b20486f294
Summary: Converting from length prefixed buffer back to internal key costs some CPU but it is not necessary. In this patch, internal keys are pass though the functions so that we don't need to convert back to it. Test Plan: make all check Reviewers: haobo, kailiu Reviewed By: kailiu CC: igor, leveldb Differential Revision: https://reviews.facebook.net/D15393
471 lines
13 KiB
C++
471 lines
13 KiB
C++
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree. An additional grant
|
|
// of patent rights can be found in the PATENTS file in the same directory.
|
|
//
|
|
|
|
#include "util/hash_linklist_rep.h"
|
|
|
|
#include "rocksdb/memtablerep.h"
|
|
#include "rocksdb/arena.h"
|
|
#include "rocksdb/slice.h"
|
|
#include "rocksdb/slice_transform.h"
|
|
#include "port/port.h"
|
|
#include "port/atomic_pointer.h"
|
|
#include "util/murmurhash.h"
|
|
#include "db/memtable.h"
|
|
#include "db/skiplist.h"
|
|
|
|
namespace rocksdb {
|
|
namespace {
|
|
|
|
typedef const char* Key;
|
|
|
|
struct Node {
|
|
explicit Node(const Key& k) :
|
|
key(k) {
|
|
}
|
|
|
|
Key const key;
|
|
|
|
// Accessors/mutators for links. Wrapped in methods so we can
|
|
// add the appropriate barriers as necessary.
|
|
Node* Next() {
|
|
// Use an 'acquire load' so that we observe a fully initialized
|
|
// version of the returned Node.
|
|
return reinterpret_cast<Node*>(next_.Acquire_Load());
|
|
}
|
|
void SetNext(Node* x) {
|
|
// Use a 'release store' so that anybody who reads through this
|
|
// pointer observes a fully initialized version of the inserted node.
|
|
next_.Release_Store(x);
|
|
}
|
|
|
|
// No-barrier variants that can be safely used in a few locations.
|
|
Node* NoBarrier_Next() {
|
|
return reinterpret_cast<Node*>(next_.NoBarrier_Load());
|
|
}
|
|
void NoBarrier_SetNext(Node* x) {
|
|
next_.NoBarrier_Store(x);
|
|
}
|
|
|
|
private:
|
|
port::AtomicPointer next_;
|
|
};
|
|
|
|
class HashLinkListRep : public MemTableRep {
|
|
public:
|
|
HashLinkListRep(MemTableRep::KeyComparator& compare, Arena* arena,
|
|
const SliceTransform* transform, size_t bucket_size);
|
|
|
|
virtual void Insert(const char* key) override;
|
|
|
|
virtual bool Contains(const char* key) const override;
|
|
|
|
virtual size_t ApproximateMemoryUsage() override;
|
|
|
|
virtual ~HashLinkListRep();
|
|
|
|
virtual MemTableRep::Iterator* GetIterator() override;
|
|
|
|
virtual MemTableRep::Iterator* GetIterator(const Slice& slice) override;
|
|
|
|
virtual MemTableRep::Iterator* GetPrefixIterator(const Slice& prefix)
|
|
override;
|
|
|
|
virtual MemTableRep::Iterator* GetDynamicPrefixIterator() override;
|
|
|
|
private:
|
|
friend class DynamicIterator;
|
|
typedef SkipList<const char*, MemTableRep::KeyComparator&> FullList;
|
|
|
|
size_t bucket_size_;
|
|
|
|
// Maps slices (which are transformed user keys) to buckets of keys sharing
|
|
// the same transform.
|
|
port::AtomicPointer* buckets_;
|
|
|
|
// The user-supplied transform whose domain is the user keys.
|
|
const SliceTransform* transform_;
|
|
|
|
MemTableRep::KeyComparator& compare_;
|
|
// immutable after construction
|
|
Arena* const arena_;
|
|
|
|
bool BucketContains(Node* head, const Slice& key) const;
|
|
|
|
Slice GetPrefix(const Slice& internal_key) const {
|
|
return transform_->Transform(ExtractUserKey(internal_key));
|
|
}
|
|
|
|
size_t GetHash(const Slice& slice) const {
|
|
return MurmurHash(slice.data(), slice.size(), 0) % bucket_size_;
|
|
}
|
|
|
|
Node* GetBucket(size_t i) const {
|
|
return static_cast<Node*>(buckets_[i].Acquire_Load());
|
|
}
|
|
|
|
Node* GetBucket(const Slice& slice) const {
|
|
return GetBucket(GetHash(slice));
|
|
}
|
|
|
|
Node* NewNode(const Key& key) {
|
|
char* mem = arena_->AllocateAligned(sizeof(Node));
|
|
return new (mem) Node(key);
|
|
}
|
|
|
|
bool Equal(const Slice& a, const Key& b) const {
|
|
return (compare_(b, a) == 0);
|
|
}
|
|
|
|
|
|
bool Equal(const Key& a, const Key& b) const { return (compare_(a, b) == 0); }
|
|
|
|
bool KeyIsAfterNode(const Slice& internal_key, const Node* n) const {
|
|
// nullptr n is considered infinite
|
|
return (n != nullptr) && (compare_(n->key, internal_key) < 0);
|
|
}
|
|
|
|
bool KeyIsAfterNode(const Key& key, const Node* n) const {
|
|
// nullptr n is considered infinite
|
|
return (n != nullptr) && (compare_(n->key, key) < 0);
|
|
}
|
|
|
|
|
|
Node* FindGreaterOrEqualInBucket(Node* head, const Slice& key) const;
|
|
|
|
class FullListIterator : public MemTableRep::Iterator {
|
|
public:
|
|
explicit FullListIterator(FullList* list)
|
|
: iter_(list), full_list_(list) {}
|
|
|
|
virtual ~FullListIterator() {
|
|
}
|
|
|
|
// Returns true iff the iterator is positioned at a valid node.
|
|
virtual bool Valid() const {
|
|
return iter_.Valid();
|
|
}
|
|
|
|
// Returns the key at the current position.
|
|
// REQUIRES: Valid()
|
|
virtual const char* key() const {
|
|
assert(Valid());
|
|
return iter_.key();
|
|
}
|
|
|
|
// Advances to the next position.
|
|
// REQUIRES: Valid()
|
|
virtual void Next() {
|
|
assert(Valid());
|
|
iter_.Next();
|
|
}
|
|
|
|
// Advances to the previous position.
|
|
// REQUIRES: Valid()
|
|
virtual void Prev() {
|
|
assert(Valid());
|
|
iter_.Prev();
|
|
}
|
|
|
|
// Advance to the first entry with a key >= target
|
|
virtual void Seek(const Slice& internal_key, const char* memtable_key) {
|
|
const char* encoded_key =
|
|
(memtable_key != nullptr) ?
|
|
memtable_key : EncodeKey(&tmp_, internal_key);
|
|
iter_.Seek(encoded_key);
|
|
}
|
|
|
|
// Position at the first entry in collection.
|
|
// Final state of iterator is Valid() iff collection is not empty.
|
|
virtual void SeekToFirst() {
|
|
iter_.SeekToFirst();
|
|
}
|
|
|
|
// Position at the last entry in collection.
|
|
// Final state of iterator is Valid() iff collection is not empty.
|
|
virtual void SeekToLast() {
|
|
iter_.SeekToLast();
|
|
}
|
|
private:
|
|
FullList::Iterator iter_;
|
|
// To destruct with the iterator.
|
|
std::unique_ptr<FullList> full_list_;
|
|
std::string tmp_; // For passing to EncodeKey
|
|
};
|
|
|
|
class Iterator : public MemTableRep::Iterator {
|
|
public:
|
|
explicit Iterator(const HashLinkListRep* const hash_link_list_rep,
|
|
Node* head) :
|
|
hash_link_list_rep_(hash_link_list_rep), head_(head), node_(nullptr) {
|
|
}
|
|
|
|
virtual ~Iterator() {
|
|
}
|
|
|
|
// Returns true iff the iterator is positioned at a valid node.
|
|
virtual bool Valid() const {
|
|
return node_ != nullptr;
|
|
}
|
|
|
|
// Returns the key at the current position.
|
|
// REQUIRES: Valid()
|
|
virtual const char* key() const {
|
|
assert(Valid());
|
|
return node_->key;
|
|
}
|
|
|
|
// Advances to the next position.
|
|
// REQUIRES: Valid()
|
|
virtual void Next() {
|
|
assert(Valid());
|
|
node_ = node_->Next();
|
|
}
|
|
|
|
// Advances to the previous position.
|
|
// REQUIRES: Valid()
|
|
virtual void Prev() {
|
|
// Prefix iterator does not support total order.
|
|
// We simply set the iterator to invalid state
|
|
Reset(nullptr);
|
|
}
|
|
|
|
// Advance to the first entry with a key >= target
|
|
virtual void Seek(const Slice& internal_key, const char* memtable_key) {
|
|
node_ = hash_link_list_rep_->FindGreaterOrEqualInBucket(head_,
|
|
internal_key);
|
|
}
|
|
|
|
// Position at the first entry in collection.
|
|
// Final state of iterator is Valid() iff collection is not empty.
|
|
virtual void SeekToFirst() {
|
|
// Prefix iterator does not support total order.
|
|
// We simply set the iterator to invalid state
|
|
Reset(nullptr);
|
|
}
|
|
|
|
// Position at the last entry in collection.
|
|
// Final state of iterator is Valid() iff collection is not empty.
|
|
virtual void SeekToLast() {
|
|
// Prefix iterator does not support total order.
|
|
// We simply set the iterator to invalid state
|
|
Reset(nullptr);
|
|
}
|
|
|
|
protected:
|
|
void Reset(Node* head) {
|
|
head_ = head;
|
|
node_ = nullptr;
|
|
}
|
|
private:
|
|
friend class HashLinkListRep;
|
|
const HashLinkListRep* const hash_link_list_rep_;
|
|
Node* head_;
|
|
Node* node_;
|
|
std::string tmp_; // For passing to EncodeKey
|
|
|
|
virtual void SeekToHead() {
|
|
node_ = head_;
|
|
}
|
|
};
|
|
|
|
class DynamicIterator : public HashLinkListRep::Iterator {
|
|
public:
|
|
explicit DynamicIterator(HashLinkListRep& memtable_rep)
|
|
: HashLinkListRep::Iterator(&memtable_rep, nullptr),
|
|
memtable_rep_(memtable_rep) {}
|
|
|
|
// Advance to the first entry with a key >= target
|
|
virtual void Seek(const Slice& k, const char* memtable_key) {
|
|
auto transformed = memtable_rep_.GetPrefix(k);
|
|
Reset(memtable_rep_.GetBucket(transformed));
|
|
HashLinkListRep::Iterator::Seek(k, memtable_key);
|
|
}
|
|
|
|
private:
|
|
// the underlying memtable
|
|
const HashLinkListRep& memtable_rep_;
|
|
};
|
|
|
|
class EmptyIterator : public MemTableRep::Iterator {
|
|
// This is used when there wasn't a bucket. It is cheaper than
|
|
// instantiating an empty bucket over which to iterate.
|
|
public:
|
|
EmptyIterator() { }
|
|
virtual bool Valid() const {
|
|
return false;
|
|
}
|
|
virtual const char* key() const {
|
|
assert(false);
|
|
return nullptr;
|
|
}
|
|
virtual void Next() { }
|
|
virtual void Prev() { }
|
|
virtual void Seek(const Slice& user_key, const char* memtable_key) { }
|
|
virtual void SeekToFirst() { }
|
|
virtual void SeekToLast() { }
|
|
private:
|
|
};
|
|
};
|
|
|
|
HashLinkListRep::HashLinkListRep(MemTableRep::KeyComparator& compare,
|
|
Arena* arena, const SliceTransform* transform,
|
|
size_t bucket_size)
|
|
: bucket_size_(bucket_size),
|
|
transform_(transform),
|
|
compare_(compare),
|
|
arena_(arena) {
|
|
char* mem = arena_->AllocateAligned(
|
|
sizeof(port::AtomicPointer) * bucket_size);
|
|
|
|
buckets_ = new (mem) port::AtomicPointer[bucket_size];
|
|
|
|
for (size_t i = 0; i < bucket_size_; ++i) {
|
|
buckets_[i].NoBarrier_Store(nullptr);
|
|
}
|
|
}
|
|
|
|
HashLinkListRep::~HashLinkListRep() {
|
|
}
|
|
|
|
void HashLinkListRep::Insert(const char* key) {
|
|
assert(!Contains(key));
|
|
Slice internal_key = GetLengthPrefixedSlice(key);
|
|
auto transformed = GetPrefix(internal_key);
|
|
auto& bucket = buckets_[GetHash(transformed)];
|
|
Node* head = static_cast<Node*>(bucket.Acquire_Load());
|
|
|
|
if (!head) {
|
|
Node* x = NewNode(key);
|
|
// NoBarrier_SetNext() suffices since we will add a barrier when
|
|
// we publish a pointer to "x" in prev[i].
|
|
x->NoBarrier_SetNext(nullptr);
|
|
bucket.Release_Store(static_cast<void*>(x));
|
|
return;
|
|
}
|
|
|
|
Node* cur = head;
|
|
Node* prev = nullptr;
|
|
while (true) {
|
|
if (cur == nullptr) {
|
|
break;
|
|
}
|
|
Node* next = cur->Next();
|
|
// Make sure the lists are sorted.
|
|
// If x points to head_ or next points nullptr, it is trivially satisfied.
|
|
assert((cur == head) || (next == nullptr) ||
|
|
KeyIsAfterNode(next->key, cur));
|
|
if (KeyIsAfterNode(internal_key, cur)) {
|
|
// Keep searching in this list
|
|
prev = cur;
|
|
cur = next;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Our data structure does not allow duplicate insertion
|
|
assert(cur == nullptr || !Equal(key, cur->key));
|
|
|
|
Node* x = NewNode(key);
|
|
|
|
// NoBarrier_SetNext() suffices since we will add a barrier when
|
|
// we publish a pointer to "x" in prev[i].
|
|
x->NoBarrier_SetNext(cur);
|
|
|
|
if (prev) {
|
|
prev->SetNext(x);
|
|
} else {
|
|
bucket.Release_Store(static_cast<void*>(x));
|
|
}
|
|
}
|
|
|
|
bool HashLinkListRep::Contains(const char* key) const {
|
|
Slice internal_key = GetLengthPrefixedSlice(key);
|
|
|
|
auto transformed = GetPrefix(internal_key);
|
|
auto bucket = GetBucket(transformed);
|
|
if (bucket == nullptr) {
|
|
return false;
|
|
}
|
|
return BucketContains(bucket, internal_key);
|
|
}
|
|
|
|
size_t HashLinkListRep::ApproximateMemoryUsage() {
|
|
// Memory is always allocated from the arena.
|
|
return 0;
|
|
}
|
|
|
|
MemTableRep::Iterator* HashLinkListRep::GetIterator() {
|
|
auto list = new FullList(compare_, arena_);
|
|
for (size_t i = 0; i < bucket_size_; ++i) {
|
|
auto bucket = GetBucket(i);
|
|
if (bucket != nullptr) {
|
|
Iterator itr(this, bucket);
|
|
for (itr.SeekToHead(); itr.Valid(); itr.Next()) {
|
|
list->Insert(itr.key());
|
|
}
|
|
}
|
|
}
|
|
return new FullListIterator(list);
|
|
}
|
|
|
|
MemTableRep::Iterator* HashLinkListRep::GetPrefixIterator(
|
|
const Slice& prefix) {
|
|
auto bucket = GetBucket(prefix);
|
|
if (bucket == nullptr) {
|
|
return new EmptyIterator();
|
|
}
|
|
return new Iterator(this, bucket);
|
|
}
|
|
|
|
MemTableRep::Iterator* HashLinkListRep::GetIterator(const Slice& slice) {
|
|
return GetPrefixIterator(transform_->Transform(slice));
|
|
}
|
|
|
|
MemTableRep::Iterator* HashLinkListRep::GetDynamicPrefixIterator() {
|
|
return new DynamicIterator(*this);
|
|
}
|
|
|
|
bool HashLinkListRep::BucketContains(Node* head, const Slice& user_key) const {
|
|
Node* x = FindGreaterOrEqualInBucket(head, user_key);
|
|
return (x != nullptr && Equal(user_key, x->key));
|
|
}
|
|
|
|
Node* HashLinkListRep::FindGreaterOrEqualInBucket(Node* head,
|
|
const Slice& key) const {
|
|
Node* x = head;
|
|
while (true) {
|
|
if (x == nullptr) {
|
|
return x;
|
|
}
|
|
Node* next = x->Next();
|
|
// Make sure the lists are sorted.
|
|
// If x points to head_ or next points nullptr, it is trivially satisfied.
|
|
assert((x == head) || (next == nullptr) || KeyIsAfterNode(next->key, x));
|
|
if (KeyIsAfterNode(key, x)) {
|
|
// Keep searching in this list
|
|
x = next;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
return x;
|
|
}
|
|
|
|
} // anon namespace
|
|
|
|
MemTableRep* HashLinkListRepFactory::CreateMemTableRep(
|
|
MemTableRep::KeyComparator& compare, Arena* arena) {
|
|
return new HashLinkListRep(compare, arena, transform_, bucket_count_);
|
|
}
|
|
|
|
MemTableRepFactory* NewHashLinkListRepFactory(
|
|
const SliceTransform* transform, size_t bucket_count) {
|
|
return new HashLinkListRepFactory(transform, bucket_count);
|
|
}
|
|
|
|
} // namespace rocksdb
|