rocksdb/db/db_impl.h
Igor Canadi f24a3ee52d Read from and write to different column families
Summary: This one is big. It adds ability to write to and read from different column families (see the unit test). It also supports recovery of different column families from log, which was the hardest part to reason about. We need to make sure to never delete the log file which has unflushed data from any column family. To support that, I added another concept, which is versions_->MinLogNumber()

Test Plan: Added a unit test in column_family_test

Reviewers: dhruba, haobo, sdong, kailiu

CC: leveldb

Differential Revision: https://reviews.facebook.net/D15537
2014-01-29 11:38:16 -08:00

631 lines
24 KiB
C++

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#pragma once
#include <atomic>
#include <deque>
#include <set>
#include <utility>
#include <vector>
#include "db/dbformat.h"
#include "db/log_writer.h"
#include "db/snapshot.h"
#include "db/column_family.h"
#include "db/version_edit.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/transaction_log.h"
#include "port/port.h"
#include "util/stats_logger.h"
#include "memtablelist.h"
#include "util/autovector.h"
namespace rocksdb {
class MemTable;
class TableCache;
class Version;
class VersionEdit;
class VersionSet;
class DBImpl : public DB {
public:
DBImpl(const Options& options, const std::string& dbname);
virtual ~DBImpl();
// Implementations of the DB interface
using DB::Put;
virtual Status Put(const WriteOptions& options,
const ColumnFamilyHandle& column_family, const Slice& key,
const Slice& value);
using DB::Merge;
virtual Status Merge(const WriteOptions& options,
const ColumnFamilyHandle& column_family,
const Slice& key, const Slice& value);
using DB::Delete;
virtual Status Delete(const WriteOptions& options,
const ColumnFamilyHandle& column_family,
const Slice& key);
using DB::Write;
virtual Status Write(const WriteOptions& options, WriteBatch* updates);
using DB::Get;
virtual Status Get(const ReadOptions& options,
const ColumnFamilyHandle& column_family, const Slice& key,
std::string* value);
using DB::MultiGet;
virtual std::vector<Status> MultiGet(
const ReadOptions& options,
const std::vector<ColumnFamilyHandle>& column_family,
const std::vector<Slice>& keys, std::vector<std::string>* values);
virtual Status CreateColumnFamily(const ColumnFamilyOptions& options,
const std::string& column_family,
ColumnFamilyHandle* handle);
virtual Status DropColumnFamily(const ColumnFamilyHandle& column_family);
// Returns false if key doesn't exist in the database and true if it may.
// If value_found is not passed in as null, then return the value if found in
// memory. On return, if value was found, then value_found will be set to true
// , otherwise false.
using DB::KeyMayExist;
virtual bool KeyMayExist(const ReadOptions& options,
const ColumnFamilyHandle& column_family,
const Slice& key, std::string* value,
bool* value_found = nullptr);
using DB::NewIterator;
virtual Iterator* NewIterator(const ReadOptions& options,
const ColumnFamilyHandle& column_family);
virtual Status NewIterators(
const ReadOptions& options,
const std::vector<ColumnFamilyHandle>& column_family,
std::vector<Iterator*>* iterators);
virtual const Snapshot* GetSnapshot();
virtual void ReleaseSnapshot(const Snapshot* snapshot);
using DB::GetProperty;
virtual bool GetProperty(const ColumnFamilyHandle& column_family,
const Slice& property, std::string* value);
using DB::GetApproximateSizes;
virtual void GetApproximateSizes(const ColumnFamilyHandle& column_family,
const Range* range, int n, uint64_t* sizes);
using DB::CompactRange;
virtual Status CompactRange(const ColumnFamilyHandle& column_family,
const Slice* begin, const Slice* end,
bool reduce_level = false, int target_level = -1);
using DB::NumberLevels;
virtual int NumberLevels(const ColumnFamilyHandle& column_family);
using DB::MaxMemCompactionLevel;
virtual int MaxMemCompactionLevel(const ColumnFamilyHandle& column_family);
using DB::Level0StopWriteTrigger;
virtual int Level0StopWriteTrigger(const ColumnFamilyHandle& column_family);
virtual const std::string& GetName() const;
virtual Env* GetEnv() const;
using DB::GetOptions;
virtual const Options& GetOptions(const ColumnFamilyHandle& column_family)
const;
using DB::Flush;
virtual Status Flush(const FlushOptions& options,
const ColumnFamilyHandle& column_family);
virtual Status DisableFileDeletions();
virtual Status EnableFileDeletions(bool force);
// All the returned filenames start with "/"
virtual Status GetLiveFiles(std::vector<std::string>&,
uint64_t* manifest_file_size,
bool flush_memtable = true);
virtual Status GetSortedWalFiles(VectorLogPtr& files);
virtual SequenceNumber GetLatestSequenceNumber() const;
virtual Status GetUpdatesSince(SequenceNumber seq_number,
unique_ptr<TransactionLogIterator>* iter);
virtual Status DeleteFile(std::string name);
virtual void GetLiveFilesMetaData(std::vector<LiveFileMetaData>* metadata);
virtual Status GetDbIdentity(std::string& identity);
Status RunManualCompaction(int input_level,
int output_level,
const Slice* begin,
const Slice* end);
// Extra methods (for testing) that are not in the public DB interface
// Compact any files in the named level that overlap [*begin, *end]
Status TEST_CompactRange(int level,
const Slice* begin,
const Slice* end);
// Force current memtable contents to be flushed.
Status TEST_FlushMemTable();
// Wait for memtable compaction
Status TEST_WaitForFlushMemTable();
// Wait for any compaction
Status TEST_WaitForCompact();
// Return an internal iterator over the current state of the database.
// The keys of this iterator are internal keys (see format.h).
// The returned iterator should be deleted when no longer needed.
Iterator* TEST_NewInternalIterator();
// Return the maximum overlapping data (in bytes) at next level for any
// file at a level >= 1.
int64_t TEST_MaxNextLevelOverlappingBytes();
// Simulate a db crash, no elegant closing of database.
void TEST_Destroy_DBImpl();
// Return the current manifest file no.
uint64_t TEST_Current_Manifest_FileNo();
// Trigger's a background call for testing.
void TEST_PurgeObsoleteteWAL();
// get total level0 file size. Only for testing.
uint64_t TEST_GetLevel0TotalSize();
void TEST_SetDefaultTimeToCheck(uint64_t default_interval_to_delete_obsolete_WAL)
{
default_interval_to_delete_obsolete_WAL_ = default_interval_to_delete_obsolete_WAL;
}
// needed for CleanupIteratorState
struct DeletionState {
inline bool HaveSomethingToDelete() const {
return all_files.size() ||
sst_delete_files.size() ||
log_delete_files.size();
}
// a list of all files that we'll consider deleting
// (every once in a while this is filled up with all files
// in the DB directory)
std::vector<std::string> all_files;
// the list of all live sst files that cannot be deleted
std::vector<uint64_t> sst_live;
// a list of sst files that we need to delete
std::vector<FileMetaData*> sst_delete_files;
// a list of log files that we need to delete
std::vector<uint64_t> log_delete_files;
// a list of memtables to be free
std::vector<MemTable *> memtables_to_free;
SuperVersion* superversion_to_free; // if nullptr nothing to free
SuperVersion* new_superversion; // if nullptr no new superversion
// the current manifest_file_number, log_number and prev_log_number
// that corresponds to the set of files in 'live'.
uint64_t manifest_file_number, log_number, prev_log_number;
explicit DeletionState(const int num_memtables = 0,
bool create_superversion = false) {
manifest_file_number = 0;
log_number = 0;
prev_log_number = 0;
memtables_to_free.reserve(num_memtables);
superversion_to_free = nullptr;
new_superversion =
create_superversion ? new SuperVersion(num_memtables) : nullptr;
}
~DeletionState() {
// free pending memtables
for (auto m : memtables_to_free) {
delete m;
}
// free superversion. if nullptr, this will be noop
delete superversion_to_free;
// if new_superversion was not used, it will be non-nullptr and needs
// to be freed here
delete new_superversion;
}
};
// Returns the list of live files in 'live' and the list
// of all files in the filesystem in 'all_files'.
// If force == false and the last call was less than
// options_.delete_obsolete_files_period_micros microseconds ago,
// it will not fill up the deletion_state
void FindObsoleteFiles(DeletionState& deletion_state,
bool force,
bool no_full_scan = false);
// Diffs the files listed in filenames and those that do not
// belong to live files are posibly removed. Also, removes all the
// files in sst_delete_files and log_delete_files.
// It is not necessary to hold the mutex when invoking this method.
void PurgeObsoleteFiles(DeletionState& deletion_state);
protected:
Env* const env_;
const std::string dbname_;
unique_ptr<VersionSet> versions_;
const InternalKeyComparator internal_comparator_;
const Options options_; // options_.comparator == &internal_comparator_
const Comparator* user_comparator() const {
return internal_comparator_.user_comparator();
}
ColumnFamilyData* GetDefaultColumnFamily() { return default_cfd_; }
Iterator* NewInternalIterator(const ReadOptions&,
SequenceNumber* latest_snapshot);
private:
friend class DB;
friend class TailingIterator;
struct CompactionState;
struct Writer;
Status NewDB();
// Recover the descriptor from persistent storage. May do a significant
// amount of work to recover recently logged updates. Any changes to
// be made to the descriptor are added to *edit.
Status Recover(const std::vector<ColumnFamilyDescriptor>& column_families,
bool read_only = false, bool error_if_log_file_exist = false);
void MaybeIgnoreError(Status* s) const;
const Status CreateArchivalDirectory();
// Delete any unneeded files and stale in-memory entries.
void DeleteObsoleteFiles();
// Flush the in-memory write buffer to storage. Switches to a new
// log-file/memtable and writes a new descriptor iff successful.
Status FlushMemTableToOutputFile(bool* madeProgress,
DeletionState& deletion_state);
Status RecoverLogFile(uint64_t log_number, SequenceNumber* max_sequence,
bool read_only);
// The following two methods are used to flush a memtable to
// storage. The first one is used atdatabase RecoveryTime (when the
// database is opened) and is heavyweight because it holds the mutex
// for the entire period. The second method WriteLevel0Table supports
// concurrent flush memtables to storage.
Status WriteLevel0TableForRecovery(MemTable* mem, VersionEdit* edit);
Status WriteLevel0Table(std::vector<MemTable*> &mems, VersionEdit* edit,
uint64_t* filenumber);
uint64_t SlowdownAmount(int n, double bottom, double top);
// MakeRoomForWrite will return superversion_to_free through an arugment,
// which the caller needs to delete. We do it because caller can delete
// the superversion outside of mutex
Status MakeRoomForWrite(bool force /* compact even if there is room? */,
SuperVersion** superversion_to_free);
void BuildBatchGroup(Writer** last_writer,
autovector<WriteBatch*>* write_batch_group);
// Force current memtable contents to be flushed.
Status FlushMemTable(const FlushOptions& options);
// Wait for memtable flushed
Status WaitForFlushMemTable();
void MaybeScheduleLogDBDeployStats();
static void BGLogDBDeployStats(void* db);
void LogDBDeployStats();
void MaybeScheduleFlushOrCompaction();
static void BGWorkCompaction(void* db);
static void BGWorkFlush(void* db);
void BackgroundCallCompaction();
void BackgroundCallFlush();
Status BackgroundCompaction(bool* madeProgress,DeletionState& deletion_state);
Status BackgroundFlush(bool* madeProgress, DeletionState& deletion_state);
void CleanupCompaction(CompactionState* compact, Status status);
Status DoCompactionWork(CompactionState* compact,
DeletionState& deletion_state);
Status OpenCompactionOutputFile(CompactionState* compact);
Status FinishCompactionOutputFile(CompactionState* compact, Iterator* input);
Status InstallCompactionResults(CompactionState* compact);
void AllocateCompactionOutputFileNumbers(CompactionState* compact);
void ReleaseCompactionUnusedFileNumbers(CompactionState* compact);
void PurgeObsoleteWALFiles();
Status AppendSortedWalsOfType(const std::string& path,
VectorLogPtr& log_files,
WalFileType type);
// Requires: all_logs should be sorted with earliest log file first
// Retains all log files in all_logs which contain updates with seq no.
// Greater Than or Equal to the requested SequenceNumber.
Status RetainProbableWalFiles(VectorLogPtr& all_logs,
const SequenceNumber target);
// return true if
bool CheckWalFileExistsAndEmpty(const WalFileType type,
const uint64_t number);
Status ReadFirstRecord(const WalFileType type, const uint64_t number,
WriteBatch* const result);
Status ReadFirstLine(const std::string& fname, WriteBatch* const batch);
void PrintStatistics();
// dump rocksdb.stats to LOG
void MaybeDumpStats();
// Return the minimum empty level that could hold the total data in the
// input level. Return the input level, if such level could not be found.
int FindMinimumEmptyLevelFitting(int level);
// Move the files in the input level to the target level.
// If target_level < 0, automatically calculate the minimum level that could
// hold the data set.
Status ReFitLevel(int level, int target_level = -1);
// Returns the current SuperVersion number.
uint64_t CurrentVersionNumber() const;
// Returns a pair of iterators (mutable-only and immutable-only) used
// internally by TailingIterator and stores CurrentVersionNumber() in
// *superversion_number. These iterators are always up-to-date, i.e. can
// be used to read new data.
std::pair<Iterator*, Iterator*> GetTailingIteratorPair(
const ReadOptions& options,
uint64_t* superversion_number);
// Constant after construction
const InternalFilterPolicy internal_filter_policy_;
bool owns_info_log_;
// table_cache_ provides its own synchronization
unique_ptr<TableCache> table_cache_;
// Lock over the persistent DB state. Non-nullptr iff successfully acquired.
FileLock* db_lock_;
// State below is protected by mutex_
port::Mutex mutex_;
port::AtomicPointer shutting_down_;
port::CondVar bg_cv_; // Signalled when background work finishes
uint64_t logfile_number_;
unique_ptr<log::Writer> log_;
ColumnFamilyData* default_cfd_;
unique_ptr<ColumnFamilyMemTablesImpl> column_family_memtables_;
// An ordinal representing the current SuperVersion. Updated by
// InstallSuperVersion(), i.e. incremented every time super_version_
// changes.
std::atomic<uint64_t> super_version_number_;
std::string host_name_;
std::unique_ptr<Directory> db_directory_;
// Queue of writers.
std::deque<Writer*> writers_;
WriteBatch tmp_batch_;
SnapshotList snapshots_;
// Set of table files to protect from deletion because they are
// part of ongoing compactions.
std::set<uint64_t> pending_outputs_;
// count how many background compactions are running or have been scheduled
int bg_compaction_scheduled_;
// If non-zero, MaybeScheduleFlushOrCompaction() will only schedule manual
// compactions (if manual_compaction_ is not null). This mechanism enables
// manual compactions to wait until all other compactions are finished.
int bg_manual_only_;
// number of background memtable flush jobs, submitted to the HIGH pool
int bg_flush_scheduled_;
// Has a background stats log thread scheduled?
bool bg_logstats_scheduled_;
// Information for a manual compaction
struct ManualCompaction {
int input_level;
int output_level;
bool done;
Status status;
bool in_progress; // compaction request being processed?
const InternalKey* begin; // nullptr means beginning of key range
const InternalKey* end; // nullptr means end of key range
InternalKey tmp_storage; // Used to keep track of compaction progress
};
ManualCompaction* manual_compaction_;
// Have we encountered a background error in paranoid mode?
Status bg_error_;
std::unique_ptr<StatsLogger> logger_;
int64_t volatile last_log_ts;
// shall we disable deletion of obsolete files
// if 0 the deletion is enabled.
// if non-zero, files will not be getting deleted
// This enables two different threads to call
// EnableFileDeletions() and DisableFileDeletions()
// without any synchronization
int disable_delete_obsolete_files_;
// last time when DeleteObsoleteFiles was invoked
uint64_t delete_obsolete_files_last_run_;
// last time when PurgeObsoleteWALFiles ran.
uint64_t purge_wal_files_last_run_;
// last time stats were dumped to LOG
std::atomic<uint64_t> last_stats_dump_time_microsec_;
// obsolete files will be deleted every this seconds if ttl deletion is
// enabled and archive size_limit is disabled.
uint64_t default_interval_to_delete_obsolete_WAL_;
// These count the number of microseconds for which MakeRoomForWrite stalls.
uint64_t stall_level0_slowdown_;
uint64_t stall_memtable_compaction_;
uint64_t stall_level0_num_files_;
std::vector<uint64_t> stall_leveln_slowdown_;
uint64_t stall_level0_slowdown_count_;
uint64_t stall_memtable_compaction_count_;
uint64_t stall_level0_num_files_count_;
std::vector<uint64_t> stall_leveln_slowdown_count_;
// Time at which this instance was started.
const uint64_t started_at_;
bool flush_on_destroy_; // Used when disableWAL is true.
// Per level compaction stats. stats_[level] stores the stats for
// compactions that produced data for the specified "level".
struct CompactionStats {
uint64_t micros;
// Bytes read from level N during compaction between levels N and N+1
int64_t bytes_readn;
// Bytes read from level N+1 during compaction between levels N and N+1
int64_t bytes_readnp1;
// Total bytes written during compaction between levels N and N+1
int64_t bytes_written;
// Files read from level N during compaction between levels N and N+1
int files_in_leveln;
// Files read from level N+1 during compaction between levels N and N+1
int files_in_levelnp1;
// Files written during compaction between levels N and N+1
int files_out_levelnp1;
// Number of compactions done
int count;
CompactionStats() : micros(0), bytes_readn(0), bytes_readnp1(0),
bytes_written(0), files_in_leveln(0),
files_in_levelnp1(0), files_out_levelnp1(0),
count(0) { }
void Add(const CompactionStats& c) {
this->micros += c.micros;
this->bytes_readn += c.bytes_readn;
this->bytes_readnp1 += c.bytes_readnp1;
this->bytes_written += c.bytes_written;
this->files_in_leveln += c.files_in_leveln;
this->files_in_levelnp1 += c.files_in_levelnp1;
this->files_out_levelnp1 += c.files_out_levelnp1;
this->count += 1;
}
};
std::vector<CompactionStats> stats_;
// Used to compute per-interval statistics
struct StatsSnapshot {
uint64_t compaction_bytes_read_; // Bytes read by compaction
uint64_t compaction_bytes_written_; // Bytes written by compaction
uint64_t ingest_bytes_; // Bytes written by user
uint64_t wal_bytes_; // Bytes written to WAL
uint64_t wal_synced_; // Number of times WAL is synced
uint64_t write_with_wal_; // Number of writes that request WAL
// These count the number of writes processed by the calling thread or
// another thread.
uint64_t write_other_;
uint64_t write_self_;
double seconds_up_;
StatsSnapshot() : compaction_bytes_read_(0), compaction_bytes_written_(0),
ingest_bytes_(0), wal_bytes_(0), wal_synced_(0),
write_with_wal_(0), write_other_(0), write_self_(0),
seconds_up_(0) {}
};
// Counters from the previous time per-interval stats were computed
StatsSnapshot last_stats_;
static const int KEEP_LOG_FILE_NUM = 1000;
std::string db_absolute_path_;
// count of the number of contiguous delaying writes
int delayed_writes_;
// The options to access storage files
const EnvOptions storage_options_;
// A value of true temporarily disables scheduling of background work
bool bg_work_gate_closed_;
// Guard against multiple concurrent refitting
bool refitting_level_;
// No copying allowed
DBImpl(const DBImpl&);
void operator=(const DBImpl&);
// dump the delayed_writes_ to the log file and reset counter.
void DelayLoggingAndReset();
// Return the earliest snapshot where seqno is visible.
// Store the snapshot right before that, if any, in prev_snapshot
inline SequenceNumber findEarliestVisibleSnapshot(
SequenceNumber in,
std::vector<SequenceNumber>& snapshots,
SequenceNumber* prev_snapshot);
// will return a pointer to SuperVersion* if previous SuperVersion
// if its reference count is zero and needs deletion or nullptr if not
// As argument takes a pointer to allocated SuperVersion
// Foreground threads call this function directly (they don't carry
// deletion state and have to handle their own creation and deletion
// of SuperVersion)
SuperVersion* InstallSuperVersion(ColumnFamilyData* cfd,
SuperVersion* new_superversion);
// Background threads call this function, which is just a wrapper around
// the InstallSuperVersion() function above. Background threads carry
// deletion_state which can have new_superversion already allocated.
void InstallSuperVersion(ColumnFamilyData* cfd,
DeletionState& deletion_state);
// Function that Get and KeyMayExist call with no_io true or false
// Note: 'value_found' from KeyMayExist propagates here
Status GetImpl(const ReadOptions& options,
const ColumnFamilyHandle& column_family, const Slice& key,
std::string* value, bool* value_found = nullptr);
};
// Sanitize db options. The caller should delete result.info_log if
// it is not equal to src.info_log.
extern Options SanitizeOptions(const std::string& db,
const InternalKeyComparator* icmp,
const InternalFilterPolicy* ipolicy,
const Options& src);
// Determine compression type, based on user options, level of the output
// file and whether compression is disabled.
// If enable_compression is false, then compression is always disabled no
// matter what the values of the other two parameters are.
// Otherwise, the compression type is determined based on options and level.
CompressionType GetCompressionType(const Options& options, int level,
const bool enable_compression);
// Determine compression type for L0 file written by memtable flush.
CompressionType GetCompressionFlush(const Options& options);
} // namespace rocksdb