rocksdb/memtable/write_buffer_manager_test.cc
Siying Dong e90cdc2dae WriteBufferManager will not trigger flush if much data is already being flushed
Summary:
Even if hard limit hits, flushing more memtable may not help cap the memory usage if already more than half data is scheduled for flush. Not triggering flush instead.
Closes https://github.com/facebook/rocksdb/pull/2469

Differential Revision: D5284249

Pulled By: siying

fbshipit-source-id: 8ab7ba1aba56a634dbe72b318fcab2093063972e
2017-06-21 13:12:59 -07:00

154 lines
5.3 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
// This source code is also licensed under the GPLv2 license found in the
// COPYING file in the root directory of this source tree.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "rocksdb/write_buffer_manager.h"
#include "util/testharness.h"
namespace rocksdb {
class WriteBufferManagerTest : public testing::Test {};
#ifndef ROCKSDB_LITE
TEST_F(WriteBufferManagerTest, ShouldFlush) {
// A write buffer manager of size 10MB
std::unique_ptr<WriteBufferManager> wbf(
new WriteBufferManager(10 * 1024 * 1024));
wbf->ReserveMem(8 * 1024 * 1024);
ASSERT_FALSE(wbf->ShouldFlush());
// 90% of the hard limit will hit the condition
wbf->ReserveMem(1 * 1024 * 1024);
ASSERT_TRUE(wbf->ShouldFlush());
// Scheduling for freeing will release the condition
wbf->ScheduleFreeMem(1 * 1024 * 1024);
ASSERT_FALSE(wbf->ShouldFlush());
wbf->ReserveMem(2 * 1024 * 1024);
ASSERT_TRUE(wbf->ShouldFlush());
wbf->ScheduleFreeMem(4 * 1024 * 1024);
// 11MB total, 6MB mutable. hard limit still hit
ASSERT_TRUE(wbf->ShouldFlush());
wbf->ScheduleFreeMem(2 * 1024 * 1024);
// 11MB total, 4MB mutable. hard limit stills but won't flush because more
// than half data is already being flushed.
ASSERT_FALSE(wbf->ShouldFlush());
wbf->ReserveMem(4 * 1024 * 1024);
// 15 MB total, 8MB mutable.
ASSERT_TRUE(wbf->ShouldFlush());
wbf->FreeMem(7 * 1024 * 1024);
// 9MB total, 8MB mutable.
ASSERT_FALSE(wbf->ShouldFlush());
}
TEST_F(WriteBufferManagerTest, CacheCost) {
// 1GB cache
std::shared_ptr<Cache> cache = NewLRUCache(1024 * 1024 * 1024, 4);
// A write buffer manager of size 50MB
std::unique_ptr<WriteBufferManager> wbf(
new WriteBufferManager(50 * 1024 * 1024, cache));
// Allocate 1.5MB will allocate 2MB
wbf->ReserveMem(1536 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 2 * 1024 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 2 * 1024 * 1024 + 10000);
// Allocate another 2MB
wbf->ReserveMem(2 * 1024 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 4 * 1024 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 4 * 1024 * 1024 + 10000);
// Allocate another 20MB
wbf->ReserveMem(20 * 1024 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 24 * 1024 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 24 * 1024 * 1024 + 10000);
// Free 2MB will not cause any change in cache cost
wbf->FreeMem(2 * 1024 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 24 * 1024 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 24 * 1024 * 1024 + 10000);
ASSERT_FALSE(wbf->ShouldFlush());
// Allocate another 30MB
wbf->ReserveMem(30 * 1024 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 52 * 1024 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 52 * 1024 * 1024 + 10000);
ASSERT_TRUE(wbf->ShouldFlush());
ASSERT_TRUE(wbf->ShouldFlush());
wbf->ScheduleFreeMem(20 * 1024 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 52 * 1024 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 52 * 1024 * 1024 + 10000);
// Still need flush as the hard limit hits
ASSERT_TRUE(wbf->ShouldFlush());
// Free 20MB will releae 1MB from cache
wbf->FreeMem(20 * 1024 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 51 * 1024 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 51 * 1024 * 1024 + 10000);
ASSERT_FALSE(wbf->ShouldFlush());
// Every free will release 1MB if still not hit 3/4
wbf->FreeMem(16 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 50 * 1024 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 50 * 1024 * 1024 + 10000);
wbf->FreeMem(16 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 49 * 1024 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 49 * 1024 * 1024 + 10000);
// Free 2MB will not cause any change in cache cost
wbf->ReserveMem(2 * 1024 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 49 * 1024 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 49 * 1024 * 1024 + 10000);
wbf->FreeMem(16 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 48 * 1024 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 48 * 1024 * 1024 + 10000);
// Destory write buffer manger should free everything
wbf.reset();
ASSERT_LT(cache->GetPinnedUsage(), 1024 * 1024);
}
TEST_F(WriteBufferManagerTest, NoCapCacheCost) {
// 1GB cache
std::shared_ptr<Cache> cache = NewLRUCache(1024 * 1024 * 1024, 4);
// A write buffer manager of size 256MB
std::unique_ptr<WriteBufferManager> wbf(new WriteBufferManager(0, cache));
// Allocate 1.5MB will allocate 2MB
wbf->ReserveMem(10 * 1024 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 10 * 1024 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 10 * 1024 * 1024 + 10000);
ASSERT_FALSE(wbf->ShouldFlush());
wbf->FreeMem(9 * 1024 * 1024);
for (int i = 0; i < 10; i++) {
wbf->FreeMem(16 * 1024);
}
ASSERT_GE(cache->GetPinnedUsage(), 1024 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 1024 * 1024 + 10000);
}
#endif // ROCKSDB_LITE
} // namespace rocksdb
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}