rocksdb/tools/block_cache_analyzer/block_cache_trace_analyzer.h
sdong fdf882ded2 Replace namespace name "rocksdb" with ROCKSDB_NAMESPACE (#6433)
Summary:
When dynamically linking two binaries together, different builds of RocksDB from two sources might cause errors. To provide a tool for user to solve the problem, the RocksDB namespace is changed to a flag which can be overridden in build time.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6433

Test Plan: Build release, all and jtest. Try to build with ROCKSDB_NAMESPACE with another flag.

Differential Revision: D19977691

fbshipit-source-id: aa7f2d0972e1c31d75339ac48478f34f6cfcfb3e
2020-02-20 12:09:57 -08:00

394 lines
16 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#pragma once
#include <map>
#include <set>
#include <vector>
#include "db/dbformat.h"
#include "rocksdb/env.h"
#include "rocksdb/utilities/sim_cache.h"
#include "trace_replay/block_cache_tracer.h"
#include "utilities/simulator_cache/cache_simulator.h"
namespace ROCKSDB_NAMESPACE {
// Statistics of a key refereneced by a Get.
struct GetKeyInfo {
uint64_t key_id = 0;
std::vector<uint64_t> access_sequence_number_timeline;
std::vector<uint64_t> access_timeline;
void AddAccess(const BlockCacheTraceRecord& access,
uint64_t access_sequnce_number) {
access_sequence_number_timeline.push_back(access_sequnce_number);
access_timeline.push_back(access.access_timestamp);
}
};
// Statistics of a block.
struct BlockAccessInfo {
uint64_t block_id = 0;
uint64_t table_id = 0;
uint64_t block_offset = 0;
uint64_t num_accesses = 0;
uint64_t block_size = 0;
uint64_t first_access_time = 0;
uint64_t last_access_time = 0;
uint64_t num_keys = 0;
std::map<std::string, std::map<TableReaderCaller, uint64_t>>
key_num_access_map; // for keys exist in this block.
std::map<std::string, std::map<TableReaderCaller, uint64_t>>
non_exist_key_num_access_map; // for keys do not exist in this block.
uint64_t num_referenced_key_exist_in_block = 0;
uint64_t referenced_data_size = 0;
std::map<TableReaderCaller, uint64_t> caller_num_access_map;
// caller:timestamp:number_of_accesses. The granularity of the timestamp is
// seconds.
std::map<TableReaderCaller, std::map<uint64_t, uint64_t>>
caller_num_accesses_timeline;
// Unique blocks since the last access.
std::set<std::string> unique_blocks_since_last_access;
// Number of reuses grouped by reuse distance.
std::map<uint64_t, uint64_t> reuse_distance_count;
// The access sequence numbers of this block.
std::vector<uint64_t> access_sequence_number_timeline;
std::map<TableReaderCaller, std::vector<uint64_t>>
caller_access_sequence__number_timeline;
// The access timestamp in microseconds of this block.
std::vector<uint64_t> access_timeline;
std::map<TableReaderCaller, std::vector<uint64_t>> caller_access_timeline;
void AddAccess(const BlockCacheTraceRecord& access,
uint64_t access_sequnce_number) {
if (block_size != 0 && access.block_size != 0) {
assert(block_size == access.block_size);
}
if (num_keys != 0 && access.num_keys_in_block != 0) {
assert(num_keys == access.num_keys_in_block);
}
if (first_access_time == 0) {
first_access_time = access.access_timestamp;
}
table_id = BlockCacheTraceHelper::GetTableId(access);
block_offset = BlockCacheTraceHelper::GetBlockOffsetInFile(access);
last_access_time = access.access_timestamp;
block_size = access.block_size;
caller_num_access_map[access.caller]++;
num_accesses++;
// access.access_timestamp is in microsecond.
const uint64_t timestamp_in_seconds =
access.access_timestamp / kMicrosInSecond;
caller_num_accesses_timeline[access.caller][timestamp_in_seconds] += 1;
// Populate the feature vectors.
access_sequence_number_timeline.push_back(access_sequnce_number);
caller_access_sequence__number_timeline[access.caller].push_back(
access_sequnce_number);
access_timeline.push_back(access.access_timestamp);
caller_access_timeline[access.caller].push_back(access.access_timestamp);
if (BlockCacheTraceHelper::IsGetOrMultiGetOnDataBlock(access.block_type,
access.caller)) {
num_keys = access.num_keys_in_block;
if (access.referenced_key_exist_in_block == Boolean::kTrue) {
if (key_num_access_map.find(access.referenced_key) ==
key_num_access_map.end()) {
referenced_data_size += access.referenced_data_size;
}
key_num_access_map[access.referenced_key][access.caller]++;
num_referenced_key_exist_in_block++;
if (referenced_data_size > block_size && block_size != 0) {
ParsedInternalKey internal_key;
ParseInternalKey(access.referenced_key, &internal_key);
}
} else {
non_exist_key_num_access_map[access.referenced_key][access.caller]++;
}
}
}
};
// Aggregates stats of a block given a block type.
struct BlockTypeAccessInfoAggregate {
std::map<std::string, BlockAccessInfo> block_access_info_map;
};
// Aggregates BlockTypeAggregate given a SST file.
struct SSTFileAccessInfoAggregate {
uint32_t level;
std::map<TraceType, BlockTypeAccessInfoAggregate> block_type_aggregates_map;
};
// Aggregates SSTFileAggregate given a column family.
struct ColumnFamilyAccessInfoAggregate {
std::map<uint64_t, SSTFileAccessInfoAggregate> fd_aggregates_map;
};
struct Features {
std::vector<uint64_t> elapsed_time_since_last_access;
std::vector<uint64_t> num_accesses_since_last_access;
std::vector<uint64_t> num_past_accesses;
};
struct Predictions {
std::vector<uint64_t> elapsed_time_till_next_access;
std::vector<uint64_t> num_accesses_till_next_access;
};
class BlockCacheTraceAnalyzer {
public:
BlockCacheTraceAnalyzer(
const std::string& trace_file_path, const std::string& output_dir,
const std::string& human_readable_trace_file_path,
bool compute_reuse_distance, bool mrc_only,
bool is_human_readable_trace_file,
std::unique_ptr<BlockCacheTraceSimulator>&& cache_simulator);
~BlockCacheTraceAnalyzer() = default;
// No copy and move.
BlockCacheTraceAnalyzer(const BlockCacheTraceAnalyzer&) = delete;
BlockCacheTraceAnalyzer& operator=(const BlockCacheTraceAnalyzer&) = delete;
BlockCacheTraceAnalyzer(BlockCacheTraceAnalyzer&&) = delete;
BlockCacheTraceAnalyzer& operator=(BlockCacheTraceAnalyzer&&) = delete;
// Read all access records in the given trace_file, maintains the stats of
// a block, and aggregates the information by block type, sst file, and column
// family. Subsequently, the caller may call Print* functions to print
// statistics.
Status Analyze();
// Print a summary of statistics of the trace, e.g.,
// Number of files: 2 Number of blocks: 50 Number of accesses: 50
// Number of Index blocks: 10
// Number of Filter blocks: 10
// Number of Data blocks: 10
// Number of UncompressionDict blocks: 10
// Number of RangeDeletion blocks: 10
// ***************************************************************
// Caller Get: Number of accesses 10
// Caller Get: Number of accesses per level break down
// Level 0: Number of accesses: 10
// Caller Get: Number of accesses per block type break down
// Block Type Index: Number of accesses: 2
// Block Type Filter: Number of accesses: 2
// Block Type Data: Number of accesses: 2
// Block Type UncompressionDict: Number of accesses: 2
// Block Type RangeDeletion: Number of accesses: 2
void PrintStatsSummary() const;
// Print block size distribution and the distribution break down by block type
// and column family.
void PrintBlockSizeStats() const;
// Print access count distribution and the distribution break down by block
// type and column family.
void PrintAccessCountStats(bool user_access_only, uint32_t bottom_k,
uint32_t top_k) const;
// Print data block accesses by user Get and Multi-Get.
// It prints out 1) A histogram on the percentage of keys accessed in a data
// block break down by if a referenced key exists in the data block andthe
// histogram break down by column family. 2) A histogram on the percentage of
// accesses on keys exist in a data block and its break down by column family.
void PrintDataBlockAccessStats() const;
// Write the percentage of accesses break down by column family into a csv
// file saved in 'output_dir'.
//
// The file is named "percentage_of_accesses_summary". The file format is
// caller,cf_0,cf_1,...,cf_n where the cf_i is the column family name found in
// the trace.
void WritePercentAccessSummaryStats() const;
// Write the percentage of accesses for the given caller break down by column
// family, level, and block type into a csv file saved in 'output_dir'.
//
// It generates two files: 1) caller_level_percentage_of_accesses_summary and
// 2) caller_bt_percentage_of_accesses_summary which break down by the level
// and block type, respectively. The file format is
// level/bt,cf_0,cf_1,...,cf_n where cf_i is the column family name found in
// the trace.
void WriteDetailedPercentAccessSummaryStats(TableReaderCaller caller) const;
// Write the access count summary into a csv file saved in 'output_dir'.
// It groups blocks by their access count.
//
// It generates two files: 1) cf_access_count_summary and 2)
// bt_access_count_summary which break down the access count by column family
// and block type, respectively. The file format is
// cf/bt,bucket_0,bucket_1,...,bucket_N.
void WriteAccessCountSummaryStats(
const std::vector<uint64_t>& access_count_buckets,
bool user_access_only) const;
// Write miss ratio curves of simulated cache configurations into a csv file
// named "mrc" saved in 'output_dir'.
//
// The file format is
// "cache_name,num_shard_bits,capacity,miss_ratio,total_accesses".
void WriteMissRatioCurves() const;
// Write miss ratio timeline of simulated cache configurations into several
// csv files, one per cache capacity saved in 'output_dir'.
//
// The file format is
// "time,label_1_access_per_second,label_2_access_per_second,...,label_N_access_per_second"
// where N is the number of unique cache names
// (cache_name+num_shard_bits+ghost_capacity).
void WriteMissRatioTimeline(uint64_t time_unit) const;
// Write misses timeline of simulated cache configurations into several
// csv files, one per cache capacity saved in 'output_dir'.
//
// The file format is
// "time,label_1_access_per_second,label_2_access_per_second,...,label_N_access_per_second"
// where N is the number of unique cache names
// (cache_name+num_shard_bits+ghost_capacity).
void WriteMissTimeline(uint64_t time_unit) const;
// Write the access timeline into a csv file saved in 'output_dir'.
//
// The file is named "label_access_timeline".The file format is
// "time,label_1_access_per_second,label_2_access_per_second,...,label_N_access_per_second"
// where N is the number of unique labels found in the trace.
void WriteAccessTimeline(const std::string& label, uint64_t time_unit,
bool user_access_only) const;
// Write the reuse distance into a csv file saved in 'output_dir'. Reuse
// distance is defined as the cumulated size of unique blocks read between two
// consective accesses on the same block.
//
// The file is named "label_reuse_distance". The file format is
// bucket,label_1,label_2,...,label_N.
void WriteReuseDistance(const std::string& label_str,
const std::vector<uint64_t>& distance_buckets) const;
// Write the reuse interval into a csv file saved in 'output_dir'. Reuse
// interval is defined as the time between two consecutive accesses on the
// same block.
//
// The file is named "label_reuse_interval". The file format is
// bucket,label_1,label_2,...,label_N.
void WriteReuseInterval(const std::string& label_str,
const std::vector<uint64_t>& time_buckets) const;
// Write the reuse lifetime into a csv file saved in 'output_dir'. Reuse
// lifetime is defined as the time interval between the first access of a
// block and its last access.
//
// The file is named "label_reuse_lifetime". The file format is
// bucket,label_1,label_2,...,label_N.
void WriteReuseLifetime(const std::string& label_str,
const std::vector<uint64_t>& time_buckets) const;
// Write the reuse timeline into a csv file saved in 'output_dir'.
//
// The file is named
// "block_type_user_access_only_reuse_window_reuse_timeline". The file format
// is start_time,0,1,...,N where N equals trace_duration / reuse_window.
void WriteBlockReuseTimeline(const uint64_t reuse_window, bool user_access_only,
TraceType block_type) const;
// Write the Get spatical locality into csv files saved in 'output_dir'.
//
// It generates three csv files. label_percent_ref_keys,
// label_percent_accesses_on_ref_keys, and
// label_percent_data_size_on_ref_keys.
void WriteGetSpatialLocality(
const std::string& label_str,
const std::vector<uint64_t>& percent_buckets) const;
void WriteCorrelationFeatures(const std::string& label_str,
uint32_t max_number_of_values) const;
void WriteCorrelationFeaturesForGet(uint32_t max_number_of_values) const;
void WriteSkewness(const std::string& label_str,
const std::vector<uint64_t>& percent_buckets,
TraceType target_block_type) const;
const std::map<std::string, ColumnFamilyAccessInfoAggregate>&
TEST_cf_aggregates_map() const {
return cf_aggregates_map_;
}
private:
std::set<std::string> ParseLabelStr(const std::string& label_str) const;
std::string BuildLabel(const std::set<std::string>& labels,
const std::string& cf_name, uint64_t fd,
uint32_t level, TraceType type,
TableReaderCaller caller, uint64_t block_key,
const BlockAccessInfo& block) const;
void ComputeReuseDistance(BlockAccessInfo* info) const;
Status RecordAccess(const BlockCacheTraceRecord& access);
void UpdateReuseIntervalStats(
const std::string& label, const std::vector<uint64_t>& time_buckets,
const std::map<uint64_t, uint64_t> timeline,
std::map<std::string, std::map<uint64_t, uint64_t>>*
label_time_num_reuses,
uint64_t* total_num_reuses) const;
std::string OutputPercentAccessStats(
uint64_t total_accesses,
const std::map<std::string, uint64_t>& cf_access_count) const;
void WriteStatsToFile(
const std::string& label_str, const std::vector<uint64_t>& time_buckets,
const std::string& filename_suffix,
const std::map<std::string, std::map<uint64_t, uint64_t>>& label_data,
uint64_t ntotal) const;
void TraverseBlocks(
std::function<void(const std::string& /*cf_name*/, uint64_t /*fd*/,
uint32_t /*level*/, TraceType /*block_type*/,
const std::string& /*block_key*/,
uint64_t /*block_key_id*/,
const BlockAccessInfo& /*block_access_info*/)>
block_callback,
std::set<std::string>* labels = nullptr) const;
void UpdateFeatureVectors(
const std::vector<uint64_t>& access_sequence_number_timeline,
const std::vector<uint64_t>& access_timeline, const std::string& label,
std::map<std::string, Features>* label_features,
std::map<std::string, Predictions>* label_predictions) const;
void WriteCorrelationFeaturesToFile(
const std::string& label,
const std::map<std::string, Features>& label_features,
const std::map<std::string, Predictions>& label_predictions,
uint32_t max_number_of_values) const;
ROCKSDB_NAMESPACE::Env* env_;
const std::string trace_file_path_;
const std::string output_dir_;
std::string human_readable_trace_file_path_;
const bool compute_reuse_distance_;
const bool mrc_only_;
const bool is_human_readable_trace_file_;
BlockCacheTraceHeader header_;
std::unique_ptr<BlockCacheTraceSimulator> cache_simulator_;
std::map<std::string, ColumnFamilyAccessInfoAggregate> cf_aggregates_map_;
std::map<std::string, BlockAccessInfo*> block_info_map_;
std::unordered_map<std::string, GetKeyInfo> get_key_info_map_;
uint64_t access_sequence_number_ = 0;
uint64_t trace_start_timestamp_in_seconds_ = 0;
uint64_t trace_end_timestamp_in_seconds_ = 0;
MissRatioStats miss_ratio_stats_;
uint64_t unique_block_id_ = 1;
uint64_t unique_get_key_id_ = 1;
BlockCacheHumanReadableTraceWriter human_readable_trace_writer_;
};
int block_cache_trace_analyzer_tool(int argc, char** argv);
} // namespace ROCKSDB_NAMESPACE