rocksdb/table/block_based/block_based_table_reader_test.cc
Hui Xiao 1ef888f9b8 Fix issue of opening too many files in BlockBasedTableReaderCapMemoryTest.CapMemoryUsageUnderCacheCapacity (#9869)
Summary:
**Context:**
Unit test for https://github.com/facebook/rocksdb/pull/9748 keeps opening new files to see whether the new feature is able to correctly constrain the opening based on block cache capacity.

However, the unit test has two places written inefficiently that can lead to opening too many new files relative to underlying operating system/file system constraint, even before hitting the block cache capacity:
(1) [opened_table_reader_num < 2 * max_table_reader_num](https://github.com/facebook/rocksdb/pull/9748/files?show-viewed-files=true&file-filters%5B%5D=#diff-ec9f5353e317df71093094734ba29193b94a998f0f9c9af924e4c99692195eeaR438), which can leads to 1200 + open files because of (2) below
(2) NewLRUCache(6 * CacheReservationManagerImpl<CacheEntryRole::kBlockBasedTableReader>::GetDummyEntrySize()) in [here](https://github.com/facebook/rocksdb/pull/9748/files?show-viewed-files=true&file-filters%5B%5D=#diff-ec9f5353e317df71093094734ba29193b94a998f0f9c9af924e4c99692195eeaR364)

Therefore we see CI failures like this on machine with a strict open file limit ~1000 (see the "table_1021" naming in following error msg)
https://app.circleci.com/pipelines/github/facebook/rocksdb/12886/workflows/75524682-3fa4-41ee-9a61-81827b51d99b/jobs/345270
```
fs_->NewWritableFile(path, foptions, &file, nullptr)
IO error: While open a file for appending: /dev/shm/rocksdb.Jedwt/run-block_based_table_reader_test-CapMemoryUsageUnderCacheCapacity-BlockBasedTableReaderCapMemoryTest.CapMemoryUsageUnderCacheCapacity-0/block_based_table_reader_test_1668910_829492452552920927/**table_1021**: Too many open files
```

**Summary:**
- Revised the test more efficiently on the above 2 places,  including using 1.1 instead 2 in the threshold and lowering down the block cache capacity a bit
- Renamed some variables for clarity

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9869

Test Plan:
- Manual inspection of max opened table reader in all test case, which is around ~389
- Circle CI to see if error is gone

Reviewed By: ajkr

Differential Revision: D35752655

Pulled By: hx235

fbshipit-source-id: 8a0953d39d561babfa4257b8ed8550bb21b04839
2022-04-19 19:40:02 -07:00

601 lines
23 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include "table/block_based/block_based_table_reader.h"
#include <cmath>
#include <memory>
#include <string>
#include "cache/cache_reservation_manager.h"
#include "db/db_test_util.h"
#include "db/table_properties_collector.h"
#include "file/file_util.h"
#include "options/options_helper.h"
#include "port/port.h"
#include "port/stack_trace.h"
#include "rocksdb/compression_type.h"
#include "rocksdb/db.h"
#include "rocksdb/file_system.h"
#include "table/block_based/block_based_table_builder.h"
#include "table/block_based/block_based_table_factory.h"
#include "table/block_based/partitioned_index_iterator.h"
#include "table/format.h"
#include "test_util/testharness.h"
#include "test_util/testutil.h"
#include "util/random.h"
namespace ROCKSDB_NAMESPACE {
class BlockBasedTableReaderBaseTest : public testing::Test {
protected:
// Prepare key-value pairs to occupy multiple blocks.
// Each value is 256B, every 16 pairs constitute 1 block.
// If mixed_with_human_readable_string_value == true,
// then adjacent blocks contain values with different compression
// complexity: human readable strings are easier to compress than random
// strings.
static std::map<std::string, std::string> GenerateKVMap(
int num_block = 100,
bool mixed_with_human_readable_string_value = false) {
std::map<std::string, std::string> kv;
Random rnd(101);
uint32_t key = 0;
for (int block = 0; block < num_block; block++) {
for (int i = 0; i < 16; i++) {
char k[9] = {0};
// Internal key is constructed directly from this key,
// and internal key size is required to be >= 8 bytes,
// so use %08u as the format string.
sprintf(k, "%08u", key);
std::string v;
if (mixed_with_human_readable_string_value) {
v = (block % 2) ? rnd.HumanReadableString(256)
: rnd.RandomString(256);
} else {
v = rnd.RandomString(256);
}
kv[std::string(k)] = v;
key++;
}
}
return kv;
}
void SetUp() override {
SetupSyncPointsToMockDirectIO();
test_dir_ = test::PerThreadDBPath("block_based_table_reader_test");
env_ = Env::Default();
fs_ = FileSystem::Default();
ASSERT_OK(fs_->CreateDir(test_dir_, IOOptions(), nullptr));
ConfigureTableFactory();
}
virtual void ConfigureTableFactory() = 0;
void TearDown() override { EXPECT_OK(DestroyDir(env_, test_dir_)); }
// Creates a table with the specificied key value pairs (kv).
void CreateTable(const std::string& table_name,
const CompressionType& compression_type,
const std::map<std::string, std::string>& kv) {
std::unique_ptr<WritableFileWriter> writer;
NewFileWriter(table_name, &writer);
// Create table builder.
ImmutableOptions ioptions(options_);
InternalKeyComparator comparator(options_.comparator);
ColumnFamilyOptions cf_options;
MutableCFOptions moptions(cf_options);
IntTblPropCollectorFactories factories;
std::unique_ptr<TableBuilder> table_builder(
options_.table_factory->NewTableBuilder(
TableBuilderOptions(ioptions, moptions, comparator, &factories,
compression_type, CompressionOptions(),
0 /* column_family_id */,
kDefaultColumnFamilyName, -1 /* level */),
writer.get()));
// Build table.
for (auto it = kv.begin(); it != kv.end(); it++) {
std::string k = ToInternalKey(it->first);
std::string v = it->second;
table_builder->Add(k, v);
}
ASSERT_OK(table_builder->Finish());
}
void NewBlockBasedTableReader(const FileOptions& foptions,
const ImmutableOptions& ioptions,
const InternalKeyComparator& comparator,
const std::string& table_name,
std::unique_ptr<BlockBasedTable>* table,
bool prefetch_index_and_filter_in_cache = true,
Status* status = nullptr) {
const MutableCFOptions moptions(options_);
TableReaderOptions table_reader_options = TableReaderOptions(
ioptions, moptions.prefix_extractor, EnvOptions(), comparator);
std::unique_ptr<RandomAccessFileReader> file;
NewFileReader(table_name, foptions, &file);
uint64_t file_size = 0;
ASSERT_OK(env_->GetFileSize(Path(table_name), &file_size));
std::unique_ptr<TableReader> general_table;
Status s = options_.table_factory->NewTableReader(
ReadOptions(), table_reader_options, std::move(file), file_size,
&general_table, prefetch_index_and_filter_in_cache);
if (s.ok()) {
table->reset(reinterpret_cast<BlockBasedTable*>(general_table.release()));
}
if (status) {
*status = s;
}
}
std::string Path(const std::string& fname) { return test_dir_ + "/" + fname; }
std::string test_dir_;
Env* env_;
std::shared_ptr<FileSystem> fs_;
Options options_;
private:
void WriteToFile(const std::string& content, const std::string& filename) {
std::unique_ptr<FSWritableFile> f;
ASSERT_OK(fs_->NewWritableFile(Path(filename), FileOptions(), &f, nullptr));
ASSERT_OK(f->Append(content, IOOptions(), nullptr));
ASSERT_OK(f->Close(IOOptions(), nullptr));
}
void NewFileWriter(const std::string& filename,
std::unique_ptr<WritableFileWriter>* writer) {
std::string path = Path(filename);
EnvOptions env_options;
FileOptions foptions;
std::unique_ptr<FSWritableFile> file;
ASSERT_OK(fs_->NewWritableFile(path, foptions, &file, nullptr));
writer->reset(new WritableFileWriter(std::move(file), path, env_options));
}
void NewFileReader(const std::string& filename, const FileOptions& opt,
std::unique_ptr<RandomAccessFileReader>* reader) {
std::string path = Path(filename);
std::unique_ptr<FSRandomAccessFile> f;
ASSERT_OK(fs_->NewRandomAccessFile(path, opt, &f, nullptr));
reader->reset(new RandomAccessFileReader(std::move(f), path,
env_->GetSystemClock().get()));
}
std::string ToInternalKey(const std::string& key) {
InternalKey internal_key(key, 0, ValueType::kTypeValue);
return internal_key.Encode().ToString();
}
};
class BlockBasedTableReaderTest
: public BlockBasedTableReaderBaseTest,
public testing::WithParamInterface<std::tuple<
CompressionType, bool, BlockBasedTableOptions::IndexType, bool>> {
protected:
void SetUp() override {
compression_type_ = std::get<0>(GetParam());
use_direct_reads_ = std::get<1>(GetParam());
BlockBasedTableReaderBaseTest::SetUp();
}
void ConfigureTableFactory() override {
BlockBasedTableOptions opts;
opts.index_type = std::get<2>(GetParam());
opts.no_block_cache = std::get<3>(GetParam());
options_.table_factory.reset(
static_cast<BlockBasedTableFactory*>(NewBlockBasedTableFactory(opts)));
}
CompressionType compression_type_;
bool use_direct_reads_;
};
// Tests MultiGet in both direct IO and non-direct IO mode.
// The keys should be in cache after MultiGet.
TEST_P(BlockBasedTableReaderTest, MultiGet) {
std::map<std::string, std::string> kv =
BlockBasedTableReaderBaseTest::GenerateKVMap(
100 /* num_block */,
true /* mixed_with_human_readable_string_value */);
// Prepare keys, values, and statuses for MultiGet.
autovector<Slice, MultiGetContext::MAX_BATCH_SIZE> keys;
autovector<PinnableSlice, MultiGetContext::MAX_BATCH_SIZE> values;
autovector<Status, MultiGetContext::MAX_BATCH_SIZE> statuses;
{
const int step =
static_cast<int>(kv.size()) / MultiGetContext::MAX_BATCH_SIZE;
auto it = kv.begin();
for (int i = 0; i < MultiGetContext::MAX_BATCH_SIZE; i++) {
keys.emplace_back(it->first);
values.emplace_back();
statuses.emplace_back();
std::advance(it, step);
}
}
std::string table_name =
"BlockBasedTableReaderTest" + CompressionTypeToString(compression_type_);
CreateTable(table_name, compression_type_, kv);
std::unique_ptr<BlockBasedTable> table;
Options options;
ImmutableOptions ioptions(options);
FileOptions foptions;
foptions.use_direct_reads = use_direct_reads_;
InternalKeyComparator comparator(options.comparator);
NewBlockBasedTableReader(foptions, ioptions, comparator, table_name, &table);
// Ensure that keys are not in cache before MultiGet.
for (auto& key : keys) {
ASSERT_FALSE(table->TEST_KeyInCache(ReadOptions(), key));
}
// Prepare MultiGetContext.
autovector<GetContext, MultiGetContext::MAX_BATCH_SIZE> get_context;
autovector<KeyContext, MultiGetContext::MAX_BATCH_SIZE> key_context;
autovector<KeyContext*, MultiGetContext::MAX_BATCH_SIZE> sorted_keys;
for (size_t i = 0; i < keys.size(); ++i) {
get_context.emplace_back(
BytewiseComparator(), nullptr, nullptr, nullptr, GetContext::kNotFound,
keys[i], &values[i], nullptr, nullptr, nullptr, true /* do_merge */,
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr);
key_context.emplace_back(nullptr, keys[i], &values[i], nullptr,
&statuses.back());
key_context.back().get_context = &get_context.back();
}
for (auto& key_ctx : key_context) {
sorted_keys.emplace_back(&key_ctx);
}
MultiGetContext ctx(&sorted_keys, 0, sorted_keys.size(), 0, ReadOptions());
// Execute MultiGet.
MultiGetContext::Range range = ctx.GetMultiGetRange();
PerfContext* perf_ctx = get_perf_context();
perf_ctx->Reset();
table->MultiGet(ReadOptions(), &range, nullptr);
ASSERT_GE(perf_ctx->block_read_count - perf_ctx->index_block_read_count -
perf_ctx->filter_block_read_count -
perf_ctx->compression_dict_block_read_count,
1);
ASSERT_GE(perf_ctx->block_read_byte, 1);
for (const Status& status : statuses) {
ASSERT_OK(status);
}
// Check that keys are in cache after MultiGet.
for (size_t i = 0; i < keys.size(); i++) {
ASSERT_TRUE(table->TEST_KeyInCache(ReadOptions(), keys[i]));
ASSERT_EQ(values[i].ToString(), kv[keys[i].ToString()]);
}
}
class BlockBasedTableReaderResOnlyCache : public CacheWrapper {
public:
explicit BlockBasedTableReaderResOnlyCache(std::shared_ptr<Cache> target)
: CacheWrapper(std::move(target)) {}
using Cache::Insert;
Status Insert(const Slice& key, void* value, size_t charge,
void (*deleter)(const Slice& key, void* value),
Handle** handle = nullptr,
Priority priority = Priority::LOW) override {
if (deleter == kNoopDeleterForBlockBasedTableReader) {
return target_->Insert(key, value, charge, deleter, handle, priority);
} else {
return Status::OK();
}
}
using Cache::Release;
bool Release(Handle* handle, bool force_erase = false) override {
auto deleter = GetDeleter(handle);
if (deleter == kNoopDeleterForBlockBasedTableReader) {
return target_->Release(handle, force_erase);
} else {
return true;
}
}
private:
static const Cache::DeleterFn kNoopDeleterForBlockBasedTableReader;
};
const Cache::DeleterFn
BlockBasedTableReaderResOnlyCache::kNoopDeleterForBlockBasedTableReader =
CacheReservationManagerImpl<CacheEntryRole::kBlockBasedTableReader>::
TEST_GetNoopDeleterForRole();
class BlockBasedTableReaderCapMemoryTest
: public BlockBasedTableReaderBaseTest,
public testing::WithParamInterface<
bool /* reserve_table_builder_memory */> {
protected:
static std::size_t CalculateMaxTableReaderNumBeforeCacheFull(
std::size_t cache_capacity, std::size_t approx_table_reader_mem) {
// To make calculation easier for testing
assert(cache_capacity % CacheReservationManagerImpl<
CacheEntryRole::kBlockBasedTableReader>::
GetDummyEntrySize() ==
0 &&
cache_capacity >= 2 * CacheReservationManagerImpl<
CacheEntryRole::kBlockBasedTableReader>::
GetDummyEntrySize());
// We need to subtract 1 for max_num_dummy_entry to account for dummy
// entries' overhead, assumed the overhead is no greater than 1 dummy entry
// size
std::size_t max_num_dummy_entry =
(size_t)std::floor((
1.0 * cache_capacity /
CacheReservationManagerImpl<
CacheEntryRole::kBlockBasedTableReader>::GetDummyEntrySize())) -
1;
std::size_t cache_capacity_rounded_to_dummy_entry_multiples =
max_num_dummy_entry *
CacheReservationManagerImpl<
CacheEntryRole::kBlockBasedTableReader>::GetDummyEntrySize();
std::size_t max_table_reader_num_capped = static_cast<std::size_t>(
std::floor(1.0 * cache_capacity_rounded_to_dummy_entry_multiples /
approx_table_reader_mem));
return max_table_reader_num_capped;
}
void SetUp() override {
// To cache and re-use the same kv map and compression type in the test
// suite for elimiating variance caused by these two factors
kv_ = BlockBasedTableReaderBaseTest::GenerateKVMap();
compression_type_ = CompressionType::kNoCompression;
table_reader_res_only_cache_.reset(new BlockBasedTableReaderResOnlyCache(
NewLRUCache(4 * CacheReservationManagerImpl<
CacheEntryRole::kBlockBasedTableReader>::
GetDummyEntrySize(),
0 /* num_shard_bits */, true /* strict_capacity_limit */)));
// To ApproximateTableReaderMem() without encountering any potential errors
// caused by BlocBasedTableReader::reserve_table_reader_memory == true, we
// first turn off the feature to test
reserve_table_reader_memory_ = false;
BlockBasedTableReaderBaseTest::SetUp();
approx_table_reader_mem_ = ApproximateTableReaderMem();
// Now we condtionally turn on the feature to test
reserve_table_reader_memory_ = GetParam();
ConfigureTableFactory();
}
void ConfigureTableFactory() override {
BlockBasedTableOptions table_options;
table_options.reserve_table_reader_memory = reserve_table_reader_memory_;
table_options.block_cache = table_reader_res_only_cache_;
table_options.cache_index_and_filter_blocks = false;
table_options.filter_policy.reset(NewBloomFilterPolicy(10, false));
table_options.partition_filters = true;
table_options.index_type = BlockBasedTableOptions::kTwoLevelIndexSearch;
options_.table_factory.reset(NewBlockBasedTableFactory(table_options));
}
bool reserve_table_reader_memory_;
std::shared_ptr<BlockBasedTableReaderResOnlyCache>
table_reader_res_only_cache_;
std::size_t approx_table_reader_mem_;
std::map<std::string, std::string> kv_;
CompressionType compression_type_;
private:
std::size_t ApproximateTableReaderMem() {
std::size_t approx_table_reader_mem = 0;
std::string table_name = "table_for_approx_table_reader_mem";
CreateTable(table_name, compression_type_, kv_);
std::unique_ptr<BlockBasedTable> table;
Status s;
NewBlockBasedTableReader(
FileOptions(), ImmutableOptions(options_),
InternalKeyComparator(options_.comparator), table_name, &table,
false /* prefetch_index_and_filter_in_cache */, &s);
assert(s.ok());
approx_table_reader_mem = table->ApproximateMemoryUsage();
assert(approx_table_reader_mem > 0);
return approx_table_reader_mem;
}
};
INSTANTIATE_TEST_CASE_P(CapMemoryUsageUnderCacheCapacity,
BlockBasedTableReaderCapMemoryTest,
::testing::Values(true, false));
TEST_P(BlockBasedTableReaderCapMemoryTest, CapMemoryUsageUnderCacheCapacity) {
const std::size_t max_table_reader_num_capped =
BlockBasedTableReaderCapMemoryTest::
CalculateMaxTableReaderNumBeforeCacheFull(
table_reader_res_only_cache_->GetCapacity(),
approx_table_reader_mem_);
// Acceptable estimtation errors coming from
// 1. overstimate max_table_reader_num_capped due to # dummy entries is high
// and results in metadata charge overhead greater than 1 dummy entry size
// (violating our assumption in calculating max_table_reader_num_capped)
// 2. overestimate/underestimate max_table_reader_num_capped due to the gap
// between ApproximateTableReaderMem() and actual table reader mem
std::size_t max_table_reader_num_capped_upper_bound =
(std::size_t)(max_table_reader_num_capped * 1.01);
std::size_t max_table_reader_num_capped_lower_bound =
(std::size_t)(max_table_reader_num_capped * 0.99);
std::size_t max_table_reader_num_uncapped =
(std::size_t)(max_table_reader_num_capped * 1.1);
ASSERT_GT(max_table_reader_num_uncapped,
max_table_reader_num_capped_upper_bound)
<< "We need `max_table_reader_num_uncapped` > "
"`max_table_reader_num_capped_upper_bound` to differentiate cases "
"between "
"reserve_table_reader_memory_ == false and == true)";
Status s = Status::OK();
std::size_t opened_table_reader_num = 0;
std::string table_name;
std::vector<std::unique_ptr<BlockBasedTable>> tables;
// Keep creating BlockBasedTableReader till hiting the memory limit based on
// cache capacity and creation fails (when reserve_table_reader_memory_ ==
// true) or reaching a specfied big number of table readers (when
// reserve_table_reader_memory_ == false)
while (s.ok() && opened_table_reader_num < max_table_reader_num_uncapped) {
table_name = "table_" + std::to_string(opened_table_reader_num);
CreateTable(table_name, compression_type_, kv_);
tables.push_back(std::unique_ptr<BlockBasedTable>());
NewBlockBasedTableReader(
FileOptions(), ImmutableOptions(options_),
InternalKeyComparator(options_.comparator), table_name, &tables.back(),
false /* prefetch_index_and_filter_in_cache */, &s);
if (s.ok()) {
++opened_table_reader_num;
}
}
if (reserve_table_reader_memory_) {
EXPECT_TRUE(s.IsMemoryLimit()) << "s: " << s.ToString();
EXPECT_TRUE(s.ToString().find("memory limit based on cache capacity") !=
std::string::npos);
EXPECT_GE(opened_table_reader_num, max_table_reader_num_capped_lower_bound);
EXPECT_LE(opened_table_reader_num, max_table_reader_num_capped_upper_bound);
std::size_t updated_max_table_reader_num_capped =
BlockBasedTableReaderCapMemoryTest::
CalculateMaxTableReaderNumBeforeCacheFull(
table_reader_res_only_cache_->GetCapacity() / 2,
approx_table_reader_mem_);
// Keep deleting BlockBasedTableReader to lower down memory usage from the
// memory limit to make the next creation succeeds
while (opened_table_reader_num >= updated_max_table_reader_num_capped) {
tables.pop_back();
--opened_table_reader_num;
}
table_name = "table_for_successful_table_reader_open";
CreateTable(table_name, compression_type_, kv_);
tables.push_back(std::unique_ptr<BlockBasedTable>());
NewBlockBasedTableReader(
FileOptions(), ImmutableOptions(options_),
InternalKeyComparator(options_.comparator), table_name, &tables.back(),
false /* prefetch_index_and_filter_in_cache */, &s);
EXPECT_TRUE(s.ok()) << s.ToString();
tables.clear();
EXPECT_EQ(table_reader_res_only_cache_->GetPinnedUsage(), 0);
} else {
EXPECT_TRUE(s.ok() &&
opened_table_reader_num == max_table_reader_num_uncapped)
<< "s: " << s.ToString() << " opened_table_reader_num: "
<< std::to_string(opened_table_reader_num);
EXPECT_EQ(table_reader_res_only_cache_->GetPinnedUsage(), 0);
}
}
class BlockBasedTableReaderTestVerifyChecksum
: public BlockBasedTableReaderTest {
public:
BlockBasedTableReaderTestVerifyChecksum() : BlockBasedTableReaderTest() {}
};
TEST_P(BlockBasedTableReaderTestVerifyChecksum, ChecksumMismatch) {
std::map<std::string, std::string> kv =
BlockBasedTableReaderBaseTest::GenerateKVMap(800 /* num_block */);
std::string table_name =
"BlockBasedTableReaderTest" + CompressionTypeToString(compression_type_);
CreateTable(table_name, compression_type_, kv);
std::unique_ptr<BlockBasedTable> table;
Options options;
ImmutableOptions ioptions(options);
FileOptions foptions;
foptions.use_direct_reads = use_direct_reads_;
InternalKeyComparator comparator(options.comparator);
NewBlockBasedTableReader(foptions, ioptions, comparator, table_name, &table);
// Use the top level iterator to find the offset/size of the first
// 2nd level index block and corrupt the block
IndexBlockIter iiter_on_stack;
BlockCacheLookupContext context{TableReaderCaller::kUserVerifyChecksum};
InternalIteratorBase<IndexValue>* iiter = table->NewIndexIterator(
ReadOptions(), /*disable_prefix_seek=*/false, &iiter_on_stack,
/*get_context=*/nullptr, &context);
std::unique_ptr<InternalIteratorBase<IndexValue>> iiter_unique_ptr;
if (iiter != &iiter_on_stack) {
iiter_unique_ptr = std::unique_ptr<InternalIteratorBase<IndexValue>>(iiter);
}
ASSERT_OK(iiter->status());
iiter->SeekToFirst();
BlockHandle handle = static_cast<PartitionedIndexIterator*>(iiter)
->index_iter_->value()
.handle;
table.reset();
// Corrupt the block pointed to by handle
ASSERT_OK(test::CorruptFile(options.env, Path(table_name),
static_cast<int>(handle.offset()), 128));
NewBlockBasedTableReader(foptions, ioptions, comparator, table_name, &table);
Status s = table->VerifyChecksum(ReadOptions(),
TableReaderCaller::kUserVerifyChecksum);
ASSERT_EQ(s.code(), Status::kCorruption);
}
// Param 1: compression type
// Param 2: whether to use direct reads
// Param 3: Block Based Table Index type
// Param 4: BBTO no_block_cache option
#ifdef ROCKSDB_LITE
// Skip direct I/O tests in lite mode since direct I/O is unsupported.
INSTANTIATE_TEST_CASE_P(
MultiGet, BlockBasedTableReaderTest,
::testing::Combine(
::testing::ValuesIn(GetSupportedCompressions()),
::testing::Values(false),
::testing::Values(BlockBasedTableOptions::IndexType::kBinarySearch),
::testing::Values(false)));
#else // ROCKSDB_LITE
INSTANTIATE_TEST_CASE_P(
MultiGet, BlockBasedTableReaderTest,
::testing::Combine(
::testing::ValuesIn(GetSupportedCompressions()), ::testing::Bool(),
::testing::Values(BlockBasedTableOptions::IndexType::kBinarySearch),
::testing::Values(false)));
#endif // ROCKSDB_LITE
INSTANTIATE_TEST_CASE_P(
VerifyChecksum, BlockBasedTableReaderTestVerifyChecksum,
::testing::Combine(
::testing::ValuesIn(GetSupportedCompressions()),
::testing::Values(false),
::testing::Values(
BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch),
::testing::Values(true)));
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}