rocksdb/memtable/memtablerep_bench.cc
mrambacher c7c7b07f06 More Makefile Cleanup (#7097)
Summary:
Cleans up some of the dependencies on test code in the Makefile while building tools:
- Moves the test::RandomString, DBBaseTest::RandomString into Random
- Moves the test::RandomHumanReadableString into Random
- Moves the DestroyDir method into file_utils
- Moves the SetupSyncPointsToMockDirectIO into sync_point.
- Moves the FaultInjection Env and FS classes under env

These changes allow all of the tools to build without dependencies on test_util, thereby simplifying the build dependencies.  By moving the FaultInjection code, the dependency in db_stress on different libraries for debug vs release was eliminated.

Tested both release and debug builds via Make and CMake for both static and shared libraries.

More work remains to clean up how the tools are built and remove some unnecessary dependencies.  There is also more work that should be done to get the Makefile and CMake to align in their builds -- what is in the libraries and the sizes of the executables are different.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/7097

Reviewed By: riversand963

Differential Revision: D22463160

Pulled By: pdillinger

fbshipit-source-id: e19462b53324ab3f0b7c72459dbc73165cc382b2
2020-07-09 14:35:17 -07:00

678 lines
24 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#ifndef GFLAGS
#include <cstdio>
int main() {
fprintf(stderr, "Please install gflags to run rocksdb tools\n");
return 1;
}
#else
#include <atomic>
#include <iostream>
#include <memory>
#include <thread>
#include <type_traits>
#include <vector>
#include "db/dbformat.h"
#include "db/memtable.h"
#include "memory/arena.h"
#include "port/port.h"
#include "port/stack_trace.h"
#include "rocksdb/comparator.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/options.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/write_buffer_manager.h"
#include "test_util/testutil.h"
#include "util/gflags_compat.h"
#include "util/mutexlock.h"
#include "util/stop_watch.h"
using GFLAGS_NAMESPACE::ParseCommandLineFlags;
using GFLAGS_NAMESPACE::RegisterFlagValidator;
using GFLAGS_NAMESPACE::SetUsageMessage;
DEFINE_string(benchmarks, "fillrandom",
"Comma-separated list of benchmarks to run. Options:\n"
"\tfillrandom -- write N random values\n"
"\tfillseq -- write N values in sequential order\n"
"\treadrandom -- read N values in random order\n"
"\treadseq -- scan the DB\n"
"\treadwrite -- 1 thread writes while N - 1 threads "
"do random\n"
"\t reads\n"
"\tseqreadwrite -- 1 thread writes while N - 1 threads "
"do scans\n");
DEFINE_string(memtablerep, "skiplist",
"Which implementation of memtablerep to use. See "
"include/memtablerep.h for\n"
" more details. Options:\n"
"\tskiplist -- backed by a skiplist\n"
"\tvector -- backed by an std::vector\n"
"\thashskiplist -- backed by a hash skip list\n"
"\thashlinklist -- backed by a hash linked list\n"
"\tcuckoo -- backed by a cuckoo hash table");
DEFINE_int64(bucket_count, 1000000,
"bucket_count parameter to pass into NewHashSkiplistRepFactory or "
"NewHashLinkListRepFactory");
DEFINE_int32(
hashskiplist_height, 4,
"skiplist_height parameter to pass into NewHashSkiplistRepFactory");
DEFINE_int32(
hashskiplist_branching_factor, 4,
"branching_factor parameter to pass into NewHashSkiplistRepFactory");
DEFINE_int32(
huge_page_tlb_size, 0,
"huge_page_tlb_size parameter to pass into NewHashLinkListRepFactory");
DEFINE_int32(bucket_entries_logging_threshold, 4096,
"bucket_entries_logging_threshold parameter to pass into "
"NewHashLinkListRepFactory");
DEFINE_bool(if_log_bucket_dist_when_flash, true,
"if_log_bucket_dist_when_flash parameter to pass into "
"NewHashLinkListRepFactory");
DEFINE_int32(
threshold_use_skiplist, 256,
"threshold_use_skiplist parameter to pass into NewHashLinkListRepFactory");
DEFINE_int64(write_buffer_size, 256,
"write_buffer_size parameter to pass into WriteBufferManager");
DEFINE_int32(
num_threads, 1,
"Number of concurrent threads to run. If the benchmark includes writes,\n"
"then at most one thread will be a writer");
DEFINE_int32(num_operations, 1000000,
"Number of operations to do for write and random read benchmarks");
DEFINE_int32(num_scans, 10,
"Number of times for each thread to scan the memtablerep for "
"sequential read "
"benchmarks");
DEFINE_int32(item_size, 100, "Number of bytes each item should be");
DEFINE_int32(prefix_length, 8,
"Prefix length to pass into NewFixedPrefixTransform");
/* VectorRep settings */
DEFINE_int64(vectorrep_count, 0,
"Number of entries to reserve on VectorRep initialization");
DEFINE_int64(seed, 0,
"Seed base for random number generators. "
"When 0 it is deterministic.");
namespace ROCKSDB_NAMESPACE {
namespace {
struct CallbackVerifyArgs {
bool found;
LookupKey* key;
MemTableRep* table;
InternalKeyComparator* comparator;
};
} // namespace
// Helper for quickly generating random data.
class RandomGenerator {
private:
std::string data_;
unsigned int pos_;
public:
RandomGenerator() {
Random rnd(301);
auto size = (unsigned)std::max(1048576, FLAGS_item_size);
data_ = rnd.RandomString(size);
pos_ = 0;
}
Slice Generate(unsigned int len) {
assert(len <= data_.size());
if (pos_ + len > data_.size()) {
pos_ = 0;
}
pos_ += len;
return Slice(data_.data() + pos_ - len, len);
}
};
enum WriteMode { SEQUENTIAL, RANDOM, UNIQUE_RANDOM };
class KeyGenerator {
public:
KeyGenerator(Random64* rand, WriteMode mode, uint64_t num)
: rand_(rand), mode_(mode), num_(num), next_(0) {
if (mode_ == UNIQUE_RANDOM) {
// NOTE: if memory consumption of this approach becomes a concern,
// we can either break it into pieces and only random shuffle a section
// each time. Alternatively, use a bit map implementation
// (https://reviews.facebook.net/differential/diff/54627/)
values_.resize(num_);
for (uint64_t i = 0; i < num_; ++i) {
values_[i] = i;
}
RandomShuffle(values_.begin(), values_.end(),
static_cast<uint32_t>(FLAGS_seed));
}
}
uint64_t Next() {
switch (mode_) {
case SEQUENTIAL:
return next_++;
case RANDOM:
return rand_->Next() % num_;
case UNIQUE_RANDOM:
return values_[next_++];
}
assert(false);
return std::numeric_limits<uint64_t>::max();
}
private:
Random64* rand_;
WriteMode mode_;
const uint64_t num_;
uint64_t next_;
std::vector<uint64_t> values_;
};
class BenchmarkThread {
public:
explicit BenchmarkThread(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* bytes_written, uint64_t* bytes_read,
uint64_t* sequence, uint64_t num_ops,
uint64_t* read_hits)
: table_(table),
key_gen_(key_gen),
bytes_written_(bytes_written),
bytes_read_(bytes_read),
sequence_(sequence),
num_ops_(num_ops),
read_hits_(read_hits) {}
virtual void operator()() = 0;
virtual ~BenchmarkThread() {}
protected:
MemTableRep* table_;
KeyGenerator* key_gen_;
uint64_t* bytes_written_;
uint64_t* bytes_read_;
uint64_t* sequence_;
uint64_t num_ops_;
uint64_t* read_hits_;
RandomGenerator generator_;
};
class FillBenchmarkThread : public BenchmarkThread {
public:
FillBenchmarkThread(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* bytes_written, uint64_t* bytes_read,
uint64_t* sequence, uint64_t num_ops, uint64_t* read_hits)
: BenchmarkThread(table, key_gen, bytes_written, bytes_read, sequence,
num_ops, read_hits) {}
void FillOne() {
char* buf = nullptr;
auto internal_key_size = 16;
auto encoded_len =
FLAGS_item_size + VarintLength(internal_key_size) + internal_key_size;
KeyHandle handle = table_->Allocate(encoded_len, &buf);
assert(buf != nullptr);
char* p = EncodeVarint32(buf, internal_key_size);
auto key = key_gen_->Next();
EncodeFixed64(p, key);
p += 8;
EncodeFixed64(p, ++(*sequence_));
p += 8;
Slice bytes = generator_.Generate(FLAGS_item_size);
memcpy(p, bytes.data(), FLAGS_item_size);
p += FLAGS_item_size;
assert(p == buf + encoded_len);
table_->Insert(handle);
*bytes_written_ += encoded_len;
}
void operator()() override {
for (unsigned int i = 0; i < num_ops_; ++i) {
FillOne();
}
}
};
class ConcurrentFillBenchmarkThread : public FillBenchmarkThread {
public:
ConcurrentFillBenchmarkThread(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* bytes_written, uint64_t* bytes_read,
uint64_t* sequence, uint64_t num_ops,
uint64_t* read_hits,
std::atomic_int* threads_done)
: FillBenchmarkThread(table, key_gen, bytes_written, bytes_read, sequence,
num_ops, read_hits) {
threads_done_ = threads_done;
}
void operator()() override {
// # of read threads will be total threads - write threads (always 1). Loop
// while all reads complete.
while ((*threads_done_).load() < (FLAGS_num_threads - 1)) {
FillOne();
}
}
private:
std::atomic_int* threads_done_;
};
class ReadBenchmarkThread : public BenchmarkThread {
public:
ReadBenchmarkThread(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* bytes_written, uint64_t* bytes_read,
uint64_t* sequence, uint64_t num_ops, uint64_t* read_hits)
: BenchmarkThread(table, key_gen, bytes_written, bytes_read, sequence,
num_ops, read_hits) {}
static bool callback(void* arg, const char* entry) {
CallbackVerifyArgs* callback_args = static_cast<CallbackVerifyArgs*>(arg);
assert(callback_args != nullptr);
uint32_t key_length;
const char* key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length);
if ((callback_args->comparator)
->user_comparator()
->Equal(Slice(key_ptr, key_length - 8),
callback_args->key->user_key())) {
callback_args->found = true;
}
return false;
}
void ReadOne() {
std::string user_key;
auto key = key_gen_->Next();
PutFixed64(&user_key, key);
LookupKey lookup_key(user_key, *sequence_);
InternalKeyComparator internal_key_comp(BytewiseComparator());
CallbackVerifyArgs verify_args;
verify_args.found = false;
verify_args.key = &lookup_key;
verify_args.table = table_;
verify_args.comparator = &internal_key_comp;
table_->Get(lookup_key, &verify_args, callback);
if (verify_args.found) {
*bytes_read_ += VarintLength(16) + 16 + FLAGS_item_size;
++*read_hits_;
}
}
void operator()() override {
for (unsigned int i = 0; i < num_ops_; ++i) {
ReadOne();
}
}
};
class SeqReadBenchmarkThread : public BenchmarkThread {
public:
SeqReadBenchmarkThread(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* bytes_written, uint64_t* bytes_read,
uint64_t* sequence, uint64_t num_ops,
uint64_t* read_hits)
: BenchmarkThread(table, key_gen, bytes_written, bytes_read, sequence,
num_ops, read_hits) {}
void ReadOneSeq() {
std::unique_ptr<MemTableRep::Iterator> iter(table_->GetIterator());
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
// pretend to read the value
*bytes_read_ += VarintLength(16) + 16 + FLAGS_item_size;
}
++*read_hits_;
}
void operator()() override {
for (unsigned int i = 0; i < num_ops_; ++i) {
{ ReadOneSeq(); }
}
}
};
class ConcurrentReadBenchmarkThread : public ReadBenchmarkThread {
public:
ConcurrentReadBenchmarkThread(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* bytes_written, uint64_t* bytes_read,
uint64_t* sequence, uint64_t num_ops,
uint64_t* read_hits,
std::atomic_int* threads_done)
: ReadBenchmarkThread(table, key_gen, bytes_written, bytes_read, sequence,
num_ops, read_hits) {
threads_done_ = threads_done;
}
void operator()() override {
for (unsigned int i = 0; i < num_ops_; ++i) {
ReadOne();
}
++*threads_done_;
}
private:
std::atomic_int* threads_done_;
};
class SeqConcurrentReadBenchmarkThread : public SeqReadBenchmarkThread {
public:
SeqConcurrentReadBenchmarkThread(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* bytes_written,
uint64_t* bytes_read, uint64_t* sequence,
uint64_t num_ops, uint64_t* read_hits,
std::atomic_int* threads_done)
: SeqReadBenchmarkThread(table, key_gen, bytes_written, bytes_read,
sequence, num_ops, read_hits) {
threads_done_ = threads_done;
}
void operator()() override {
for (unsigned int i = 0; i < num_ops_; ++i) {
ReadOneSeq();
}
++*threads_done_;
}
private:
std::atomic_int* threads_done_;
};
class Benchmark {
public:
explicit Benchmark(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* sequence, uint32_t num_threads)
: table_(table),
key_gen_(key_gen),
sequence_(sequence),
num_threads_(num_threads) {}
virtual ~Benchmark() {}
virtual void Run() {
std::cout << "Number of threads: " << num_threads_ << std::endl;
std::vector<port::Thread> threads;
uint64_t bytes_written = 0;
uint64_t bytes_read = 0;
uint64_t read_hits = 0;
StopWatchNano timer(Env::Default(), true);
RunThreads(&threads, &bytes_written, &bytes_read, true, &read_hits);
auto elapsed_time = static_cast<double>(timer.ElapsedNanos() / 1000);
std::cout << "Elapsed time: " << static_cast<int>(elapsed_time) << " us"
<< std::endl;
if (bytes_written > 0) {
auto MiB_written = static_cast<double>(bytes_written) / (1 << 20);
auto write_throughput = MiB_written / (elapsed_time / 1000000);
std::cout << "Total bytes written: " << MiB_written << " MiB"
<< std::endl;
std::cout << "Write throughput: " << write_throughput << " MiB/s"
<< std::endl;
auto us_per_op = elapsed_time / num_write_ops_per_thread_;
std::cout << "write us/op: " << us_per_op << std::endl;
}
if (bytes_read > 0) {
auto MiB_read = static_cast<double>(bytes_read) / (1 << 20);
auto read_throughput = MiB_read / (elapsed_time / 1000000);
std::cout << "Total bytes read: " << MiB_read << " MiB" << std::endl;
std::cout << "Read throughput: " << read_throughput << " MiB/s"
<< std::endl;
auto us_per_op = elapsed_time / num_read_ops_per_thread_;
std::cout << "read us/op: " << us_per_op << std::endl;
}
}
virtual void RunThreads(std::vector<port::Thread>* threads,
uint64_t* bytes_written, uint64_t* bytes_read,
bool write, uint64_t* read_hits) = 0;
protected:
MemTableRep* table_;
KeyGenerator* key_gen_;
uint64_t* sequence_;
uint64_t num_write_ops_per_thread_ = 0;
uint64_t num_read_ops_per_thread_ = 0;
const uint32_t num_threads_;
};
class FillBenchmark : public Benchmark {
public:
explicit FillBenchmark(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* sequence)
: Benchmark(table, key_gen, sequence, 1) {
num_write_ops_per_thread_ = FLAGS_num_operations;
}
void RunThreads(std::vector<port::Thread>* /*threads*/, uint64_t* bytes_written,
uint64_t* bytes_read, bool /*write*/,
uint64_t* read_hits) override {
FillBenchmarkThread(table_, key_gen_, bytes_written, bytes_read, sequence_,
num_write_ops_per_thread_, read_hits)();
}
};
class ReadBenchmark : public Benchmark {
public:
explicit ReadBenchmark(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* sequence)
: Benchmark(table, key_gen, sequence, FLAGS_num_threads) {
num_read_ops_per_thread_ = FLAGS_num_operations / FLAGS_num_threads;
}
void RunThreads(std::vector<port::Thread>* threads, uint64_t* bytes_written,
uint64_t* bytes_read, bool /*write*/,
uint64_t* read_hits) override {
for (int i = 0; i < FLAGS_num_threads; ++i) {
threads->emplace_back(
ReadBenchmarkThread(table_, key_gen_, bytes_written, bytes_read,
sequence_, num_read_ops_per_thread_, read_hits));
}
for (auto& thread : *threads) {
thread.join();
}
std::cout << "read hit%: "
<< (static_cast<double>(*read_hits) / FLAGS_num_operations) * 100
<< std::endl;
}
};
class SeqReadBenchmark : public Benchmark {
public:
explicit SeqReadBenchmark(MemTableRep* table, uint64_t* sequence)
: Benchmark(table, nullptr, sequence, FLAGS_num_threads) {
num_read_ops_per_thread_ = FLAGS_num_scans;
}
void RunThreads(std::vector<port::Thread>* threads, uint64_t* bytes_written,
uint64_t* bytes_read, bool /*write*/,
uint64_t* read_hits) override {
for (int i = 0; i < FLAGS_num_threads; ++i) {
threads->emplace_back(SeqReadBenchmarkThread(
table_, key_gen_, bytes_written, bytes_read, sequence_,
num_read_ops_per_thread_, read_hits));
}
for (auto& thread : *threads) {
thread.join();
}
}
};
template <class ReadThreadType>
class ReadWriteBenchmark : public Benchmark {
public:
explicit ReadWriteBenchmark(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* sequence)
: Benchmark(table, key_gen, sequence, FLAGS_num_threads) {
num_read_ops_per_thread_ =
FLAGS_num_threads <= 1
? 0
: (FLAGS_num_operations / (FLAGS_num_threads - 1));
num_write_ops_per_thread_ = FLAGS_num_operations;
}
void RunThreads(std::vector<port::Thread>* threads, uint64_t* bytes_written,
uint64_t* bytes_read, bool /*write*/,
uint64_t* read_hits) override {
std::atomic_int threads_done;
threads_done.store(0);
threads->emplace_back(ConcurrentFillBenchmarkThread(
table_, key_gen_, bytes_written, bytes_read, sequence_,
num_write_ops_per_thread_, read_hits, &threads_done));
for (int i = 1; i < FLAGS_num_threads; ++i) {
threads->emplace_back(
ReadThreadType(table_, key_gen_, bytes_written, bytes_read, sequence_,
num_read_ops_per_thread_, read_hits, &threads_done));
}
for (auto& thread : *threads) {
thread.join();
}
}
};
} // namespace ROCKSDB_NAMESPACE
void PrintWarnings() {
#if defined(__GNUC__) && !defined(__OPTIMIZE__)
fprintf(stdout,
"WARNING: Optimization is disabled: benchmarks unnecessarily slow\n");
#endif
#ifndef NDEBUG
fprintf(stdout,
"WARNING: Assertions are enabled; benchmarks unnecessarily slow\n");
#endif
}
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
SetUsageMessage(std::string("\nUSAGE:\n") + std::string(argv[0]) +
" [OPTIONS]...");
ParseCommandLineFlags(&argc, &argv, true);
PrintWarnings();
ROCKSDB_NAMESPACE::Options options;
std::unique_ptr<ROCKSDB_NAMESPACE::MemTableRepFactory> factory;
if (FLAGS_memtablerep == "skiplist") {
factory.reset(new ROCKSDB_NAMESPACE::SkipListFactory);
#ifndef ROCKSDB_LITE
} else if (FLAGS_memtablerep == "vector") {
factory.reset(new ROCKSDB_NAMESPACE::VectorRepFactory);
} else if (FLAGS_memtablerep == "hashskiplist") {
factory.reset(ROCKSDB_NAMESPACE::NewHashSkipListRepFactory(
FLAGS_bucket_count, FLAGS_hashskiplist_height,
FLAGS_hashskiplist_branching_factor));
options.prefix_extractor.reset(
ROCKSDB_NAMESPACE::NewFixedPrefixTransform(FLAGS_prefix_length));
} else if (FLAGS_memtablerep == "hashlinklist") {
factory.reset(ROCKSDB_NAMESPACE::NewHashLinkListRepFactory(
FLAGS_bucket_count, FLAGS_huge_page_tlb_size,
FLAGS_bucket_entries_logging_threshold,
FLAGS_if_log_bucket_dist_when_flash, FLAGS_threshold_use_skiplist));
options.prefix_extractor.reset(
ROCKSDB_NAMESPACE::NewFixedPrefixTransform(FLAGS_prefix_length));
#endif // ROCKSDB_LITE
} else {
fprintf(stdout, "Unknown memtablerep: %s\n", FLAGS_memtablerep.c_str());
exit(1);
}
ROCKSDB_NAMESPACE::InternalKeyComparator internal_key_comp(
ROCKSDB_NAMESPACE::BytewiseComparator());
ROCKSDB_NAMESPACE::MemTable::KeyComparator key_comp(internal_key_comp);
ROCKSDB_NAMESPACE::Arena arena;
ROCKSDB_NAMESPACE::WriteBufferManager wb(FLAGS_write_buffer_size);
uint64_t sequence;
auto createMemtableRep = [&] {
sequence = 0;
return factory->CreateMemTableRep(key_comp, &arena,
options.prefix_extractor.get(),
options.info_log.get());
};
std::unique_ptr<ROCKSDB_NAMESPACE::MemTableRep> memtablerep;
ROCKSDB_NAMESPACE::Random64 rng(FLAGS_seed);
const char* benchmarks = FLAGS_benchmarks.c_str();
while (benchmarks != nullptr) {
std::unique_ptr<ROCKSDB_NAMESPACE::KeyGenerator> key_gen;
const char* sep = strchr(benchmarks, ',');
ROCKSDB_NAMESPACE::Slice name;
if (sep == nullptr) {
name = benchmarks;
benchmarks = nullptr;
} else {
name = ROCKSDB_NAMESPACE::Slice(benchmarks, sep - benchmarks);
benchmarks = sep + 1;
}
std::unique_ptr<ROCKSDB_NAMESPACE::Benchmark> benchmark;
if (name == ROCKSDB_NAMESPACE::Slice("fillseq")) {
memtablerep.reset(createMemtableRep());
key_gen.reset(new ROCKSDB_NAMESPACE::KeyGenerator(
&rng, ROCKSDB_NAMESPACE::SEQUENTIAL, FLAGS_num_operations));
benchmark.reset(new ROCKSDB_NAMESPACE::FillBenchmark(
memtablerep.get(), key_gen.get(), &sequence));
} else if (name == ROCKSDB_NAMESPACE::Slice("fillrandom")) {
memtablerep.reset(createMemtableRep());
key_gen.reset(new ROCKSDB_NAMESPACE::KeyGenerator(
&rng, ROCKSDB_NAMESPACE::UNIQUE_RANDOM, FLAGS_num_operations));
benchmark.reset(new ROCKSDB_NAMESPACE::FillBenchmark(
memtablerep.get(), key_gen.get(), &sequence));
} else if (name == ROCKSDB_NAMESPACE::Slice("readrandom")) {
key_gen.reset(new ROCKSDB_NAMESPACE::KeyGenerator(
&rng, ROCKSDB_NAMESPACE::RANDOM, FLAGS_num_operations));
benchmark.reset(new ROCKSDB_NAMESPACE::ReadBenchmark(
memtablerep.get(), key_gen.get(), &sequence));
} else if (name == ROCKSDB_NAMESPACE::Slice("readseq")) {
key_gen.reset(new ROCKSDB_NAMESPACE::KeyGenerator(
&rng, ROCKSDB_NAMESPACE::SEQUENTIAL, FLAGS_num_operations));
benchmark.reset(new ROCKSDB_NAMESPACE::SeqReadBenchmark(memtablerep.get(),
&sequence));
} else if (name == ROCKSDB_NAMESPACE::Slice("readwrite")) {
memtablerep.reset(createMemtableRep());
key_gen.reset(new ROCKSDB_NAMESPACE::KeyGenerator(
&rng, ROCKSDB_NAMESPACE::RANDOM, FLAGS_num_operations));
benchmark.reset(new ROCKSDB_NAMESPACE::ReadWriteBenchmark<
ROCKSDB_NAMESPACE::ConcurrentReadBenchmarkThread>(
memtablerep.get(), key_gen.get(), &sequence));
} else if (name == ROCKSDB_NAMESPACE::Slice("seqreadwrite")) {
memtablerep.reset(createMemtableRep());
key_gen.reset(new ROCKSDB_NAMESPACE::KeyGenerator(
&rng, ROCKSDB_NAMESPACE::RANDOM, FLAGS_num_operations));
benchmark.reset(new ROCKSDB_NAMESPACE::ReadWriteBenchmark<
ROCKSDB_NAMESPACE::SeqConcurrentReadBenchmarkThread>(
memtablerep.get(), key_gen.get(), &sequence));
} else {
std::cout << "WARNING: skipping unknown benchmark '" << name.ToString()
<< std::endl;
continue;
}
std::cout << "Running " << name.ToString() << std::endl;
benchmark->Run();
}
return 0;
}
#endif // GFLAGS