21f2fe4419
Summary: Test Plan: Reviewers: CC: Task ID: # Blame Rev:
506 lines
15 KiB
C++
506 lines
15 KiB
C++
// Copyright 2011 Google Inc. All Rights Reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Various stubs for the unit tests for the open-source version of Snappy.
|
|
|
|
#ifndef UTIL_SNAPPY_OPENSOURCE_SNAPPY_TEST_H_
|
|
#define UTIL_SNAPPY_OPENSOURCE_SNAPPY_TEST_H_
|
|
|
|
#include "snappy-stubs-internal.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
|
|
#ifdef HAVE_SYS_MMAN_H
|
|
#include <sys/mman.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_SYS_RESOURCE_H
|
|
#include <sys/resource.h>
|
|
#endif
|
|
|
|
#include <sys/time.h>
|
|
|
|
#ifdef HAVE_WINDOWS_H
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#include <windows.h>
|
|
#endif
|
|
|
|
#include <string>
|
|
|
|
#ifdef HAVE_GTEST
|
|
|
|
#include <gtest/gtest.h>
|
|
#undef TYPED_TEST
|
|
#define TYPED_TEST TEST
|
|
#define INIT_GTEST(argc, argv) ::testing::InitGoogleTest(argc, *argv)
|
|
|
|
#else
|
|
|
|
// Stubs for if the user doesn't have Google Test installed.
|
|
|
|
#define TEST(test_case, test_subcase) \
|
|
void Test_ ## test_case ## _ ## test_subcase()
|
|
#define INIT_GTEST(argc, argv)
|
|
|
|
#define TYPED_TEST TEST
|
|
#define EXPECT_EQ CHECK_EQ
|
|
#define EXPECT_NE CHECK_NE
|
|
#define EXPECT_FALSE(cond) CHECK(!(cond))
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_GFLAGS
|
|
|
|
#include <gflags/gflags.h>
|
|
|
|
// This is tricky; both gflags and Google Test want to look at the command line
|
|
// arguments. Google Test seems to be the most happy with unknown arguments,
|
|
// though, so we call it first and hope for the best.
|
|
#define InitGoogle(argv0, argc, argv, remove_flags) \
|
|
INIT_GTEST(argc, argv); \
|
|
google::ParseCommandLineFlags(argc, argv, remove_flags);
|
|
|
|
#else
|
|
|
|
// If we don't have the gflags package installed, these can only be
|
|
// changed at compile time.
|
|
#define DEFINE_int32(flag_name, default_value, description) \
|
|
static int FLAGS_ ## flag_name = default_value;
|
|
|
|
#define InitGoogle(argv0, argc, argv, remove_flags) \
|
|
INIT_GTEST(argc, argv)
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_LIBZ
|
|
#include "zlib.h"
|
|
#endif
|
|
|
|
#ifdef HAVE_LIBLZO2
|
|
#include "lzo/lzo1x.h"
|
|
#endif
|
|
|
|
#ifdef HAVE_LIBLZF
|
|
extern "C" {
|
|
#include "lzf.h"
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_LIBFASTLZ
|
|
#include "fastlz.h"
|
|
#endif
|
|
|
|
#ifdef HAVE_LIBQUICKLZ
|
|
#include "quicklz.h"
|
|
#endif
|
|
|
|
namespace {
|
|
namespace File {
|
|
void Init() { }
|
|
|
|
void ReadFileToStringOrDie(const char* filename, string* data) {
|
|
FILE* fp = fopen(filename, "rb");
|
|
if (fp == NULL) {
|
|
perror(filename);
|
|
exit(1);
|
|
}
|
|
|
|
data->clear();
|
|
while (!feof(fp)) {
|
|
char buf[4096];
|
|
size_t ret = fread(buf, 1, 4096, fp);
|
|
if (ret == 0 && ferror(fp)) {
|
|
perror("fread");
|
|
exit(1);
|
|
}
|
|
data->append(string(buf, ret));
|
|
}
|
|
|
|
fclose(fp);
|
|
}
|
|
|
|
void ReadFileToStringOrDie(const string& filename, string* data) {
|
|
ReadFileToStringOrDie(filename.c_str(), data);
|
|
}
|
|
|
|
void WriteStringToFileOrDie(const string& str, const char* filename) {
|
|
FILE* fp = fopen(filename, "wb");
|
|
if (fp == NULL) {
|
|
perror(filename);
|
|
exit(1);
|
|
}
|
|
|
|
int ret = fwrite(str.data(), str.size(), 1, fp);
|
|
if (ret != 1) {
|
|
perror("fwrite");
|
|
exit(1);
|
|
}
|
|
|
|
fclose(fp);
|
|
}
|
|
} // namespace File
|
|
} // namespace
|
|
|
|
namespace snappy {
|
|
|
|
#define FLAGS_test_random_seed 301
|
|
typedef string TypeParam;
|
|
|
|
void Test_CorruptedTest_VerifyCorrupted();
|
|
void Test_Snappy_SimpleTests();
|
|
void Test_Snappy_MaxBlowup();
|
|
void Test_Snappy_RandomData();
|
|
void Test_Snappy_FourByteOffset();
|
|
void Test_SnappyCorruption_TruncatedVarint();
|
|
void Test_SnappyCorruption_UnterminatedVarint();
|
|
void Test_Snappy_ReadPastEndOfBuffer();
|
|
void Test_Snappy_FindMatchLength();
|
|
void Test_Snappy_FindMatchLengthRandom();
|
|
|
|
string ReadTestDataFile(const string& base);
|
|
|
|
// A sprintf() variant that returns a std::string.
|
|
// Not safe for general use due to truncation issues.
|
|
string StringPrintf(const char* format, ...);
|
|
|
|
// A simple, non-cryptographically-secure random generator.
|
|
class ACMRandom {
|
|
public:
|
|
explicit ACMRandom(uint32 seed) : seed_(seed) {}
|
|
|
|
int32 Next();
|
|
|
|
int32 Uniform(int32 n) {
|
|
return Next() % n;
|
|
}
|
|
uint8 Rand8() {
|
|
return static_cast<uint8>((Next() >> 1) & 0x000000ff);
|
|
}
|
|
bool OneIn(int X) { return Uniform(X) == 0; }
|
|
|
|
// Skewed: pick "base" uniformly from range [0,max_log] and then
|
|
// return "base" random bits. The effect is to pick a number in the
|
|
// range [0,2^max_log-1] with bias towards smaller numbers.
|
|
int32 Skewed(int max_log);
|
|
|
|
private:
|
|
static const uint32 M = 2147483647L; // 2^31-1
|
|
uint32 seed_;
|
|
};
|
|
|
|
inline int32 ACMRandom::Next() {
|
|
static const uint64 A = 16807; // bits 14, 8, 7, 5, 2, 1, 0
|
|
// We are computing
|
|
// seed_ = (seed_ * A) % M, where M = 2^31-1
|
|
//
|
|
// seed_ must not be zero or M, or else all subsequent computed values
|
|
// will be zero or M respectively. For all other values, seed_ will end
|
|
// up cycling through every number in [1,M-1]
|
|
uint64 product = seed_ * A;
|
|
|
|
// Compute (product % M) using the fact that ((x << 31) % M) == x.
|
|
seed_ = (product >> 31) + (product & M);
|
|
// The first reduction may overflow by 1 bit, so we may need to repeat.
|
|
// mod == M is not possible; using > allows the faster sign-bit-based test.
|
|
if (seed_ > M) {
|
|
seed_ -= M;
|
|
}
|
|
return seed_;
|
|
}
|
|
|
|
inline int32 ACMRandom::Skewed(int max_log) {
|
|
const int32 base = (Next() - 1) % (max_log+1);
|
|
return (Next() - 1) & ((1u << base)-1);
|
|
}
|
|
|
|
// A wall-time clock. This stub is not super-accurate, nor resistant to the
|
|
// system time changing.
|
|
class CycleTimer {
|
|
public:
|
|
CycleTimer() : real_time_us_(0) {}
|
|
|
|
void Start() {
|
|
#ifdef WIN32
|
|
QueryPerformanceCounter(&start_);
|
|
#else
|
|
gettimeofday(&start_, NULL);
|
|
#endif
|
|
}
|
|
|
|
void Stop() {
|
|
#ifdef WIN32
|
|
LARGE_INTEGER stop;
|
|
LARGE_INTEGER frequency;
|
|
QueryPerformanceCounter(&stop);
|
|
QueryPerformanceFrequency(&frequency);
|
|
|
|
double elapsed = static_cast<double>(stop.QuadPart - start_.QuadPart) /
|
|
frequency.QuadPart;
|
|
real_time_us_ += elapsed * 1e6 + 0.5;
|
|
#else
|
|
struct timeval stop;
|
|
gettimeofday(&stop, NULL);
|
|
|
|
real_time_us_ += 1000000 * (stop.tv_sec - start_.tv_sec);
|
|
real_time_us_ += (stop.tv_usec - start_.tv_usec);
|
|
#endif
|
|
}
|
|
|
|
double Get() {
|
|
return real_time_us_ * 1e-6;
|
|
}
|
|
|
|
private:
|
|
int64 real_time_us_;
|
|
#ifdef WIN32
|
|
LARGE_INTEGER start_;
|
|
#else
|
|
struct timeval start_;
|
|
#endif
|
|
};
|
|
|
|
// Minimalistic microbenchmark framework.
|
|
|
|
typedef void (*BenchmarkFunction)(int, int);
|
|
|
|
class Benchmark {
|
|
public:
|
|
Benchmark(const string& name, BenchmarkFunction function) :
|
|
name_(name), function_(function) {}
|
|
|
|
Benchmark* DenseRange(int start, int stop) {
|
|
start_ = start;
|
|
stop_ = stop;
|
|
return this;
|
|
}
|
|
|
|
void Run();
|
|
|
|
private:
|
|
const string name_;
|
|
const BenchmarkFunction function_;
|
|
int start_, stop_;
|
|
};
|
|
#define BENCHMARK(benchmark_name) \
|
|
Benchmark* Benchmark_ ## benchmark_name = \
|
|
(new Benchmark(#benchmark_name, benchmark_name))
|
|
|
|
extern Benchmark* Benchmark_BM_UFlat;
|
|
extern Benchmark* Benchmark_BM_UValidate;
|
|
extern Benchmark* Benchmark_BM_ZFlat;
|
|
|
|
void ResetBenchmarkTiming();
|
|
void StartBenchmarkTiming();
|
|
void StopBenchmarkTiming();
|
|
void SetBenchmarkLabel(const string& str);
|
|
void SetBenchmarkBytesProcessed(int64 bytes);
|
|
|
|
#ifdef HAVE_LIBZ
|
|
|
|
// Object-oriented wrapper around zlib.
|
|
class ZLib {
|
|
public:
|
|
ZLib();
|
|
~ZLib();
|
|
|
|
// Wipe a ZLib object to a virgin state. This differs from Reset()
|
|
// in that it also breaks any state.
|
|
void Reinit();
|
|
|
|
// Call this to make a zlib buffer as good as new. Here's the only
|
|
// case where they differ:
|
|
// CompressChunk(a); CompressChunk(b); CompressChunkDone(); vs
|
|
// CompressChunk(a); Reset(); CompressChunk(b); CompressChunkDone();
|
|
// You'll want to use Reset(), then, when you interrupt a compress
|
|
// (or uncompress) in the middle of a chunk and want to start over.
|
|
void Reset();
|
|
|
|
// According to the zlib manual, when you Compress, the destination
|
|
// buffer must have size at least src + .1%*src + 12. This function
|
|
// helps you calculate that. Augment this to account for a potential
|
|
// gzip header and footer, plus a few bytes of slack.
|
|
static int MinCompressbufSize(int uncompress_size) {
|
|
return uncompress_size + uncompress_size/1000 + 40;
|
|
}
|
|
|
|
// Compresses the source buffer into the destination buffer.
|
|
// sourceLen is the byte length of the source buffer.
|
|
// Upon entry, destLen is the total size of the destination buffer,
|
|
// which must be of size at least MinCompressbufSize(sourceLen).
|
|
// Upon exit, destLen is the actual size of the compressed buffer.
|
|
//
|
|
// This function can be used to compress a whole file at once if the
|
|
// input file is mmap'ed.
|
|
//
|
|
// Returns Z_OK if success, Z_MEM_ERROR if there was not
|
|
// enough memory, Z_BUF_ERROR if there was not enough room in the
|
|
// output buffer. Note that if the output buffer is exactly the same
|
|
// size as the compressed result, we still return Z_BUF_ERROR.
|
|
// (check CL#1936076)
|
|
int Compress(Bytef *dest, uLongf *destLen,
|
|
const Bytef *source, uLong sourceLen);
|
|
|
|
// Uncompresses the source buffer into the destination buffer.
|
|
// The destination buffer must be long enough to hold the entire
|
|
// decompressed contents.
|
|
//
|
|
// Returns Z_OK on success, otherwise, it returns a zlib error code.
|
|
int Uncompress(Bytef *dest, uLongf *destLen,
|
|
const Bytef *source, uLong sourceLen);
|
|
|
|
// Uncompress data one chunk at a time -- ie you can call this
|
|
// more than once. To get this to work you need to call per-chunk
|
|
// and "done" routines.
|
|
//
|
|
// Returns Z_OK if success, Z_MEM_ERROR if there was not
|
|
// enough memory, Z_BUF_ERROR if there was not enough room in the
|
|
// output buffer.
|
|
|
|
int UncompressAtMost(Bytef *dest, uLongf *destLen,
|
|
const Bytef *source, uLong *sourceLen);
|
|
|
|
// Checks gzip footer information, as needed. Mostly this just
|
|
// makes sure the checksums match. Whenever you call this, it
|
|
// will assume the last 8 bytes from the previous UncompressChunk
|
|
// call are the footer. Returns true iff everything looks ok.
|
|
bool UncompressChunkDone();
|
|
|
|
private:
|
|
int InflateInit(); // sets up the zlib inflate structure
|
|
int DeflateInit(); // sets up the zlib deflate structure
|
|
|
|
// These init the zlib data structures for compressing/uncompressing
|
|
int CompressInit(Bytef *dest, uLongf *destLen,
|
|
const Bytef *source, uLong *sourceLen);
|
|
int UncompressInit(Bytef *dest, uLongf *destLen,
|
|
const Bytef *source, uLong *sourceLen);
|
|
// Initialization method to be called if we hit an error while
|
|
// uncompressing. On hitting an error, call this method before
|
|
// returning the error.
|
|
void UncompressErrorInit();
|
|
|
|
// Helper function for Compress
|
|
int CompressChunkOrAll(Bytef *dest, uLongf *destLen,
|
|
const Bytef *source, uLong sourceLen,
|
|
int flush_mode);
|
|
int CompressAtMostOrAll(Bytef *dest, uLongf *destLen,
|
|
const Bytef *source, uLong *sourceLen,
|
|
int flush_mode);
|
|
|
|
// Likewise for UncompressAndUncompressChunk
|
|
int UncompressChunkOrAll(Bytef *dest, uLongf *destLen,
|
|
const Bytef *source, uLong sourceLen,
|
|
int flush_mode);
|
|
|
|
int UncompressAtMostOrAll(Bytef *dest, uLongf *destLen,
|
|
const Bytef *source, uLong *sourceLen,
|
|
int flush_mode);
|
|
|
|
// Initialization method to be called if we hit an error while
|
|
// compressing. On hitting an error, call this method before
|
|
// returning the error.
|
|
void CompressErrorInit();
|
|
|
|
int compression_level_; // compression level
|
|
int window_bits_; // log base 2 of the window size used in compression
|
|
int mem_level_; // specifies the amount of memory to be used by
|
|
// compressor (1-9)
|
|
z_stream comp_stream_; // Zlib stream data structure
|
|
bool comp_init_; // True if we have initialized comp_stream_
|
|
z_stream uncomp_stream_; // Zlib stream data structure
|
|
bool uncomp_init_; // True if we have initialized uncomp_stream_
|
|
|
|
// These are used only with chunked compression.
|
|
bool first_chunk_; // true if we need to emit headers with this chunk
|
|
};
|
|
|
|
#endif // HAVE_LIBZ
|
|
|
|
} // namespace snappy
|
|
|
|
DECLARE_bool(run_microbenchmarks);
|
|
|
|
static void RunSpecifiedBenchmarks() {
|
|
if (!FLAGS_run_microbenchmarks) {
|
|
return;
|
|
}
|
|
|
|
fprintf(stderr, "Running microbenchmarks.\n");
|
|
#ifndef NDEBUG
|
|
fprintf(stderr, "WARNING: Compiled with assertions enabled, will be slow.\n");
|
|
#endif
|
|
#ifndef __OPTIMIZE__
|
|
fprintf(stderr, "WARNING: Compiled without optimization, will be slow.\n");
|
|
#endif
|
|
fprintf(stderr, "Benchmark Time(ns) CPU(ns) Iterations\n");
|
|
fprintf(stderr, "---------------------------------------------------\n");
|
|
|
|
snappy::Benchmark_BM_UFlat->Run();
|
|
snappy::Benchmark_BM_UValidate->Run();
|
|
snappy::Benchmark_BM_ZFlat->Run();
|
|
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
#ifndef HAVE_GTEST
|
|
|
|
static inline int RUN_ALL_TESTS() {
|
|
fprintf(stderr, "Running correctness tests.\n");
|
|
snappy::Test_CorruptedTest_VerifyCorrupted();
|
|
snappy::Test_Snappy_SimpleTests();
|
|
snappy::Test_Snappy_MaxBlowup();
|
|
snappy::Test_Snappy_RandomData();
|
|
snappy::Test_Snappy_FourByteOffset();
|
|
snappy::Test_SnappyCorruption_TruncatedVarint();
|
|
snappy::Test_SnappyCorruption_UnterminatedVarint();
|
|
snappy::Test_Snappy_ReadPastEndOfBuffer();
|
|
snappy::Test_Snappy_FindMatchLength();
|
|
snappy::Test_Snappy_FindMatchLengthRandom();
|
|
fprintf(stderr, "All tests passed.\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif // HAVE_GTEST
|
|
|
|
// For main().
|
|
namespace snappy {
|
|
|
|
static void CompressFile(const char* fname);
|
|
static void UncompressFile(const char* fname);
|
|
static void MeasureFile(const char* fname);
|
|
|
|
} // namespace
|
|
|
|
using snappy::CompressFile;
|
|
using snappy::UncompressFile;
|
|
using snappy::MeasureFile;
|
|
|
|
#endif // UTIL_SNAPPY_OPENSOURCE_SNAPPY_TEST_H_
|