rocksdb/db/db_iter.cc
Lei Jin 92c1eb0291 macros for perf_context
Summary: This will allow us to disable them completely for iOS or for better performance

Test Plan: will run make all check

Reviewers: igor, haobo, dhruba

Reviewed By: haobo

CC: leveldb

Differential Revision: https://reviews.facebook.net/D17511
2014-04-08 10:58:07 -07:00

481 lines
15 KiB
C++

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/db_iter.h"
#include <stdexcept>
#include <deque>
#include "db/filename.h"
#include "db/dbformat.h"
#include "rocksdb/env.h"
#include "rocksdb/options.h"
#include "rocksdb/iterator.h"
#include "rocksdb/merge_operator.h"
#include "port/port.h"
#include "util/logging.h"
#include "util/mutexlock.h"
#include "util/perf_context_imp.h"
namespace rocksdb {
#if 0
static void DumpInternalIter(Iterator* iter) {
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ParsedInternalKey k;
if (!ParseInternalKey(iter->key(), &k)) {
fprintf(stderr, "Corrupt '%s'\n", EscapeString(iter->key()).c_str());
} else {
fprintf(stderr, "@ '%s'\n", k.DebugString().c_str());
}
}
}
#endif
namespace {
// Memtables and sstables that make the DB representation contain
// (userkey,seq,type) => uservalue entries. DBIter
// combines multiple entries for the same userkey found in the DB
// representation into a single entry while accounting for sequence
// numbers, deletion markers, overwrites, etc.
class DBIter: public Iterator {
public:
// The following is grossly complicated. TODO: clean it up
// Which direction is the iterator currently moving?
// (1) When moving forward, the internal iterator is positioned at
// the exact entry that yields this->key(), this->value()
// (2) When moving backwards, the internal iterator is positioned
// just before all entries whose user key == this->key().
enum Direction {
kForward,
kReverse
};
DBIter(const std::string* dbname, Env* env, const Options& options,
const Comparator* cmp, Iterator* iter, SequenceNumber s)
: dbname_(dbname),
env_(env),
logger_(options.info_log.get()),
user_comparator_(cmp),
user_merge_operator_(options.merge_operator.get()),
iter_(iter),
sequence_(s),
direction_(kForward),
valid_(false),
current_entry_is_merged_(false),
statistics_(options.statistics.get()) {
RecordTick(statistics_, NO_ITERATORS, 1);
max_skip_ = options.max_sequential_skip_in_iterations;
}
virtual ~DBIter() {
RecordTick(statistics_, NO_ITERATORS, -1);
delete iter_;
}
virtual bool Valid() const { return valid_; }
virtual Slice key() const {
assert(valid_);
return saved_key_.GetKey();
}
virtual Slice value() const {
assert(valid_);
return (direction_ == kForward && !current_entry_is_merged_) ?
iter_->value() : saved_value_;
}
virtual Status status() const {
if (status_.ok()) {
return iter_->status();
} else {
return status_;
}
}
virtual void Next();
virtual void Prev();
virtual void Seek(const Slice& target);
virtual void SeekToFirst();
virtual void SeekToLast();
private:
inline void FindNextUserEntry(bool skipping);
void FindNextUserEntryInternal(bool skipping);
void FindPrevUserEntry();
bool ParseKey(ParsedInternalKey* key);
void MergeValuesNewToOld();
inline void ClearSavedValue() {
if (saved_value_.capacity() > 1048576) {
std::string empty;
swap(empty, saved_value_);
} else {
saved_value_.clear();
}
}
const std::string* const dbname_;
Env* const env_;
Logger* logger_;
const Comparator* const user_comparator_;
const MergeOperator* const user_merge_operator_;
Iterator* const iter_;
SequenceNumber const sequence_;
Status status_;
IterKey saved_key_; // == current key when direction_==kReverse
std::string saved_value_; // == current raw value when direction_==kReverse
std::string skip_key_;
Direction direction_;
bool valid_;
bool current_entry_is_merged_;
Statistics* statistics_;
uint64_t max_skip_;
// No copying allowed
DBIter(const DBIter&);
void operator=(const DBIter&);
};
inline bool DBIter::ParseKey(ParsedInternalKey* ikey) {
if (!ParseInternalKey(iter_->key(), ikey)) {
status_ = Status::Corruption("corrupted internal key in DBIter");
Log(logger_, "corrupted internal key in DBIter: %s",
iter_->key().ToString(true).c_str());
return false;
} else {
return true;
}
}
void DBIter::Next() {
assert(valid_);
if (direction_ == kReverse) { // Switch directions?
direction_ = kForward;
// iter_ is pointing just before the entries for this->key(),
// so advance into the range of entries for this->key() and then
// use the normal skipping code below.
if (!iter_->Valid()) {
iter_->SeekToFirst();
} else {
iter_->Next();
}
if (!iter_->Valid()) {
valid_ = false;
saved_key_.Clear();
return;
}
}
// If the current value is merged, we might already hit end of iter_
if (!iter_->Valid()) {
valid_ = false;
return;
}
FindNextUserEntry(true /* skipping the current user key */);
}
// PRE: saved_key_ has the current user key if skipping
// POST: saved_key_ should have the next user key if valid_,
// if the current entry is a result of merge
// current_entry_is_merged_ => true
// saved_value_ => the merged value
//
// NOTE: In between, saved_key_ can point to a user key that has
// a delete marker
inline void DBIter::FindNextUserEntry(bool skipping) {
PERF_TIMER_AUTO(find_next_user_entry_time);
FindNextUserEntryInternal(skipping);
PERF_TIMER_STOP(find_next_user_entry_time);
}
// Actual implementation of DBIter::FindNextUserEntry()
void DBIter::FindNextUserEntryInternal(bool skipping) {
// Loop until we hit an acceptable entry to yield
assert(iter_->Valid());
assert(direction_ == kForward);
current_entry_is_merged_ = false;
uint64_t num_skipped = 0;
do {
ParsedInternalKey ikey;
if (ParseKey(&ikey) && ikey.sequence <= sequence_) {
if (skipping &&
user_comparator_->Compare(ikey.user_key, saved_key_.GetKey()) <= 0) {
num_skipped++; // skip this entry
PERF_COUNTER_ADD(internal_key_skipped_count, 1);
} else {
skipping = false;
switch (ikey.type) {
case kTypeDeletion:
// Arrange to skip all upcoming entries for this key since
// they are hidden by this deletion.
saved_key_.SetUserKey(ikey.user_key);
skipping = true;
num_skipped = 0;
PERF_COUNTER_ADD(internal_delete_skipped_count, 1);
break;
case kTypeValue:
valid_ = true;
saved_key_.SetUserKey(ikey.user_key);
return;
case kTypeMerge:
// By now, we are sure the current ikey is going to yield a value
saved_key_.SetUserKey(ikey.user_key);
current_entry_is_merged_ = true;
valid_ = true;
MergeValuesNewToOld(); // Go to a different state machine
return;
default:
assert(false);
break;
}
}
}
// If we have sequentially iterated via numerous keys and still not
// found the next user-key, then it is better to seek so that we can
// avoid too many key comparisons. We seek to the last occurence of
// our current key by looking for sequence number 0.
if (skipping && num_skipped > max_skip_) {
num_skipped = 0;
std::string last_key;
AppendInternalKey(&last_key, ParsedInternalKey(saved_key_.GetKey(), 0,
kValueTypeForSeek));
iter_->Seek(last_key);
RecordTick(statistics_, NUMBER_OF_RESEEKS_IN_ITERATION);
} else {
iter_->Next();
}
} while (iter_->Valid());
valid_ = false;
}
// Merge values of the same user key starting from the current iter_ position
// Scan from the newer entries to older entries.
// PRE: iter_->key() points to the first merge type entry
// saved_key_ stores the user key
// POST: saved_value_ has the merged value for the user key
// iter_ points to the next entry (or invalid)
void DBIter::MergeValuesNewToOld() {
if (!user_merge_operator_) {
Log(logger_, "Options::merge_operator is null.");
throw std::logic_error("DBIter::MergeValuesNewToOld() with"
" Options::merge_operator null");
}
// Start the merge process by pushing the first operand
std::deque<std::string> operands;
operands.push_front(iter_->value().ToString());
std::string merge_result; // Temporary string to hold merge result later
ParsedInternalKey ikey;
for (iter_->Next(); iter_->Valid(); iter_->Next()) {
if (!ParseKey(&ikey)) {
// skip corrupted key
continue;
}
if (user_comparator_->Compare(ikey.user_key, saved_key_.GetKey()) != 0) {
// hit the next user key, stop right here
break;
}
if (kTypeDeletion == ikey.type) {
// hit a delete with the same user key, stop right here
// iter_ is positioned after delete
iter_->Next();
break;
}
if (kTypeValue == ikey.type) {
// hit a put, merge the put value with operands and store the
// final result in saved_value_. We are done!
// ignore corruption if there is any.
const Slice value = iter_->value();
user_merge_operator_->FullMerge(ikey.user_key, &value, operands,
&saved_value_, logger_);
// iter_ is positioned after put
iter_->Next();
return;
}
if (kTypeMerge == ikey.type) {
// hit a merge, add the value as an operand and run associative merge.
// when complete, add result to operands and continue.
const Slice& value = iter_->value();
operands.push_front(value.ToString());
}
}
// we either exhausted all internal keys under this user key, or hit
// a deletion marker.
// feed null as the existing value to the merge operator, such that
// client can differentiate this scenario and do things accordingly.
user_merge_operator_->FullMerge(saved_key_.GetKey(), nullptr, operands,
&saved_value_, logger_);
}
void DBIter::Prev() {
assert(valid_);
// Throw an exception now if merge_operator is provided
// TODO: support backward iteration
if (user_merge_operator_) {
Log(logger_, "Prev not supported yet if merge_operator is provided");
throw std::logic_error("DBIter::Prev backward iteration not supported"
" if merge_operator is provided");
}
if (direction_ == kForward) { // Switch directions?
// iter_ is pointing at the current entry. Scan backwards until
// the key changes so we can use the normal reverse scanning code.
assert(iter_->Valid()); // Otherwise valid_ would have been false
saved_key_.SetUserKey(ExtractUserKey(iter_->key()));
while (true) {
iter_->Prev();
if (!iter_->Valid()) {
valid_ = false;
saved_key_.Clear();
ClearSavedValue();
return;
}
if (user_comparator_->Compare(ExtractUserKey(iter_->key()),
saved_key_.GetKey()) < 0) {
break;
}
}
direction_ = kReverse;
}
FindPrevUserEntry();
}
void DBIter::FindPrevUserEntry() {
assert(direction_ == kReverse);
uint64_t num_skipped = 0;
ValueType value_type = kTypeDeletion;
bool saved_key_valid = true;
if (iter_->Valid()) {
do {
ParsedInternalKey ikey;
if (ParseKey(&ikey) && ikey.sequence <= sequence_) {
if ((value_type != kTypeDeletion) &&
user_comparator_->Compare(ikey.user_key, saved_key_.GetKey()) < 0) {
// We encountered a non-deleted value in entries for previous keys,
break;
}
value_type = ikey.type;
if (value_type == kTypeDeletion) {
saved_key_.Clear();
ClearSavedValue();
saved_key_valid = false;
} else {
Slice raw_value = iter_->value();
if (saved_value_.capacity() > raw_value.size() + 1048576) {
std::string empty;
swap(empty, saved_value_);
}
saved_key_.SetUserKey(ExtractUserKey(iter_->key()));
saved_value_.assign(raw_value.data(), raw_value.size());
}
} else {
// In the case of ikey.sequence > sequence_, we might have already
// iterated to a different user key.
saved_key_valid = false;
}
num_skipped++;
// If we have sequentially iterated via numerous keys and still not
// found the prev user-key, then it is better to seek so that we can
// avoid too many key comparisons. We seek to the first occurence of
// our current key by looking for max sequence number.
if (saved_key_valid && num_skipped > max_skip_) {
num_skipped = 0;
std::string last_key;
AppendInternalKey(&last_key, ParsedInternalKey(saved_key_.GetKey(),
kMaxSequenceNumber,
kValueTypeForSeek));
iter_->Seek(last_key);
RecordTick(statistics_, NUMBER_OF_RESEEKS_IN_ITERATION);
} else {
iter_->Prev();
}
} while (iter_->Valid());
}
if (value_type == kTypeDeletion) {
// End
valid_ = false;
saved_key_.Clear();
ClearSavedValue();
direction_ = kForward;
} else {
valid_ = true;
}
}
void DBIter::Seek(const Slice& target) {
saved_key_.Clear();
// now savved_key is used to store internal key.
saved_key_.SetInternalKey(target, sequence_);
PERF_TIMER_AUTO(seek_internal_seek_time);
iter_->Seek(saved_key_.GetKey());
PERF_TIMER_STOP(seek_internal_seek_time);
if (iter_->Valid()) {
direction_ = kForward;
ClearSavedValue();
FindNextUserEntry(false /*not skipping */);
} else {
valid_ = false;
}
}
void DBIter::SeekToFirst() {
direction_ = kForward;
ClearSavedValue();
PERF_TIMER_AUTO(seek_internal_seek_time);
iter_->SeekToFirst();
PERF_TIMER_STOP(seek_internal_seek_time);
if (iter_->Valid()) {
FindNextUserEntry(false /* not skipping */);
} else {
valid_ = false;
}
}
void DBIter::SeekToLast() {
// Throw an exception for now if merge_operator is provided
// TODO: support backward iteration
if (user_merge_operator_) {
Log(logger_, "SeekToLast not supported yet if merge_operator is provided");
throw std::logic_error("DBIter::SeekToLast: backward iteration not"
" supported if merge_operator is provided");
}
direction_ = kReverse;
ClearSavedValue();
PERF_TIMER_AUTO(seek_internal_seek_time);
iter_->SeekToLast();
PERF_TIMER_STOP(seek_internal_seek_time);
FindPrevUserEntry();
}
} // anonymous namespace
Iterator* NewDBIterator(
const std::string* dbname,
Env* env,
const Options& options,
const Comparator *user_key_comparator,
Iterator* internal_iter,
const SequenceNumber& sequence) {
return new DBIter(dbname, env, options, user_key_comparator,
internal_iter, sequence);
}
} // namespace rocksdb