add68bd28a
Summary: Add a stat for secondary cache hits. The ```Cache::Lookup``` API had an unused ```stats``` parameter. This PR uses that to pass the pointer to a ```Statistics``` object that ```LRUCache``` uses to record the stat. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8666 Test Plan: Update a unit test in lru_cache_test Reviewed By: zhichao-cao Differential Revision: D30353816 Pulled By: anand1976 fbshipit-source-id: 2046f78b460428877a26ffdd2bb914ae47dfbe77
233 lines
7.2 KiB
C++
233 lines
7.2 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "cache/sharded_cache.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
|
|
#include "util/hash.h"
|
|
#include "util/math.h"
|
|
#include "util/mutexlock.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
namespace {
|
|
|
|
inline uint32_t HashSlice(const Slice& s) {
|
|
return Lower32of64(GetSliceNPHash64(s));
|
|
}
|
|
|
|
} // namespace
|
|
|
|
ShardedCache::ShardedCache(size_t capacity, int num_shard_bits,
|
|
bool strict_capacity_limit,
|
|
std::shared_ptr<MemoryAllocator> allocator)
|
|
: Cache(std::move(allocator)),
|
|
shard_mask_((uint32_t{1} << num_shard_bits) - 1),
|
|
capacity_(capacity),
|
|
strict_capacity_limit_(strict_capacity_limit),
|
|
last_id_(1) {}
|
|
|
|
void ShardedCache::SetCapacity(size_t capacity) {
|
|
uint32_t num_shards = GetNumShards();
|
|
const size_t per_shard = (capacity + (num_shards - 1)) / num_shards;
|
|
MutexLock l(&capacity_mutex_);
|
|
for (uint32_t s = 0; s < num_shards; s++) {
|
|
GetShard(s)->SetCapacity(per_shard);
|
|
}
|
|
capacity_ = capacity;
|
|
}
|
|
|
|
void ShardedCache::SetStrictCapacityLimit(bool strict_capacity_limit) {
|
|
uint32_t num_shards = GetNumShards();
|
|
MutexLock l(&capacity_mutex_);
|
|
for (uint32_t s = 0; s < num_shards; s++) {
|
|
GetShard(s)->SetStrictCapacityLimit(strict_capacity_limit);
|
|
}
|
|
strict_capacity_limit_ = strict_capacity_limit;
|
|
}
|
|
|
|
Status ShardedCache::Insert(const Slice& key, void* value, size_t charge,
|
|
DeleterFn deleter, Handle** handle,
|
|
Priority priority) {
|
|
uint32_t hash = HashSlice(key);
|
|
return GetShard(Shard(hash))
|
|
->Insert(key, hash, value, charge, deleter, handle, priority);
|
|
}
|
|
|
|
Status ShardedCache::Insert(const Slice& key, void* value,
|
|
const CacheItemHelper* helper, size_t charge,
|
|
Handle** handle, Priority priority) {
|
|
uint32_t hash = HashSlice(key);
|
|
if (!helper) {
|
|
return Status::InvalidArgument();
|
|
}
|
|
return GetShard(Shard(hash))
|
|
->Insert(key, hash, value, helper, charge, handle, priority);
|
|
}
|
|
|
|
Cache::Handle* ShardedCache::Lookup(const Slice& key, Statistics* /*stats*/) {
|
|
uint32_t hash = HashSlice(key);
|
|
return GetShard(Shard(hash))->Lookup(key, hash);
|
|
}
|
|
|
|
Cache::Handle* ShardedCache::Lookup(const Slice& key,
|
|
const CacheItemHelper* helper,
|
|
const CreateCallback& create_cb,
|
|
Priority priority, bool wait,
|
|
Statistics* stats) {
|
|
uint32_t hash = HashSlice(key);
|
|
return GetShard(Shard(hash))
|
|
->Lookup(key, hash, helper, create_cb, priority, wait, stats);
|
|
}
|
|
|
|
bool ShardedCache::IsReady(Handle* handle) {
|
|
uint32_t hash = GetHash(handle);
|
|
return GetShard(Shard(hash))->IsReady(handle);
|
|
}
|
|
|
|
void ShardedCache::Wait(Handle* handle) {
|
|
uint32_t hash = GetHash(handle);
|
|
GetShard(Shard(hash))->Wait(handle);
|
|
}
|
|
|
|
bool ShardedCache::Ref(Handle* handle) {
|
|
uint32_t hash = GetHash(handle);
|
|
return GetShard(Shard(hash))->Ref(handle);
|
|
}
|
|
|
|
bool ShardedCache::Release(Handle* handle, bool force_erase) {
|
|
uint32_t hash = GetHash(handle);
|
|
return GetShard(Shard(hash))->Release(handle, force_erase);
|
|
}
|
|
|
|
bool ShardedCache::Release(Handle* handle, bool useful, bool force_erase) {
|
|
uint32_t hash = GetHash(handle);
|
|
return GetShard(Shard(hash))->Release(handle, useful, force_erase);
|
|
}
|
|
|
|
void ShardedCache::Erase(const Slice& key) {
|
|
uint32_t hash = HashSlice(key);
|
|
GetShard(Shard(hash))->Erase(key, hash);
|
|
}
|
|
|
|
uint64_t ShardedCache::NewId() {
|
|
return last_id_.fetch_add(1, std::memory_order_relaxed);
|
|
}
|
|
|
|
size_t ShardedCache::GetCapacity() const {
|
|
MutexLock l(&capacity_mutex_);
|
|
return capacity_;
|
|
}
|
|
|
|
bool ShardedCache::HasStrictCapacityLimit() const {
|
|
MutexLock l(&capacity_mutex_);
|
|
return strict_capacity_limit_;
|
|
}
|
|
|
|
size_t ShardedCache::GetUsage() const {
|
|
// We will not lock the cache when getting the usage from shards.
|
|
uint32_t num_shards = GetNumShards();
|
|
size_t usage = 0;
|
|
for (uint32_t s = 0; s < num_shards; s++) {
|
|
usage += GetShard(s)->GetUsage();
|
|
}
|
|
return usage;
|
|
}
|
|
|
|
size_t ShardedCache::GetUsage(Handle* handle) const {
|
|
return GetCharge(handle);
|
|
}
|
|
|
|
size_t ShardedCache::GetPinnedUsage() const {
|
|
// We will not lock the cache when getting the usage from shards.
|
|
uint32_t num_shards = GetNumShards();
|
|
size_t usage = 0;
|
|
for (uint32_t s = 0; s < num_shards; s++) {
|
|
usage += GetShard(s)->GetPinnedUsage();
|
|
}
|
|
return usage;
|
|
}
|
|
|
|
void ShardedCache::ApplyToAllEntries(
|
|
const std::function<void(const Slice& key, void* value, size_t charge,
|
|
DeleterFn deleter)>& callback,
|
|
const ApplyToAllEntriesOptions& opts) {
|
|
uint32_t num_shards = GetNumShards();
|
|
// Iterate over part of each shard, rotating between shards, to
|
|
// minimize impact on latency of concurrent operations.
|
|
std::unique_ptr<uint32_t[]> states(new uint32_t[num_shards]{});
|
|
|
|
uint32_t aepl_in_32 = static_cast<uint32_t>(
|
|
std::min(size_t{UINT32_MAX}, opts.average_entries_per_lock));
|
|
aepl_in_32 = std::min(aepl_in_32, uint32_t{1});
|
|
|
|
bool remaining_work;
|
|
do {
|
|
remaining_work = false;
|
|
for (uint32_t s = 0; s < num_shards; s++) {
|
|
if (states[s] != UINT32_MAX) {
|
|
GetShard(s)->ApplyToSomeEntries(callback, aepl_in_32, &states[s]);
|
|
remaining_work |= states[s] != UINT32_MAX;
|
|
}
|
|
}
|
|
} while (remaining_work);
|
|
}
|
|
|
|
void ShardedCache::EraseUnRefEntries() {
|
|
uint32_t num_shards = GetNumShards();
|
|
for (uint32_t s = 0; s < num_shards; s++) {
|
|
GetShard(s)->EraseUnRefEntries();
|
|
}
|
|
}
|
|
|
|
std::string ShardedCache::GetPrintableOptions() const {
|
|
std::string ret;
|
|
ret.reserve(20000);
|
|
const int kBufferSize = 200;
|
|
char buffer[kBufferSize];
|
|
{
|
|
MutexLock l(&capacity_mutex_);
|
|
snprintf(buffer, kBufferSize, " capacity : %" ROCKSDB_PRIszt "\n",
|
|
capacity_);
|
|
ret.append(buffer);
|
|
snprintf(buffer, kBufferSize, " num_shard_bits : %d\n",
|
|
GetNumShardBits());
|
|
ret.append(buffer);
|
|
snprintf(buffer, kBufferSize, " strict_capacity_limit : %d\n",
|
|
strict_capacity_limit_);
|
|
ret.append(buffer);
|
|
}
|
|
snprintf(buffer, kBufferSize, " memory_allocator : %s\n",
|
|
memory_allocator() ? memory_allocator()->Name() : "None");
|
|
ret.append(buffer);
|
|
ret.append(GetShard(0)->GetPrintableOptions());
|
|
return ret;
|
|
}
|
|
int GetDefaultCacheShardBits(size_t capacity) {
|
|
int num_shard_bits = 0;
|
|
size_t min_shard_size = 512L * 1024L; // Every shard is at least 512KB.
|
|
size_t num_shards = capacity / min_shard_size;
|
|
while (num_shards >>= 1) {
|
|
if (++num_shard_bits >= 6) {
|
|
// No more than 6.
|
|
return num_shard_bits;
|
|
}
|
|
}
|
|
return num_shard_bits;
|
|
}
|
|
|
|
int ShardedCache::GetNumShardBits() const { return BitsSetToOne(shard_mask_); }
|
|
|
|
uint32_t ShardedCache::GetNumShards() const { return shard_mask_ + 1; }
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|