93e6b5e9d9
* Script for building the unity.cc file via Makefile * Unity executable Makefile target for testing builds * Source code changes to fix compilation of unity build
357 lines
9.6 KiB
C++
357 lines
9.6 KiB
C++
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree. An additional grant
|
|
// of patent rights can be found in the PATENTS file in the same directory.
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "table/merger.h"
|
|
|
|
#include <vector>
|
|
#include <queue>
|
|
|
|
#include "rocksdb/comparator.h"
|
|
#include "rocksdb/iterator.h"
|
|
#include "rocksdb/options.h"
|
|
#include "table/iter_heap.h"
|
|
#include "table/iterator_wrapper.h"
|
|
#include "util/arena.h"
|
|
#include "util/stop_watch.h"
|
|
#include "util/perf_context_imp.h"
|
|
#include "util/autovector.h"
|
|
|
|
namespace rocksdb {
|
|
namespace merger {
|
|
typedef std::priority_queue<
|
|
IteratorWrapper*,
|
|
std::vector<IteratorWrapper*>,
|
|
MaxIteratorComparator> MaxIterHeap;
|
|
|
|
typedef std::priority_queue<
|
|
IteratorWrapper*,
|
|
std::vector<IteratorWrapper*>,
|
|
MinIteratorComparator> MinIterHeap;
|
|
|
|
// Return's a new MaxHeap of IteratorWrapper's using the provided Comparator.
|
|
MaxIterHeap NewMaxIterHeap(const Comparator* comparator) {
|
|
return MaxIterHeap(MaxIteratorComparator(comparator));
|
|
}
|
|
|
|
// Return's a new MinHeap of IteratorWrapper's using the provided Comparator.
|
|
MinIterHeap NewMinIterHeap(const Comparator* comparator) {
|
|
return MinIterHeap(MinIteratorComparator(comparator));
|
|
}
|
|
} // namespace merger
|
|
|
|
const size_t kNumIterReserve = 4;
|
|
|
|
class MergingIterator : public Iterator {
|
|
public:
|
|
MergingIterator(const Comparator* comparator, Iterator** children, int n,
|
|
bool is_arena_mode)
|
|
: is_arena_mode_(is_arena_mode),
|
|
comparator_(comparator),
|
|
current_(nullptr),
|
|
use_heap_(true),
|
|
direction_(kForward),
|
|
maxHeap_(merger::NewMaxIterHeap(comparator_)),
|
|
minHeap_(merger::NewMinIterHeap(comparator_)) {
|
|
children_.resize(n);
|
|
for (int i = 0; i < n; i++) {
|
|
children_[i].Set(children[i]);
|
|
}
|
|
for (auto& child : children_) {
|
|
if (child.Valid()) {
|
|
minHeap_.push(&child);
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual void AddIterator(Iterator* iter) {
|
|
assert(direction_ == kForward);
|
|
children_.emplace_back(iter);
|
|
auto new_wrapper = children_.back();
|
|
if (new_wrapper.Valid()) {
|
|
minHeap_.push(&new_wrapper);
|
|
}
|
|
}
|
|
|
|
virtual ~MergingIterator() {
|
|
for (auto& child : children_) {
|
|
child.DeleteIter(is_arena_mode_);
|
|
}
|
|
}
|
|
|
|
virtual bool Valid() const {
|
|
return (current_ != nullptr);
|
|
}
|
|
|
|
virtual void SeekToFirst() {
|
|
ClearHeaps();
|
|
for (auto& child : children_) {
|
|
child.SeekToFirst();
|
|
if (child.Valid()) {
|
|
minHeap_.push(&child);
|
|
}
|
|
}
|
|
FindSmallest();
|
|
direction_ = kForward;
|
|
}
|
|
|
|
virtual void SeekToLast() {
|
|
ClearHeaps();
|
|
for (auto& child : children_) {
|
|
child.SeekToLast();
|
|
if (child.Valid()) {
|
|
maxHeap_.push(&child);
|
|
}
|
|
}
|
|
FindLargest();
|
|
direction_ = kReverse;
|
|
}
|
|
|
|
virtual void Seek(const Slice& target) {
|
|
// Invalidate the heap.
|
|
use_heap_ = false;
|
|
IteratorWrapper* first_child = nullptr;
|
|
PERF_TIMER_DECLARE();
|
|
|
|
for (auto& child : children_) {
|
|
PERF_TIMER_START(seek_child_seek_time);
|
|
child.Seek(target);
|
|
PERF_TIMER_STOP(seek_child_seek_time);
|
|
PERF_COUNTER_ADD(seek_child_seek_count, 1);
|
|
|
|
if (child.Valid()) {
|
|
// This child has valid key
|
|
if (!use_heap_) {
|
|
if (first_child == nullptr) {
|
|
// It's the first child has valid key. Only put it int
|
|
// current_. Now the values in the heap should be invalid.
|
|
first_child = &child;
|
|
} else {
|
|
// We have more than one children with valid keys. Initialize
|
|
// the heap and put the first child into the heap.
|
|
PERF_TIMER_START(seek_min_heap_time);
|
|
ClearHeaps();
|
|
minHeap_.push(first_child);
|
|
PERF_TIMER_STOP(seek_min_heap_time);
|
|
}
|
|
}
|
|
if (use_heap_) {
|
|
PERF_TIMER_START(seek_min_heap_time);
|
|
minHeap_.push(&child);
|
|
PERF_TIMER_STOP(seek_min_heap_time);
|
|
}
|
|
}
|
|
}
|
|
if (use_heap_) {
|
|
// If heap is valid, need to put the smallest key to curent_.
|
|
PERF_TIMER_START(seek_min_heap_time);
|
|
FindSmallest();
|
|
PERF_TIMER_STOP(seek_min_heap_time);
|
|
} else {
|
|
// The heap is not valid, then the current_ iterator is the first
|
|
// one, or null if there is no first child.
|
|
current_ = first_child;
|
|
}
|
|
direction_ = kForward;
|
|
}
|
|
|
|
virtual void Next() {
|
|
assert(Valid());
|
|
|
|
// Ensure that all children are positioned after key().
|
|
// If we are moving in the forward direction, it is already
|
|
// true for all of the non-current_ children since current_ is
|
|
// the smallest child and key() == current_->key(). Otherwise,
|
|
// we explicitly position the non-current_ children.
|
|
if (direction_ != kForward) {
|
|
ClearHeaps();
|
|
for (auto& child : children_) {
|
|
if (&child != current_) {
|
|
child.Seek(key());
|
|
if (child.Valid() &&
|
|
comparator_->Compare(key(), child.key()) == 0) {
|
|
child.Next();
|
|
}
|
|
if (child.Valid()) {
|
|
minHeap_.push(&child);
|
|
}
|
|
}
|
|
}
|
|
direction_ = kForward;
|
|
}
|
|
|
|
// as the current points to the current record. move the iterator forward.
|
|
// and if it is valid add it to the heap.
|
|
current_->Next();
|
|
if (use_heap_) {
|
|
if (current_->Valid()) {
|
|
minHeap_.push(current_);
|
|
}
|
|
FindSmallest();
|
|
} else if (!current_->Valid()) {
|
|
current_ = nullptr;
|
|
}
|
|
}
|
|
|
|
virtual void Prev() {
|
|
assert(Valid());
|
|
// Ensure that all children are positioned before key().
|
|
// If we are moving in the reverse direction, it is already
|
|
// true for all of the non-current_ children since current_ is
|
|
// the largest child and key() == current_->key(). Otherwise,
|
|
// we explicitly position the non-current_ children.
|
|
if (direction_ != kReverse) {
|
|
ClearHeaps();
|
|
for (auto& child : children_) {
|
|
if (&child != current_) {
|
|
child.Seek(key());
|
|
if (child.Valid()) {
|
|
// Child is at first entry >= key(). Step back one to be < key()
|
|
child.Prev();
|
|
} else {
|
|
// Child has no entries >= key(). Position at last entry.
|
|
child.SeekToLast();
|
|
}
|
|
if (child.Valid()) {
|
|
maxHeap_.push(&child);
|
|
}
|
|
}
|
|
}
|
|
direction_ = kReverse;
|
|
}
|
|
|
|
current_->Prev();
|
|
if (current_->Valid()) {
|
|
maxHeap_.push(current_);
|
|
}
|
|
FindLargest();
|
|
}
|
|
|
|
virtual Slice key() const {
|
|
assert(Valid());
|
|
return current_->key();
|
|
}
|
|
|
|
virtual Slice value() const {
|
|
assert(Valid());
|
|
return current_->value();
|
|
}
|
|
|
|
virtual Status status() const {
|
|
Status status;
|
|
for (auto& child : children_) {
|
|
status = child.status();
|
|
if (!status.ok()) {
|
|
break;
|
|
}
|
|
}
|
|
return status;
|
|
}
|
|
|
|
private:
|
|
void FindSmallest();
|
|
void FindLargest();
|
|
void ClearHeaps();
|
|
|
|
bool is_arena_mode_;
|
|
const Comparator* comparator_;
|
|
autovector<IteratorWrapper, kNumIterReserve> children_;
|
|
IteratorWrapper* current_;
|
|
// If the value is true, both of iterators in the heap and current_
|
|
// contain valid rows. If it is false, only current_ can possibly contain
|
|
// valid rows.
|
|
// This flag is always true for reverse direction, as we always use heap for
|
|
// the reverse iterating case.
|
|
bool use_heap_;
|
|
// Which direction is the iterator moving?
|
|
enum Direction {
|
|
kForward,
|
|
kReverse
|
|
};
|
|
Direction direction_;
|
|
merger::MaxIterHeap maxHeap_;
|
|
merger::MinIterHeap minHeap_;
|
|
};
|
|
|
|
void MergingIterator::FindSmallest() {
|
|
assert(use_heap_);
|
|
if (minHeap_.empty()) {
|
|
current_ = nullptr;
|
|
} else {
|
|
current_ = minHeap_.top();
|
|
assert(current_->Valid());
|
|
minHeap_.pop();
|
|
}
|
|
}
|
|
|
|
void MergingIterator::FindLargest() {
|
|
assert(use_heap_);
|
|
if (maxHeap_.empty()) {
|
|
current_ = nullptr;
|
|
} else {
|
|
current_ = maxHeap_.top();
|
|
assert(current_->Valid());
|
|
maxHeap_.pop();
|
|
}
|
|
}
|
|
|
|
void MergingIterator::ClearHeaps() {
|
|
use_heap_ = true;
|
|
maxHeap_ = merger::NewMaxIterHeap(comparator_);
|
|
minHeap_ = merger::NewMinIterHeap(comparator_);
|
|
}
|
|
|
|
Iterator* NewMergingIterator(const Comparator* cmp, Iterator** list, int n,
|
|
Arena* arena) {
|
|
assert(n >= 0);
|
|
if (n == 0) {
|
|
return NewEmptyIterator(arena);
|
|
} else if (n == 1) {
|
|
return list[0];
|
|
} else {
|
|
if (arena == nullptr) {
|
|
return new MergingIterator(cmp, list, n, false);
|
|
} else {
|
|
auto mem = arena->AllocateAligned(sizeof(MergingIterator));
|
|
return new (mem) MergingIterator(cmp, list, n, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
MergeIteratorBuilder::MergeIteratorBuilder(const Comparator* comparator,
|
|
Arena* a)
|
|
: first_iter(nullptr), use_merging_iter(false), arena(a) {
|
|
|
|
auto mem = arena->AllocateAligned(sizeof(MergingIterator));
|
|
merge_iter = new (mem) MergingIterator(comparator, nullptr, 0, true);
|
|
}
|
|
|
|
void MergeIteratorBuilder::AddIterator(Iterator* iter) {
|
|
if (!use_merging_iter && first_iter != nullptr) {
|
|
merge_iter->AddIterator(first_iter);
|
|
use_merging_iter = true;
|
|
}
|
|
if (use_merging_iter) {
|
|
merge_iter->AddIterator(iter);
|
|
} else {
|
|
first_iter = iter;
|
|
}
|
|
}
|
|
|
|
Iterator* MergeIteratorBuilder::Finish() {
|
|
if (!use_merging_iter) {
|
|
return first_iter;
|
|
} else {
|
|
auto ret = merge_iter;
|
|
merge_iter = nullptr;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
} // namespace rocksdb
|