092f417037
Summary: RocksDB has historically stored uncompression dictionary objects in the block cache as opposed to storing just the block contents. This neccesitated evicting the object upon table close. With the new code, only the raw blocks are stored in the cache, eliminating the need for eviction. In addition, the patch makes the following improvements: 1) Compression dictionary blocks are now prefetched/pinned similarly to index/filter blocks. 2) A copy operation got eliminated when the uncompression dictionary is retrieved. 3) Errors related to retrieving the uncompression dictionary are propagated as opposed to silently ignored. Note: the patch temporarily breaks the compression dictionary evicition stats. They will be fixed in a separate phase. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5584 Test Plan: make asan_check Differential Revision: D16344151 Pulled By: ltamasi fbshipit-source-id: 2962b295f5b19628f9da88a3fcebbce5a5017a7b
264 lines
11 KiB
C++
264 lines
11 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
//
|
|
// A Cache is an interface that maps keys to values. It has internal
|
|
// synchronization and may be safely accessed concurrently from
|
|
// multiple threads. It may automatically evict entries to make room
|
|
// for new entries. Values have a specified charge against the cache
|
|
// capacity. For example, a cache where the values are variable
|
|
// length strings, may use the length of the string as the charge for
|
|
// the string.
|
|
//
|
|
// A builtin cache implementation with a least-recently-used eviction
|
|
// policy is provided. Clients may use their own implementations if
|
|
// they want something more sophisticated (like scan-resistance, a
|
|
// custom eviction policy, variable cache sizing, etc.)
|
|
|
|
#pragma once
|
|
|
|
#include <stdint.h>
|
|
#include <memory>
|
|
#include <string>
|
|
#include "rocksdb/memory_allocator.h"
|
|
#include "rocksdb/slice.h"
|
|
#include "rocksdb/statistics.h"
|
|
#include "rocksdb/status.h"
|
|
|
|
namespace rocksdb {
|
|
|
|
class Cache;
|
|
|
|
extern const bool kDefaultToAdaptiveMutex;
|
|
|
|
struct LRUCacheOptions {
|
|
// Capacity of the cache.
|
|
size_t capacity = 0;
|
|
|
|
// Cache is sharded into 2^num_shard_bits shards,
|
|
// by hash of key. Refer to NewLRUCache for further
|
|
// information.
|
|
int num_shard_bits = -1;
|
|
|
|
// If strict_capacity_limit is set,
|
|
// insert to the cache will fail when cache is full.
|
|
bool strict_capacity_limit = false;
|
|
|
|
// Percentage of cache reserved for high priority entries.
|
|
// If greater than zero, the LRU list will be split into a high-pri
|
|
// list and a low-pri list. High-pri entries will be insert to the
|
|
// tail of high-pri list, while low-pri entries will be first inserted to
|
|
// the low-pri list (the midpoint). This is refered to as
|
|
// midpoint insertion strategy to make entries never get hit in cache
|
|
// age out faster.
|
|
//
|
|
// See also
|
|
// BlockBasedTableOptions::cache_index_and_filter_blocks_with_high_priority.
|
|
double high_pri_pool_ratio = 0.5;
|
|
|
|
// If non-nullptr will use this allocator instead of system allocator when
|
|
// allocating memory for cache blocks. Call this method before you start using
|
|
// the cache!
|
|
//
|
|
// Caveat: when the cache is used as block cache, the memory allocator is
|
|
// ignored when dealing with compression libraries that allocate memory
|
|
// internally (currently only XPRESS).
|
|
std::shared_ptr<MemoryAllocator> memory_allocator;
|
|
|
|
// Whether to use adaptive mutexes for cache shards. Note that adaptive
|
|
// mutexes need to be supported by the platform in order for this to have any
|
|
// effect. The default value is true if RocksDB is compiled with
|
|
// -DROCKSDB_DEFAULT_TO_ADAPTIVE_MUTEX, false otherwise.
|
|
bool use_adaptive_mutex = kDefaultToAdaptiveMutex;
|
|
|
|
LRUCacheOptions() {}
|
|
LRUCacheOptions(size_t _capacity, int _num_shard_bits,
|
|
bool _strict_capacity_limit, double _high_pri_pool_ratio,
|
|
std::shared_ptr<MemoryAllocator> _memory_allocator = nullptr,
|
|
bool _use_adaptive_mutex = kDefaultToAdaptiveMutex)
|
|
: capacity(_capacity),
|
|
num_shard_bits(_num_shard_bits),
|
|
strict_capacity_limit(_strict_capacity_limit),
|
|
high_pri_pool_ratio(_high_pri_pool_ratio),
|
|
memory_allocator(std::move(_memory_allocator)),
|
|
use_adaptive_mutex(_use_adaptive_mutex) {}
|
|
};
|
|
|
|
// Create a new cache with a fixed size capacity. The cache is sharded
|
|
// to 2^num_shard_bits shards, by hash of the key. The total capacity
|
|
// is divided and evenly assigned to each shard. If strict_capacity_limit
|
|
// is set, insert to the cache will fail when cache is full. User can also
|
|
// set percentage of the cache reserves for high priority entries via
|
|
// high_pri_pool_pct.
|
|
// num_shard_bits = -1 means it is automatically determined: every shard
|
|
// will be at least 512KB and number of shard bits will not exceed 6.
|
|
extern std::shared_ptr<Cache> NewLRUCache(
|
|
size_t capacity, int num_shard_bits = -1,
|
|
bool strict_capacity_limit = false, double high_pri_pool_ratio = 0.5,
|
|
std::shared_ptr<MemoryAllocator> memory_allocator = nullptr,
|
|
bool use_adaptive_mutex = kDefaultToAdaptiveMutex);
|
|
|
|
extern std::shared_ptr<Cache> NewLRUCache(const LRUCacheOptions& cache_opts);
|
|
|
|
// Similar to NewLRUCache, but create a cache based on CLOCK algorithm with
|
|
// better concurrent performance in some cases. See util/clock_cache.cc for
|
|
// more detail.
|
|
//
|
|
// Return nullptr if it is not supported.
|
|
extern std::shared_ptr<Cache> NewClockCache(size_t capacity,
|
|
int num_shard_bits = -1,
|
|
bool strict_capacity_limit = false);
|
|
|
|
class Cache {
|
|
public:
|
|
// Depending on implementation, cache entries with high priority could be less
|
|
// likely to get evicted than low priority entries.
|
|
enum class Priority { HIGH, LOW };
|
|
|
|
Cache(std::shared_ptr<MemoryAllocator> allocator = nullptr)
|
|
: memory_allocator_(std::move(allocator)) {}
|
|
|
|
// Destroys all existing entries by calling the "deleter"
|
|
// function that was passed via the Insert() function.
|
|
//
|
|
// @See Insert
|
|
virtual ~Cache() {}
|
|
|
|
// Opaque handle to an entry stored in the cache.
|
|
struct Handle {};
|
|
|
|
// The type of the Cache
|
|
virtual const char* Name() const = 0;
|
|
|
|
// Insert a mapping from key->value into the cache and assign it
|
|
// the specified charge against the total cache capacity.
|
|
// If strict_capacity_limit is true and cache reaches its full capacity,
|
|
// return Status::Incomplete.
|
|
//
|
|
// If handle is not nullptr, returns a handle that corresponds to the
|
|
// mapping. The caller must call this->Release(handle) when the returned
|
|
// mapping is no longer needed. In case of error caller is responsible to
|
|
// cleanup the value (i.e. calling "deleter").
|
|
//
|
|
// If handle is nullptr, it is as if Release is called immediately after
|
|
// insert. In case of error value will be cleanup.
|
|
//
|
|
// When the inserted entry is no longer needed, the key and
|
|
// value will be passed to "deleter".
|
|
virtual Status Insert(const Slice& key, void* value, size_t charge,
|
|
void (*deleter)(const Slice& key, void* value),
|
|
Handle** handle = nullptr,
|
|
Priority priority = Priority::LOW) = 0;
|
|
|
|
// If the cache has no mapping for "key", returns nullptr.
|
|
//
|
|
// Else return a handle that corresponds to the mapping. The caller
|
|
// must call this->Release(handle) when the returned mapping is no
|
|
// longer needed.
|
|
// If stats is not nullptr, relative tickers could be used inside the
|
|
// function.
|
|
virtual Handle* Lookup(const Slice& key, Statistics* stats = nullptr) = 0;
|
|
|
|
// Increments the reference count for the handle if it refers to an entry in
|
|
// the cache. Returns true if refcount was incremented; otherwise, returns
|
|
// false.
|
|
// REQUIRES: handle must have been returned by a method on *this.
|
|
virtual bool Ref(Handle* handle) = 0;
|
|
|
|
/**
|
|
* Release a mapping returned by a previous Lookup(). A released entry might
|
|
* still remain in cache in case it is later looked up by others. If
|
|
* force_erase is set then it also erase it from the cache if there is no
|
|
* other reference to it. Erasing it should call the deleter function that
|
|
* was provided when the
|
|
* entry was inserted.
|
|
*
|
|
* Returns true if the entry was also erased.
|
|
*/
|
|
// REQUIRES: handle must not have been released yet.
|
|
// REQUIRES: handle must have been returned by a method on *this.
|
|
virtual bool Release(Handle* handle, bool force_erase = false) = 0;
|
|
|
|
// Return the value encapsulated in a handle returned by a
|
|
// successful Lookup().
|
|
// REQUIRES: handle must not have been released yet.
|
|
// REQUIRES: handle must have been returned by a method on *this.
|
|
virtual void* Value(Handle* handle) = 0;
|
|
|
|
// If the cache contains entry for key, erase it. Note that the
|
|
// underlying entry will be kept around until all existing handles
|
|
// to it have been released.
|
|
virtual void Erase(const Slice& key) = 0;
|
|
// Return a new numeric id. May be used by multiple clients who are
|
|
// sharding the same cache to partition the key space. Typically the
|
|
// client will allocate a new id at startup and prepend the id to
|
|
// its cache keys.
|
|
virtual uint64_t NewId() = 0;
|
|
|
|
// sets the maximum configured capacity of the cache. When the new
|
|
// capacity is less than the old capacity and the existing usage is
|
|
// greater than new capacity, the implementation will do its best job to
|
|
// purge the released entries from the cache in order to lower the usage
|
|
virtual void SetCapacity(size_t capacity) = 0;
|
|
|
|
// Set whether to return error on insertion when cache reaches its full
|
|
// capacity.
|
|
virtual void SetStrictCapacityLimit(bool strict_capacity_limit) = 0;
|
|
|
|
// Get the flag whether to return error on insertion when cache reaches its
|
|
// full capacity.
|
|
virtual bool HasStrictCapacityLimit() const = 0;
|
|
|
|
// returns the maximum configured capacity of the cache
|
|
virtual size_t GetCapacity() const = 0;
|
|
|
|
// returns the memory size for the entries residing in the cache.
|
|
virtual size_t GetUsage() const = 0;
|
|
|
|
// returns the memory size for a specific entry in the cache.
|
|
virtual size_t GetUsage(Handle* handle) const = 0;
|
|
|
|
// returns the memory size for the entries in use by the system
|
|
virtual size_t GetPinnedUsage() const = 0;
|
|
|
|
// returns the charge for the specific entry in the cache.
|
|
virtual size_t GetCharge(Handle* handle) const = 0;
|
|
|
|
// Call this on shutdown if you want to speed it up. Cache will disown
|
|
// any underlying data and will not free it on delete. This call will leak
|
|
// memory - call this only if you're shutting down the process.
|
|
// Any attempts of using cache after this call will fail terribly.
|
|
// Always delete the DB object before calling this method!
|
|
virtual void DisownData(){
|
|
// default implementation is noop
|
|
};
|
|
|
|
// Apply callback to all entries in the cache
|
|
// If thread_safe is true, it will also lock the accesses. Otherwise, it will
|
|
// access the cache without the lock held
|
|
virtual void ApplyToAllCacheEntries(void (*callback)(void*, size_t),
|
|
bool thread_safe) = 0;
|
|
|
|
// Remove all entries.
|
|
// Prerequisite: no entry is referenced.
|
|
virtual void EraseUnRefEntries() = 0;
|
|
|
|
virtual std::string GetPrintableOptions() const { return ""; }
|
|
|
|
MemoryAllocator* memory_allocator() const { return memory_allocator_.get(); }
|
|
|
|
private:
|
|
// No copying allowed
|
|
Cache(const Cache&);
|
|
Cache& operator=(const Cache&);
|
|
|
|
std::shared_ptr<MemoryAllocator> memory_allocator_;
|
|
};
|
|
|
|
} // namespace rocksdb
|