSERT_TRUE(Between(Size(Key(3), Key(5)), 110000, 111000));
dbfull()->TEST_CompactRange(0, NULL, NULL);
}
} while (ChangeOptions());
}
TEST(DBTest, IteratorPinsRef) {
Put("foo", "hello");
// Get iterator that will yield the current contents of the DB.
Iterator* iter = db_->NewIterator(ReadOptions());
// Write to force compactions
Put("foo", "newvalue1");
for (int i = 0; i < 100; i++) {
ASSERT_OK(Put(Key(i), Key(i) + std::string(100000, 'v'))); // 100K values
}
Put("foo", "newvalue2");
iter->SeekToFirst();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("foo", iter->key().ToString());
ASSERT_EQ("hello", iter->value().ToString());
iter->Next();
ASSERT_TRUE(!iter->Valid());
delete iter;
}
TEST(DBTest, Snapshot) {
do {
Put("foo", "v1");
const Snapshot* s1 = db_->GetSnapshot();
Put("foo", "v2");
const Snapshot* s2 = db_->GetSnapshot();
Put("foo", "v3");
const Snapshot* s3 = db_->GetSnapshot();
Put("foo", "v4");
ASSERT_EQ("v1", Get("foo", s1));
ASSERT_EQ("v2", Get("foo", s2));
ASSERT_EQ("v3", Get("foo", s3));
ASSERT_EQ("v4", Get("foo"));
db_->ReleaseSnapshot(s3);
ASSERT_EQ("v1", Get("foo", s1));
ASSERT_EQ("v2", Get("foo", s2));
ASSERT_EQ("v4", Get("foo"));
db_->ReleaseSnapshot(s1);
ASSERT_EQ("v2", Get("foo", s2));
ASSERT_EQ("v4", Get("foo"));
db_->ReleaseSnapshot(s2);
ASSERT_EQ("v4", Get("foo"));
} while (ChangeOptions());
}
TEST(DBTest, HiddenValuesAreRemoved) {
do {
Random rnd(301);
FillLevels("a", "z");
std::string big = RandomString(&rnd, 50000);
Put("foo", big);
Put("pastfoo", "v");
const Snapshot* snapshot = db_->GetSnapshot();
Put("foo", "tiny");
Put("pastfoo2", "v2"); // Advance sequence number one more
ASSERT_OK(dbfull()->TEST_CompactMemTable());
ASSERT_GT(NumTableFilesAtLevel(0), 0);
ASSERT_EQ(big, Get("foo", snapshot));
ASSERT_TRUE(Between(Size("", "pastfoo"), 50000, 60000));
db_->ReleaseSnapshot(snapshot);
ASSERT_EQ(AllEntriesFor("foo"), "[ tiny, " + big + " ]");
Slice x("x");
dbfull()->TEST_CompactRange(0, NULL, &x);
ASSERT_EQ(AllEntriesFor("foo"), "[ tiny ]");
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
ASSERT_GE(NumTableFilesAtLevel(1), 1);
dbfull()->TEST_CompactRange(1, NULL, &x);
ASSERT_EQ(AllEntriesFor("foo"), "[ tiny ]");
ASSERT_TRUE(Between(Size("", "pastfoo"), 0, 1000));
} while (ChangeOptions());
}
TEST(DBTest, DeletionMarkers1) {
Put("foo", "v1");
ASSERT_OK(dbfull()->TEST_CompactMemTable());
const int last = dbfull()->MaxMemCompactionLevel();
ASSERT_EQ(NumTableFilesAtLevel(last), 1); // foo => v1 is now in last level
// Place a table at level last-1 to prevent merging with preceding mutation
Put("a", "begin");
Put("z", "end");
dbfull()->TEST_CompactMemTable();
ASSERT_EQ(NumTableFilesAtLevel(last), 1);
ASSERT_EQ(NumTableFilesAtLevel(last-1), 1);
Delete("foo");
Put("foo", "v2");
ASSERT_EQ(AllEntriesFor("foo"), "[ v2, DEL, v1 ]");
ASSERT_OK(dbfull()->TEST_CompactMemTable()); // Moves to level last-2
ASSERT_EQ(AllEntriesFor("foo"), "[ v2, DEL, v1 ]");
Slice z("z");
dbfull()->TEST_CompactRange(last-2, NULL, &z);
// DEL eliminated, but v1 remains because we aren't compacting that level
// (DEL can be eliminated because v2 hides v1).
ASSERT_EQ(AllEntriesFor("foo"), "[ v2, v1 ]");
dbfull()->TEST_CompactRange(last-1, NULL, NULL);
// Merging last-1 w/ last, so we are the base level for "foo", so
// DEL is removed. (as is v1).
ASSERT_EQ(AllEntriesFor("foo"), "[ v2 ]");
}
TEST(DBTest, DeletionMarkers2) {
Put("foo", "v1");
ASSERT_OK(dbfull()->TEST_CompactMemTable());
const int last = dbfull()->MaxMemCompactionLevel();
ASSERT_EQ(NumTableFilesAtLevel(last), 1); // foo => v1 is now in last level
// Place a table at level last-1 to prevent merging with preceding mutation
Put("a", "begin");
Put("z", "end");
dbfull()->TEST_CompactMemTable();
ASSERT_EQ(NumTableFilesAtLevel(last), 1);
ASSERT_EQ(NumTableFilesAtLevel(last-1), 1);
Delete("foo");
ASSERT_EQ(AllEntriesFor("foo"), "[ DEL, v1 ]");
ASSERT_OK(dbfull()->TEST_CompactMemTable()); // Moves to level last-2
ASSERT_EQ(AllEntriesFor("foo"), "[ DEL, v1 ]");
dbfull()->TEST_CompactRange(last-2, NULL, NULL);
// DEL kept: "last" file overlaps
ASSERT_EQ(AllEntriesFor("foo"), "[ DEL, v1 ]");
dbfull()->TEST_CompactRange(last-1, NULL, NULL);
// Merging last-1 w/ last, so we are the base level for "foo", so
// DEL is removed. (as is v1).
ASSERT_EQ(AllEntriesFor("foo"), "[ ]");
}
TEST(DBTest, OverlapInLevel0) {
do {
int tmp = dbfull()->MaxMemCompactionLevel();
ASSERT_EQ(tmp, 2) << "Fix test to match config";
// Fill levels 1 and 2 to disable the pushing of new memtables to levels > 0.
ASSERT_OK(Put("100", "v100"));
ASSERT_OK(Put("999", "v999"));
dbfull()->TEST_CompactMemTable();
ASSERT_OK(Delete("100"));
ASSERT_OK(Delete("999"));
dbfull()->TEST_CompactMemTable();
ASSERT_EQ("0,1,1", FilesPerLevel());
// Make files spanning the following ranges in level-0:
// files[0] 200 .. 900
// files[1] 300 .. 500
// Note that files are sorted by smallest key.
ASSERT_OK(Put("300", "v300"));
ASSERT_OK(Put("500", "v500"));
dbfull()->TEST_CompactMemTable();
ASSERT_OK(Put("200", "v200"));
ASSERT_OK(Put("600", "v600"));
ASSERT_OK(Put("900", "v900"));
dbfull()->TEST_CompactMemTable();
ASSERT_EQ("2,1,1", FilesPerLevel());
// Compact away the placeholder files we created initially
dbfull()->TEST_CompactRange(1, NULL, NULL);
dbfull()->TEST_CompactRange(2, NULL, NULL);
ASSERT_EQ("2", FilesPerLevel());
// Do a memtable compaction. Before bug-fix, the compaction would
// not detect the overlap with level-0 files and would incorrectly place
// the deletion in a deeper level.
ASSERT_OK(Delete("600"));
dbfull()->TEST_CompactMemTable();
ASSERT_EQ("3", FilesPerLevel());
ASSERT_EQ("NOT_FOUND", Get("600"));
} while (ChangeOptions());
}
TEST(DBTest, L0_CompactionBug_Issue44_a) {
Reopen();
ASSERT_OK(Put("b", "v"));
Reopen();
ASSERT_OK(Delete("b"));
ASSERT_OK(Delete("a"));
Reopen();
ASSERT_OK(Delete("a"));
Reopen();
ASSERT_OK(Put("a", "v"));
Reopen();
Reopen();
ASSERT_EQ("(a->v)", Contents());
env_->SleepForMicroseconds(1000000); // Wait for compaction to finish
ASSERT_EQ("(a->v)", Contents());
}
TEST(DBTest, L0_CompactionBug_Issue44_b) {
Reopen();
Put("","");
Reopen();
Delete("e");
Put("","");
Reopen();
Put("c", "cv");
Reopen();
Put("","");
Reopen();
Put("","");
env_->SleepForMicroseconds(1000000); // Wait for compaction to finish
Reopen();
Put("d","dv");
Reopen();
Put("","");
Reopen();
Delete("d");
Delete("b");
Reopen();
ASSERT_EQ("(->)(c->cv)", Contents());
env_->SleepForMicroseconds(1000000); // Wait for compaction to finish
ASSERT_EQ("(->)(c->cv)", Contents());
}
TEST(DBTest, ComparatorCheck) {
class NewComparator : public Comparator {
public:
virtual const char* Name() const { return "leveldb.NewComparator"; }
virtual int Compare(const Slice& a, const Slice& b) const {
return BytewiseComparator()->Compare(a, b);
}
virtual void FindShortestSeparator(std::string* s, const Slice& l) const {
BytewiseComparator()->FindShortestSeparator(s, l);
}
virtual void FindShortSuccessor(std::string* key) const {
BytewiseComparator()->FindShortSuccessor(key);
}
};
NewComparator cmp;
Options new_options = CurrentOptions();
new_options.comparator = &cmp;
Status s = TryReopen(&new_options);
ASSERT_TRUE(!s.ok());
ASSERT_TRUE(s.ToString().find("comparator") != std::string::npos)
<< s.ToString();
}
TEST(DBTest, CustomComparator) {
class NumberComparator : public Comparator {
public:
virtual const char* Name() const { return "test.NumberComparator"; }
virtual int Compare(const Slice& a, const Slice& b) const {
return ToNumber(a) - ToNumber(b);
}
virtual void FindShortestSeparator(std::string* s, const Slice& l) const {
ToNumber(*s); // Check format
ToNumber(l); // Check format
}
virtual void FindShortSuccessor(std::string* key) const {
ToNumber(*key); // Check format
}
private:
static int ToNumber(const Slice& x) {
// Check that there are no extra characters.
ASSERT_TRUE(x.size() >= 2 && x[0] == '[' && x[x.size()-1] == ']')
<< EscapeString(x);
int val;
char ignored;
ASSERT_TRUE(sscanf(x.ToString().c_str(), "[%i]%c", &val, &ignored) == 1)
<< EscapeString(x);
return val;
}
};
NumberComparator cmp;
Options new_options = CurrentOptions();
new_options.create_if_missing = true;
new_options.comparator = &cmp;
new_options.filter_policy = NULL; // Cannot use bloom filters
new_options.write_buffer_size = 1000; // Compact more often
DestroyAndReopen(&new_options);
ASSERT_OK(Put("[10]", "ten"));
ASSERT_OK(Put("[0x14]", "twenty"));
for (int i = 0; i < 2; i++) {
ASSERT_EQ("ten", Get("[10]"));
ASSERT_EQ("ten", Get("[0xa]"));
ASSERT_EQ("twenty", Get("[20]"));
ASSERT_EQ("twenty", Get("[0x14]"));
ASSERT_EQ("NOT_FOUND", Get("[15]"));
ASSERT_EQ("NOT_FOUND", Get("[0xf]"));
Compact("[0]", "[9999]");
}
for (int run = 0; run < 2; run++) {
for (int i = 0; i < 1000; i++) {
char buf[100];
snprintf(buf, sizeof(buf), "[%d]", i*10);
ASSERT_OK(Put(buf, buf));
}
Compact("[0]", "[1000000]");
}
}
TEST(DBTest, ManualCompaction) {
ASSERT_EQ(dbfull()->MaxMemCompactionLevel(), 2)
<< "Need to update this test to match kMaxMemCompactLevel";
MakeTables(3, "p", "q");
ASSERT_EQ("1,1,1", FilesPerLevel());
// Compaction range falls before files
Compact("", "c");
ASSERT_EQ("1,1,1", FilesPerLevel());
// Compaction range falls after files
Compact("r", "z");
ASSERT_EQ("1,1,1", FilesPerLevel());
// Compaction range overlaps files
Compact("p1", "p9");
ASSERT_EQ("0,0,1", FilesPerLevel());
// Populate a different range
MakeTables(3, "c", "e");
ASSERT_EQ("1,1,2", FilesPerLevel());
// Compact just the new range
Compact("b", "f");
ASSERT_EQ("0,0,2", FilesPerLevel());
// Compact all
MakeTables(1, "a", "z");
ASSERT_EQ("0,1,2", FilesPerLevel());
db_->CompactRange(NULL, NULL);
ASSERT_EQ("0,0,1", FilesPerLevel());
}
TEST(DBTest, DBOpen_Options) {
std::string dbname = test::TmpDir() + "/db_options_test";
DestroyDB(dbname, Options());
// Does not exist, and create_if_missing == false: error
DB* db = NULL;
Options opts;
opts.create_if_missing = false;
Status s = DB::Open(opts, dbname, &db);
ASSERT_TRUE(strstr(s.ToString().c_str(), "does not exist") != NULL);
ASSERT_TRUE(db == NULL);
// Does not exist, and create_if_missing == true: OK
opts.create_if_missing = true;
s = DB::Open(opts, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != NULL);
delete db;
db = NULL;
// Does exist, and error_if_exists == true: error
opts.create_if_missing = false;
opts.error_if_exists = true;
s = DB::Open(opts, dbname, &db);
ASSERT_TRUE(strstr(s.ToString().c_str(), "exists") != NULL);
ASSERT_TRUE(db == NULL);
// Does exist, and error_if_exists == false: OK
opts.create_if_missing = true;
opts.error_if_exists = false;
s = DB::Open(opts, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != NULL);
delete db;
db = NULL;
}
// Check that number of files does not grow when we are out of space
TEST(DBTest, NoSpace) {
Options options = CurrentOptions();
options.env = env_;
Reopen(&options);
ASSERT_OK(Put("foo", "v1"));
ASSERT_EQ("v1", Get("foo"));
Compact("a", "z");
const int num_files = CountFiles();
env_->no_space_.Release_Store(env_); // Force out-of-space errors
env_->sleep_counter_.Reset();
for (int i = 0; i < 5; i++) {
for (int level = 0; level < dbfull()->NumberLevels()-1; level++) {
dbfull()->TEST_CompactRange(level, NULL, NULL);
}
}
env_->no_space_.Release_Store(NULL);
ASSERT_LT(CountFiles(), num_files + 3);
// Check that compaction attempts slept after errors
ASSERT_GE(env_->sleep_counter_.Read(), 5);
}
TEST(DBTest, NonWritableFileSystem)
{
Options options = CurrentOptions();
options.write_buffer_size = 1000;
options.env = env_;
Reopen(&options);
ASSERT_OK(Put("foo", "v1"));
env_->non_writable_.Release_Store(env_); // Force errors for new files
std::string big(100000, 'x');
int errors = 0;
for (int i = 0; i < 20; i++) {
fprintf(stderr, "iter %d; errors %d\n", i, errors);
if (!Put("foo", big).ok()) {
errors++;
env_->SleepForMicroseconds(100000);
}
}
ASSERT_GT(errors, 0);
env_->non_writable_.Release_Store(NULL);
}
TEST(DBTest, FilesDeletedAfterCompaction) {
ASSERT_OK(Put("foo", "v2"));
Compact("a", "z");
const int num_files = CountFiles();
for (int i = 0; i < 10; i++) {
ASSERT_OK(Put("foo", "v2"));
Compact("a", "z");
}
ASSERT_EQ(CountFiles(), num_files);
}
TEST(DBTest, BloomFilter) {
env_->count_random_reads_ = true;
Options options = CurrentOptions();
options.env = env_;
options.block_cache = NewLRUCache(0); // Prevent cache hits
options.filter_policy = NewBloomFilterPolicy(10);
Reopen(&options);
// Populate multiple layers
const int N = 10000;
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(i), Key(i)));
}
Compact("a", "z");
for (int i = 0; i < N; i += 100) {
ASSERT_OK(Put(Key(i), Key(i)));
}
dbfull()->TEST_CompactMemTable();
// Prevent auto compactions triggered by seeks
env_->delay_sstable_sync_.Release_Store(env_);
// Lookup present keys. Should rarely read from small sstable.
env_->random_read_counter_.Reset();
for (int i = 0; i < N; i++) {
ASSERT_EQ(Key(i), Get(Key(i)));
}
int reads = env_->random_read_counter_.Read();
fprintf(stderr, "%d present => %d reads\n", N, reads);
ASSERT_GE(reads, N);
ASSERT_LE(reads, N + 2*N/100);
// Lookup present keys. Should rarely read from either sstable.
env_->random_read_counter_.Reset();
for (int i = 0; i < N; i++) {
ASSERT_EQ("NOT_FOUND", Get(Key(i) + ".missing"));
}
reads = env_->random_read_counter_.Read();
fprintf(stderr, "%d missing => %d reads\n", N, reads);
ASSERT_LE(reads, 3*N/100);
env_->delay_sstable_sync_.Release_Store(NULL);
Close();
delete options.block_cache;
delete options.filter_policy;
}
TEST(DBTest, SnapshotFiles) {
Options options = CurrentOptions();
options.write_buffer_size = 100000000; // Large write buffer
Reopen(&options);
Random rnd(301);
// Write 8MB (80 values, each 100K)
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
std::vector<std::string> values;
for (int i = 0; i < 80; i++) {
values.push_back(RandomString(&rnd, 100000));
ASSERT_OK(Put(Key(i), values[i]));
}
// assert that nothing makes it to disk yet.
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
// get a file snapshot
uint64_t manifest_number = 0;
uint64_t manifest_size = 0;
std::vector<std::string> files;
dbfull()->DisableFileDeletions();
dbfull()->GetLiveFiles(files, &manifest_size);
// CURRENT, MANIFEST, *.sst files
ASSERT_EQ(files.size(), 3);
uint64_t number = 0;
FileType type;
// copy these files to a new snapshot directory
std::string snapdir = dbname_ + ".snapdir/";
std::string mkdir = "mkdir -p " + snapdir;
ASSERT_EQ(system(mkdir.c_str()), 0);
for (unsigned int i = 0; i < files.size(); i++) {
std::string src = dbname_ + "/" + files[i];
std::string dest = snapdir + "/" + files[i];
uint64_t size;
ASSERT_OK(env_->GetFileSize(src, &size));
// record the number and the size of the
// latest manifest file
if (ParseFileName(files[i].substr(1), &number, &type)) {
if (type == kDescriptorFile) {
if (number > manifest_number) {
manifest_number = number;
ASSERT_GE(size, manifest_size);
size = manifest_size; // copy only valid MANIFEST data
}
}
}
SequentialFile* srcfile;
ASSERT_OK(env_->NewSequentialFile(src, &srcfile));
WritableFile* destfile;
ASSERT_OK(env_->NewWritableFile(dest, &destfile));
char buffer[4096];
Slice slice;
while (size > 0) {
uint64_t one = std::min(sizeof(buffer), size);
ASSERT_OK(srcfile->Read(one, &slice, buffer));
ASSERT_OK(destfile->Append(slice));
size -= slice.size();
}
ASSERT_OK(destfile->Close());
delete destfile;
delete srcfile;
}
// release file snapshot
dbfull()->DisableFileDeletions();
// overwrite one key, this key should not appear in the snapshot
std::vector<std::string> extras;
for (unsigned int i = 0; i < 1; i++) {
extras.push_back(RandomString(&rnd, 100000));
ASSERT_OK(Put(Key(i), extras[i]));
}
// verify that data in the snapshot are correct
Options opts;
DB* snapdb;
opts.create_if_missing = false;
Status stat = DB::Open(opts, snapdir, &snapdb);
ASSERT_TRUE(stat.ok());
ReadOptions roptions;
std::string val;
for (unsigned int i = 0; i < 80; i++) {
stat = snapdb->Get(roptions, Key(i), &val);
ASSERT_EQ(values[i].compare(val), 0);
}
delete snapdb;
// look at the new live files after we added an 'extra' key
// and after we took the first snapshot.
uint64_t new_manifest_number = 0;
uint64_t new_manifest_size = 0;
std::vector<std::string> newfiles;
dbfull()->DisableFileDeletions();
dbfull()->GetLiveFiles(newfiles, &new_manifest_size);
// find the new manifest file. assert that this manifest file is
// the same one as in the previous snapshot. But its size should be
// larger because we added an extra key after taking the
// previous shapshot.
for (unsigned int i = 0; i < newfiles.size(); i++) {
std::string src = dbname_ + "/" + newfiles[i];
// record the lognumber and the size of the
// latest manifest file
if (ParseFileName(newfiles[i].substr(1), &number, &type)) {
if (type == kDescriptorFile) {
if (number > new_manifest_number) {
uint64_t size;
new_manifest_number = number;
ASSERT_OK(env_->GetFileSize(src, &size));
ASSERT_GE(size, new_manifest_size);
}
}
}
}
ASSERT_EQ(manifest_number, new_manifest_number);
ASSERT_GT(new_manifest_size, manifest_size);
// release file snapshot
dbfull()->DisableFileDeletions();
}
// Multi-threaded test:
namespace {
static const int kNumThreads = 4;
static const int kTestSeconds = 10;
static const int kNumKeys = 1000;
struct MTState {
DBTest* test;
port::AtomicPointer stop;
port::AtomicPointer counter[kNumThreads];
port::AtomicPointer thread_done[kNumThreads];
};
struct MTThread {
MTState* state;
int id;
};
static void MTThreadBody(void* arg) {
MTThread* t = reinterpret_cast<MTThread*>(arg);
int id = t->id;
DB* db = t->state->test->db_;
uintptr_t counter = 0;
fprintf(stderr, "... starting thread %d\n", id);
Random rnd(1000 + id);
std::string value;
char valbuf[1500];
while (t->state->stop.Acquire_Load() == NULL) {
t->state->counter[id].Release_Store(reinterpret_cast<void*>(counter));
int key = rnd.Uniform(kNumKeys);
char keybuf[20];
snprintf(keybuf, sizeof(keybuf), "%016d", key);
if (rnd.OneIn(2)) {
// Write values of the form <key, my id, counter>.
// We add some padding for force compactions.
snprintf(valbuf, sizeof(valbuf), "%d.%d.%-1000d",
key, id, static_cast<int>(counter));
ASSERT_OK(db->Put(WriteOptions(), Slice(keybuf), Slice(valbuf)));
} else {
// Read a value and verify that it matches the pattern written above.
Status s = db->Get(ReadOptions(), Slice(keybuf), &value);
if (s.IsNotFound()) {
// Key has not yet been written
} else {
// Check that the writer thread counter is >= the counter in the value
ASSERT_OK(s);
int k, w, c;
ASSERT_EQ(3, sscanf(value.c_str(), "%d.%d.%d", &k, &w, &c)) << value;
ASSERT_EQ(k, key);
ASSERT_GE(w, 0);
ASSERT_LT(w, kNumThreads);
ASSERT_LE(c, reinterpret_cast<uintptr_t>(
t->state->counter[w].Acquire_Load()));
}
}
counter++;
}
t->state->thread_done[id].Release_Store(t);
fprintf(stderr, "... stopping thread %d after %d ops\n", id, int(counter));
}
} // namespace
TEST(DBTest, MultiThreaded) {
do {
// Initialize state
MTState mt;
mt.test = this;
mt.stop.Release_Store(0);
for (int id = 0; id < kNumThreads; id++) {
mt.counter[id].Release_Store(0);
mt.thread_done[id].Release_Store(0);
}
// Start threads
MTThread thread[kNumThreads];
for (int id = 0; id < kNumThreads; id++) {
thread[id].state = &mt;
thread[id].id = id;
env_->StartThread(MTThreadBody, &thread[id]);
}
// Let them run for a while
env_->SleepForMicroseconds(kTestSeconds * 1000000);
// Stop the threads and wait for them to finish
mt.stop.Release_Store(&mt);
for (int id = 0; id < kNumThreads; id++) {
while (mt.thread_done[id].Acquire_Load() == NULL) {
env_->SleepForMicroseconds(100000);
}
}
} while (ChangeOptions());
}
namespace {
typedef std::map<std::string, std::string> KVMap;
}
class ModelDB: public DB {
public:
class ModelSnapshot : public Snapshot {
public:
KVMap map_;
};
explicit ModelDB(const Options& options): options_(options) { }
~ModelDB() { }
virtual Status Put(const WriteOptions& o, const Slice& k, const Slice& v) {
return DB::Put(o, k, v);
}
virtual Status Delete(const WriteOptions& o, const Slice& key) {
return DB::Delete(o, key);
}
virtual Status Get(const ReadOptions& options,
const Slice& key, std::string* value) {
assert(false); // Not implemented
return Status::NotFound(key);
}
virtual Iterator* NewIterator(const ReadOptions& options) {
if (options.snapshot == NULL) {
KVMap* saved = new KVMap;
*saved = map_;
return new ModelIter(saved, true);
} else {
const KVMap* snapshot_state =
&(reinterpret_cast<const ModelSnapshot*>(options.snapshot)->map_);
return new ModelIter(snapshot_state, false);
}
}
virtual const Snapshot* GetSnapshot() {
ModelSnapshot* snapshot = new ModelSnapshot;
snapshot->map_ = map_;
return snapshot;
}
virtual void ReleaseSnapshot(const Snapshot* snapshot) {
delete reinterpret_cast<const ModelSnapshot*>(snapshot);
}
virtual Status Write(const WriteOptions& options, WriteBatch* batch) {
class Handler : public WriteBatch::Handler {
public:
KVMap* map_;
virtual void Put(const Slice& key, const Slice& value) {
(*map_)[key.ToString()] = value.ToString();
}
virtual void Delete(const Slice& key) {
map_->erase(key.ToString());
}
};
Handler handler;
handler.map_ = &map_;
return batch->Iterate(&handler);
}
virtual bool GetProperty(const Slice& property, std::string* value) {
return false;
}
virtual void GetApproximateSizes(const Range* r, int n, uint64_t* sizes) {
for (int i = 0; i < n; i++) {
sizes[i] = 0;
}
}
virtual void CompactRange(const Slice* start, const Slice* end) {
}
virtual int NumberLevels()
{
return 1;
}
virtual int MaxMemCompactionLevel()
{
return 1;
}
virtual int Level0StopWriteTrigger()
{
return -1;
}
virtual Status Flush(const leveldb::FlushOptions& options) {
Status ret;
return ret;
}
virtual Status DisableFileDeletions() {
return Status::OK();
}
virtual Status EnableFileDeletions() {
return Status::OK();
}
virtual Status GetLiveFiles(std::vector<std::string>&, uint64_t* size) {
return Status::OK();
}
private:
class ModelIter: public Iterator {
public:
ModelIter(const KVMap* map, bool owned)
: map_(map), owned_(owned), iter_(map_->end()) {
}
~ModelIter() {
if (owned_) delete map_;
}
virtual bool Valid() const { return iter_ != map_->end(); }
virtual void SeekToFirst() { iter_ = map_->begin(); }
virtual void SeekToLast() {
if (map_->empty()) {
iter_ = map_->end();
} else {
iter_ = map_->find(map_->rbegin()->first);
}
}
virtual void Seek(const Slice& k) {
iter_ = map_->lower_bound(k.ToString());
}
virtual void Next() { ++iter_; }
virtual void Prev() { --iter_; }
virtual Slice key() const { return iter_->first; }
virtual Slice value() const { return iter_->second; }
virtual Status status() const { return Status::OK(); }
private:
const KVMap* const map_;
const bool owned_; // Do we own map_
KVMap::const_iterator iter_;
};
const Options options_;
KVMap map_;
};
static std::string RandomKey(Random* rnd) {
int len = (rnd->OneIn(3)
? 1 // Short sometimes to encourage collisions
: (rnd->OneIn(100) ? rnd->Skewed(10) : rnd->Uniform(10)));
return test::RandomKey(rnd, len);
}
static bool CompareIterators(int step,
DB* model,
DB* db,
const Snapshot* model_snap,
const Snapshot* db_snap) {
ReadOptions options;
options.snapshot = model_snap;
Iterator* miter = model->NewIterator(options);
options.snapshot = db_snap;
Iterator* dbiter = db->NewIterator(options);
bool ok = true;
int count = 0;
for (miter->SeekToFirst(), dbiter->SeekToFirst();
ok && miter->Valid() && dbiter->Valid();
miter->Next(), dbiter->Next()) {
count++;
if (miter->key().compare(dbiter->key()) != 0) {
fprintf(stderr, "step %d: Key mismatch: '%s' vs. '%s'\n",
step,
EscapeString(miter->key()).c_str(),
EscapeString(dbiter->key()).c_str());
ok = false;
break;
}
if (miter->value().compare(dbiter->value()) != 0) {
fprintf(stderr, "step %d: Value mismatch for key '%s': '%s' vs. '%s'\n",
step,
EscapeString(miter->key()).c_str(),
EscapeString(miter->value()).c_str(),
EscapeString(miter->value()).c_str());
ok = false;
}
}
if (ok) {
if (miter->Valid() != dbiter->Valid()) {
fprintf(stderr, "step %d: Mismatch at end of iterators: %d vs. %d\n",
step, miter->Valid(), dbiter->Valid());
ok = false;
}
}
fprintf(stderr, "%d entries compared: ok=%d\n", count, ok);
delete miter;
delete dbiter;
return ok;
}
TEST(DBTest, Randomized) {
Random rnd(test::RandomSeed());
do {
ModelDB model(CurrentOptions());
const int N = 10000;
const Snapshot* model_snap = NULL;
const Snapshot* db_snap = NULL;
std::string k, v;
for (int step = 0; step < N; step++) {
if (step % 100 == 0) {
fprintf(stderr, "Step %d of %d\n", step, N);
}
// TODO(sanjay): Test Get() works
int p = rnd.Uniform(100);
if (p < 45) { // Put
k = RandomKey(&rnd);
v = RandomString(&rnd,
rnd.OneIn(20)
? 100 + rnd.Uniform(100)
: rnd.Uniform(8));
ASSERT_OK(model.Put(WriteOptions(), k, v));
ASSERT_OK(db_->Put(WriteOptions(), k, v));
} else if (p < 90) { // Delete
k = RandomKey(&rnd);
ASSERT_OK(model.Delete(WriteOptions(), k));
ASSERT_OK(db_->Delete(WriteOptions(), k));
} else { // Multi-element batch
WriteBatch b;
const int num = rnd.Uniform(8);
for (int i = 0; i < num; i++) {
if (i == 0 || !rnd.OneIn(10)) {
k = RandomKey(&rnd);
} else {
// Periodically re-use the same key from the previous iter, so
// we have multiple entries in the write batch for the same key
}
if (rnd.OneIn(2)) {
v = RandomString(&rnd, rnd.Uniform(10));
b.Put(k, v);
} else {
b.Delete(k);
}
}
ASSERT_OK(model.Write(WriteOptions(), &b));
ASSERT_OK(db_->Write(WriteOptions(), &b));
}
if ((step % 100) == 0) {
ASSERT_TRUE(CompareIterators(step, &model, db_, NULL, NULL));
ASSERT_TRUE(CompareIterators(step, &model, db_, model_snap, db_snap));
// Save a snapshot from each DB this time that we'll use next
// time we compare things, to make sure the current state is
// preserved with the snapshot
if (model_snap != NULL) model.ReleaseSnapshot(model_snap);
if (db_snap != NULL) db_->ReleaseSnapshot(db_snap);
Reopen();
ASSERT_TRUE(CompareIterators(step, &model, db_, NULL, NULL));
model_snap = model.GetSnapshot();
db_snap = db_->GetSnapshot();
}
}
if (model_snap != NULL) model.ReleaseSnapshot(model_snap);
if (db_snap != NULL) db_->ReleaseSnapshot(db_snap);
} while (ChangeOptions());
}
std::string MakeKey(unsigned int num) {
char buf[30];
snprintf(buf, sizeof(buf), "%016u", num);
return std::string(buf);
}
void BM_LogAndApply(int iters, int num_base_files) {
std::string dbname = test::TmpDir() + "/leveldb_test_benchmark";
DestroyDB(dbname, Options());
DB* db = NULL;
Options opts;
opts.create_if_missing = true;
Status s = DB::Open(opts, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != NULL);
delete db;
db = NULL;
Env* env = Env::Default();
port::Mutex mu;
MutexLock l(&mu);
InternalKeyComparator cmp(BytewiseComparator());
Options options;
VersionSet vset(dbname, &options, NULL, &cmp);
ASSERT_OK(vset.Recover());
VersionEdit vbase(vset.NumberLevels());
uint64_t fnum = 1;
for (int i = 0; i < num_base_files; i++) {
InternalKey start(MakeKey(2*fnum), 1, kTypeValue);
InternalKey limit(MakeKey(2*fnum+1), 1, kTypeDeletion);
vbase.AddFile(2, fnum++, 1 /* file size */, start, limit);
}
ASSERT_OK(vset.LogAndApply(&vbase, &mu));
uint64_t start_micros = env->NowMicros();
for (int i = 0; i < iters; i++) {
VersionEdit vedit(vset.NumberLevels());
vedit.DeleteFile(2, fnum);
InternalKey start(MakeKey(2*fnum), 1, kTypeValue);
InternalKey limit(MakeKey(2*fnum+1), 1, kTypeDeletion);
vedit.AddFile(2, fnum++, 1 /* file size */, start, limit);
vset.LogAndApply(&vedit, &mu);
}
uint64_t stop_micros = env->NowMicros();
unsigned int us = stop_micros - start_micros;
char buf[16];
snprintf(buf, sizeof(buf), "%d", num_base_files);
fprintf(stderr,
"BM_LogAndApply/%-6s %8d iters : %9u us (%7.0f us / iter)\n",
buf, iters, us, ((float)us) / iters);
}
} // namespace leveldb
int main(int argc, char** argv) {
if (argc > 1 && std::string(argv[1]) == "--benchmark") {
leveldb::BM_LogAndApply(1000, 1);
leveldb::BM_LogAndApply(1000, 100);
leveldb::BM_LogAndApply(1000, 10000);
leveldb::BM_LogAndApply(100, 100000);
return 0;
}
return leveldb::test::RunAllTests();
}