rocksdb/db/db_impl/db_impl_write.cc
Yanqin Jin 3b6dc049f7 Support user-defined timestamps in write-committed txns (#9629)
Summary:
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9629

Pessimistic transactions use pessimistic concurrency control, i.e. locking. Keys are
locked upon first operation that writes the key or has the intention of writing. For example,
`PessimisticTransaction::Put()`, `PessimisticTransaction::Delete()`,
`PessimisticTransaction::SingleDelete()` will write to or delete a key, while
`PessimisticTransaction::GetForUpdate()` is used by application to indicate
to RocksDB that the transaction has the intention of performing write operation later
in the same transaction.
Pessimistic transactions support two-phase commit (2PC). A transaction can be
`Prepared()`'ed and then `Commit()`. The prepare phase is similar to a promise: once
`Prepare()` succeeds, the transaction has acquired the necessary resources to commit.
The resources include locks, persistence of WAL, etc.
Write-committed transaction is the default pessimistic transaction implementation. In
RocksDB write-committed transaction, `Prepare()` will write data to the WAL as a prepare
section. `Commit()` will write a commit marker to the WAL and then write data to the
memtables. While writing to the memtables, different keys in the transaction's write batch
will be assigned different sequence numbers in ascending order.
Until commit/rollback, the transaction holds locks on the keys so that no other transaction
can write to the same keys. Furthermore, the keys' sequence numbers represent the order
in which they are committed and should be made visible. This is convenient for us to
implement support for user-defined timestamps.
Since column families with and without timestamps can co-exist in the same database,
a transaction may or may not involve timestamps. Based on this observation, we add two
optional members to each `PessimisticTransaction`, `read_timestamp_` and
`commit_timestamp_`. If no key in the transaction's write batch has timestamp, then
setting these two variables do not have any effect. For the rest of this commit, we discuss
only the cases when these two variables are meaningful.

read_timestamp_ is used mainly for validation, and should be set before first call to
`GetForUpdate()`. Otherwise, the latter will return non-ok status. `GetForUpdate()` calls
`TryLock()` that can verify if another transaction has written the same key since
`read_timestamp_` till this call to `GetForUpdate()`. If another transaction has indeed
written the same key, then validation fails, and RocksDB allows this transaction to
refine `read_timestamp_` by increasing it. Note that a transaction can still use `Get()`
with a different timestamp to read, but the result of the read should not be used to
determine data that will be written later.

commit_timestamp_ must be set after finishing writing and before transaction commit.
This applies to both 2PC and non-2PC cases. In the case of 2PC, it's usually set after
prepare phase succeeds.

We currently require that the commit timestamp be chosen after all keys are locked. This
means we disallow the `TransactionDB`-level APIs if user-defined timestamp is used
by the transaction. Specifically, calling `PessimisticTransactionDB::Put()`,
`PessimisticTransactionDB::Delete()`, `PessimisticTransactionDB::SingleDelete()`,
etc. will return non-ok status because they specify timestamps before locking the keys.
Users are also prompted to use the `Transaction` APIs when they receive the non-ok status.

Reviewed By: ltamasi

Differential Revision: D31822445

fbshipit-source-id: b82abf8e230216dc89cc519564a588224a88fd43
2022-03-08 16:20:59 -08:00

2205 lines
82 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <cinttypes>
#include "db/db_impl/db_impl.h"
#include "db/error_handler.h"
#include "db/event_helpers.h"
#include "logging/logging.h"
#include "monitoring/perf_context_imp.h"
#include "options/options_helper.h"
#include "test_util/sync_point.h"
#include "util/cast_util.h"
namespace ROCKSDB_NAMESPACE {
// Convenience methods
Status DBImpl::Put(const WriteOptions& o, ColumnFamilyHandle* column_family,
const Slice& key, const Slice& val) {
const Status s = FailIfCfHasTs(column_family);
if (!s.ok()) {
return s;
}
return DB::Put(o, column_family, key, val);
}
Status DBImpl::Put(const WriteOptions& o, ColumnFamilyHandle* column_family,
const Slice& key, const Slice& ts, const Slice& val) {
const Status s = FailIfTsSizesMismatch(column_family, ts);
if (!s.ok()) {
return s;
}
return DB::Put(o, column_family, key, ts, val);
}
Status DBImpl::Merge(const WriteOptions& o, ColumnFamilyHandle* column_family,
const Slice& key, const Slice& val) {
const Status s = FailIfCfHasTs(column_family);
if (!s.ok()) {
return s;
}
auto cfh = static_cast_with_check<ColumnFamilyHandleImpl>(column_family);
if (!cfh->cfd()->ioptions()->merge_operator) {
return Status::NotSupported("Provide a merge_operator when opening DB");
} else {
return DB::Merge(o, column_family, key, val);
}
}
Status DBImpl::Delete(const WriteOptions& write_options,
ColumnFamilyHandle* column_family, const Slice& key) {
const Status s = FailIfCfHasTs(column_family);
if (!s.ok()) {
return s;
}
return DB::Delete(write_options, column_family, key);
}
Status DBImpl::Delete(const WriteOptions& write_options,
ColumnFamilyHandle* column_family, const Slice& key,
const Slice& ts) {
const Status s = FailIfTsSizesMismatch(column_family, ts);
if (!s.ok()) {
return s;
}
return DB::Delete(write_options, column_family, key, ts);
}
Status DBImpl::SingleDelete(const WriteOptions& write_options,
ColumnFamilyHandle* column_family,
const Slice& key) {
const Status s = FailIfCfHasTs(column_family);
if (!s.ok()) {
return s;
}
return DB::SingleDelete(write_options, column_family, key);
}
Status DBImpl::SingleDelete(const WriteOptions& write_options,
ColumnFamilyHandle* column_family, const Slice& key,
const Slice& ts) {
const Status s = FailIfTsSizesMismatch(column_family, ts);
if (!s.ok()) {
return s;
}
return DB::SingleDelete(write_options, column_family, key, ts);
}
Status DBImpl::DeleteRange(const WriteOptions& write_options,
ColumnFamilyHandle* column_family,
const Slice& begin_key, const Slice& end_key) {
const Status s = FailIfCfHasTs(column_family);
if (!s.ok()) {
return s;
}
return DB::DeleteRange(write_options, column_family, begin_key, end_key);
}
void DBImpl::SetRecoverableStatePreReleaseCallback(
PreReleaseCallback* callback) {
recoverable_state_pre_release_callback_.reset(callback);
}
Status DBImpl::Write(const WriteOptions& write_options, WriteBatch* my_batch) {
return WriteImpl(write_options, my_batch, /*callback=*/nullptr,
/*log_used=*/nullptr);
}
#ifndef ROCKSDB_LITE
Status DBImpl::WriteWithCallback(const WriteOptions& write_options,
WriteBatch* my_batch,
WriteCallback* callback) {
return WriteImpl(write_options, my_batch, callback, nullptr);
}
#endif // ROCKSDB_LITE
// The main write queue. This is the only write queue that updates LastSequence.
// When using one write queue, the same sequence also indicates the last
// published sequence.
Status DBImpl::WriteImpl(const WriteOptions& write_options,
WriteBatch* my_batch, WriteCallback* callback,
uint64_t* log_used, uint64_t log_ref,
bool disable_memtable, uint64_t* seq_used,
size_t batch_cnt,
PreReleaseCallback* pre_release_callback) {
assert(!seq_per_batch_ || batch_cnt != 0);
if (my_batch == nullptr) {
return Status::Corruption("Batch is nullptr!");
} else if (!disable_memtable &&
WriteBatchInternal::TimestampsUpdateNeeded(*my_batch)) {
// If writing to memtable, then we require the caller to set/update the
// timestamps for the keys in the write batch.
// Otherwise, it means we are just writing to the WAL, and we allow
// timestamps unset for the keys in the write batch. This can happen if we
// use TransactionDB with write-committed policy, and we currently do not
// support user-defined timestamp with other policies.
// In the prepare phase, a transaction can write the batch to the WAL
// without inserting to memtable. The keys in the batch do not have to be
// assigned timestamps because they will be used only during recovery if
// there is a commit marker which includes their commit timestamp.
return Status::InvalidArgument("write batch must have timestamp(s) set");
} else if (write_options.rate_limiter_priority != Env::IO_TOTAL &&
write_options.rate_limiter_priority != Env::IO_USER) {
return Status::InvalidArgument(
"WriteOptions::rate_limiter_priority only allows "
"Env::IO_TOTAL and Env::IO_USER due to implementation constraints");
} else if (write_options.rate_limiter_priority != Env::IO_TOTAL &&
(write_options.disableWAL || manual_wal_flush_)) {
return Status::InvalidArgument(
"WriteOptions::rate_limiter_priority currently only supports "
"rate-limiting automatic WAL flush, which requires "
"`WriteOptions::disableWAL` and "
"`DBOptions::manual_wal_flush` both set to false");
}
// TODO: this use of operator bool on `tracer_` can avoid unnecessary lock
// grabs but does not seem thread-safe.
if (tracer_) {
InstrumentedMutexLock lock(&trace_mutex_);
if (tracer_ && !tracer_->IsWriteOrderPreserved()) {
// We don't have to preserve write order so can trace anywhere. It's more
// efficient to trace here than to add latency to a phase of the log/apply
// pipeline.
// TODO: maybe handle the tracing status?
tracer_->Write(my_batch).PermitUncheckedError();
}
}
if (write_options.sync && write_options.disableWAL) {
return Status::InvalidArgument("Sync writes has to enable WAL.");
}
if (two_write_queues_ && immutable_db_options_.enable_pipelined_write) {
return Status::NotSupported(
"pipelined_writes is not compatible with concurrent prepares");
}
if (seq_per_batch_ && immutable_db_options_.enable_pipelined_write) {
// TODO(yiwu): update pipeline write with seq_per_batch and batch_cnt
return Status::NotSupported(
"pipelined_writes is not compatible with seq_per_batch");
}
if (immutable_db_options_.unordered_write &&
immutable_db_options_.enable_pipelined_write) {
return Status::NotSupported(
"pipelined_writes is not compatible with unordered_write");
}
// Otherwise IsLatestPersistentState optimization does not make sense
assert(!WriteBatchInternal::IsLatestPersistentState(my_batch) ||
disable_memtable);
if (write_options.low_pri) {
Status s = ThrottleLowPriWritesIfNeeded(write_options, my_batch);
if (!s.ok()) {
return s;
}
}
if (two_write_queues_ && disable_memtable) {
AssignOrder assign_order =
seq_per_batch_ ? kDoAssignOrder : kDontAssignOrder;
// Otherwise it is WAL-only Prepare batches in WriteCommitted policy and
// they don't consume sequence.
return WriteImplWALOnly(&nonmem_write_thread_, write_options, my_batch,
callback, log_used, log_ref, seq_used, batch_cnt,
pre_release_callback, assign_order,
kDontPublishLastSeq, disable_memtable);
}
if (immutable_db_options_.unordered_write) {
const size_t sub_batch_cnt = batch_cnt != 0
? batch_cnt
// every key is a sub-batch consuming a seq
: WriteBatchInternal::Count(my_batch);
uint64_t seq = 0;
// Use a write thread to i) optimize for WAL write, ii) publish last
// sequence in in increasing order, iii) call pre_release_callback serially
Status status = WriteImplWALOnly(
&write_thread_, write_options, my_batch, callback, log_used, log_ref,
&seq, sub_batch_cnt, pre_release_callback, kDoAssignOrder,
kDoPublishLastSeq, disable_memtable);
TEST_SYNC_POINT("DBImpl::WriteImpl:UnorderedWriteAfterWriteWAL");
if (!status.ok()) {
return status;
}
if (seq_used) {
*seq_used = seq;
}
if (!disable_memtable) {
TEST_SYNC_POINT("DBImpl::WriteImpl:BeforeUnorderedWriteMemtable");
status = UnorderedWriteMemtable(write_options, my_batch, callback,
log_ref, seq, sub_batch_cnt);
}
return status;
}
if (immutable_db_options_.enable_pipelined_write) {
return PipelinedWriteImpl(write_options, my_batch, callback, log_used,
log_ref, disable_memtable, seq_used);
}
PERF_TIMER_GUARD(write_pre_and_post_process_time);
WriteThread::Writer w(write_options, my_batch, callback, log_ref,
disable_memtable, batch_cnt, pre_release_callback);
StopWatch write_sw(immutable_db_options_.clock, stats_, DB_WRITE);
write_thread_.JoinBatchGroup(&w);
if (w.state == WriteThread::STATE_PARALLEL_MEMTABLE_WRITER) {
// we are a non-leader in a parallel group
if (w.ShouldWriteToMemtable()) {
PERF_TIMER_STOP(write_pre_and_post_process_time);
PERF_TIMER_GUARD(write_memtable_time);
ColumnFamilyMemTablesImpl column_family_memtables(
versions_->GetColumnFamilySet());
w.status = WriteBatchInternal::InsertInto(
&w, w.sequence, &column_family_memtables, &flush_scheduler_,
&trim_history_scheduler_,
write_options.ignore_missing_column_families, 0 /*log_number*/, this,
true /*concurrent_memtable_writes*/, seq_per_batch_, w.batch_cnt,
batch_per_txn_, write_options.memtable_insert_hint_per_batch);
PERF_TIMER_START(write_pre_and_post_process_time);
}
if (write_thread_.CompleteParallelMemTableWriter(&w)) {
// we're responsible for exit batch group
// TODO(myabandeh): propagate status to write_group
auto last_sequence = w.write_group->last_sequence;
versions_->SetLastSequence(last_sequence);
MemTableInsertStatusCheck(w.status);
write_thread_.ExitAsBatchGroupFollower(&w);
}
assert(w.state == WriteThread::STATE_COMPLETED);
// STATE_COMPLETED conditional below handles exit
}
if (w.state == WriteThread::STATE_COMPLETED) {
if (log_used != nullptr) {
*log_used = w.log_used;
}
if (seq_used != nullptr) {
*seq_used = w.sequence;
}
// write is complete and leader has updated sequence
return w.FinalStatus();
}
// else we are the leader of the write batch group
assert(w.state == WriteThread::STATE_GROUP_LEADER);
Status status;
// Once reaches this point, the current writer "w" will try to do its write
// job. It may also pick up some of the remaining writers in the "writers_"
// when it finds suitable, and finish them in the same write batch.
// This is how a write job could be done by the other writer.
WriteContext write_context;
WriteThread::WriteGroup write_group;
bool in_parallel_group = false;
uint64_t last_sequence = kMaxSequenceNumber;
mutex_.Lock();
bool need_log_sync = write_options.sync;
bool need_log_dir_sync = need_log_sync && !log_dir_synced_;
assert(!two_write_queues_ || !disable_memtable);
{
// With concurrent writes we do preprocess only in the write thread that
// also does write to memtable to avoid sync issue on shared data structure
// with the other thread
// PreprocessWrite does its own perf timing.
PERF_TIMER_STOP(write_pre_and_post_process_time);
status = PreprocessWrite(write_options, &need_log_sync, &write_context);
if (!two_write_queues_) {
// Assign it after ::PreprocessWrite since the sequence might advance
// inside it by WriteRecoverableState
last_sequence = versions_->LastSequence();
}
PERF_TIMER_START(write_pre_and_post_process_time);
}
log::Writer* log_writer = logs_.back().writer;
mutex_.Unlock();
// Add to log and apply to memtable. We can release the lock
// during this phase since &w is currently responsible for logging
// and protects against concurrent loggers and concurrent writes
// into memtables
TEST_SYNC_POINT("DBImpl::WriteImpl:BeforeLeaderEnters");
last_batch_group_size_ =
write_thread_.EnterAsBatchGroupLeader(&w, &write_group);
IOStatus io_s;
Status pre_release_cb_status;
if (status.ok()) {
// TODO: this use of operator bool on `tracer_` can avoid unnecessary lock
// grabs but does not seem thread-safe.
if (tracer_) {
InstrumentedMutexLock lock(&trace_mutex_);
if (tracer_ && tracer_->IsWriteOrderPreserved()) {
for (auto* writer : write_group) {
// TODO: maybe handle the tracing status?
tracer_->Write(writer->batch).PermitUncheckedError();
}
}
}
// Rules for when we can update the memtable concurrently
// 1. supported by memtable
// 2. Puts are not okay if inplace_update_support
// 3. Merges are not okay
//
// Rules 1..2 are enforced by checking the options
// during startup (CheckConcurrentWritesSupported), so if
// options.allow_concurrent_memtable_write is true then they can be
// assumed to be true. Rule 3 is checked for each batch. We could
// relax rules 2 if we could prevent write batches from referring
// more than once to a particular key.
bool parallel = immutable_db_options_.allow_concurrent_memtable_write &&
write_group.size > 1;
size_t total_count = 0;
size_t valid_batches = 0;
size_t total_byte_size = 0;
size_t pre_release_callback_cnt = 0;
for (auto* writer : write_group) {
assert(writer);
if (writer->CheckCallback(this)) {
valid_batches += writer->batch_cnt;
if (writer->ShouldWriteToMemtable()) {
total_count += WriteBatchInternal::Count(writer->batch);
parallel = parallel && !writer->batch->HasMerge();
}
total_byte_size = WriteBatchInternal::AppendedByteSize(
total_byte_size, WriteBatchInternal::ByteSize(writer->batch));
if (writer->pre_release_callback) {
pre_release_callback_cnt++;
}
}
}
// Note about seq_per_batch_: either disableWAL is set for the entire write
// group or not. In either case we inc seq for each write batch with no
// failed callback. This means that there could be a batch with
// disalbe_memtable in between; although we do not write this batch to
// memtable it still consumes a seq. Otherwise, if !seq_per_batch_, we inc
// the seq per valid written key to mem.
size_t seq_inc = seq_per_batch_ ? valid_batches : total_count;
const bool concurrent_update = two_write_queues_;
// Update stats while we are an exclusive group leader, so we know
// that nobody else can be writing to these particular stats.
// We're optimistic, updating the stats before we successfully
// commit. That lets us release our leader status early.
auto stats = default_cf_internal_stats_;
stats->AddDBStats(InternalStats::kIntStatsNumKeysWritten, total_count,
concurrent_update);
RecordTick(stats_, NUMBER_KEYS_WRITTEN, total_count);
stats->AddDBStats(InternalStats::kIntStatsBytesWritten, total_byte_size,
concurrent_update);
RecordTick(stats_, BYTES_WRITTEN, total_byte_size);
stats->AddDBStats(InternalStats::kIntStatsWriteDoneBySelf, 1,
concurrent_update);
RecordTick(stats_, WRITE_DONE_BY_SELF);
auto write_done_by_other = write_group.size - 1;
if (write_done_by_other > 0) {
stats->AddDBStats(InternalStats::kIntStatsWriteDoneByOther,
write_done_by_other, concurrent_update);
RecordTick(stats_, WRITE_DONE_BY_OTHER, write_done_by_other);
}
RecordInHistogram(stats_, BYTES_PER_WRITE, total_byte_size);
if (write_options.disableWAL) {
has_unpersisted_data_.store(true, std::memory_order_relaxed);
}
PERF_TIMER_STOP(write_pre_and_post_process_time);
if (!two_write_queues_) {
if (status.ok() && !write_options.disableWAL) {
PERF_TIMER_GUARD(write_wal_time);
io_s = WriteToWAL(write_group, log_writer, log_used, need_log_sync,
need_log_dir_sync, last_sequence + 1);
}
} else {
if (status.ok() && !write_options.disableWAL) {
PERF_TIMER_GUARD(write_wal_time);
// LastAllocatedSequence is increased inside WriteToWAL under
// wal_write_mutex_ to ensure ordered events in WAL
io_s = ConcurrentWriteToWAL(write_group, log_used, &last_sequence,
seq_inc);
} else {
// Otherwise we inc seq number for memtable writes
last_sequence = versions_->FetchAddLastAllocatedSequence(seq_inc);
}
}
status = io_s;
assert(last_sequence != kMaxSequenceNumber);
const SequenceNumber current_sequence = last_sequence + 1;
last_sequence += seq_inc;
// PreReleaseCallback is called after WAL write and before memtable write
if (status.ok()) {
SequenceNumber next_sequence = current_sequence;
size_t index = 0;
// Note: the logic for advancing seq here must be consistent with the
// logic in WriteBatchInternal::InsertInto(write_group...) as well as
// with WriteBatchInternal::InsertInto(write_batch...) that is called on
// the merged batch during recovery from the WAL.
for (auto* writer : write_group) {
if (writer->CallbackFailed()) {
continue;
}
writer->sequence = next_sequence;
if (writer->pre_release_callback) {
Status ws = writer->pre_release_callback->Callback(
writer->sequence, disable_memtable, writer->log_used, index++,
pre_release_callback_cnt);
if (!ws.ok()) {
status = pre_release_cb_status = ws;
break;
}
}
if (seq_per_batch_) {
assert(writer->batch_cnt);
next_sequence += writer->batch_cnt;
} else if (writer->ShouldWriteToMemtable()) {
next_sequence += WriteBatchInternal::Count(writer->batch);
}
}
}
if (status.ok()) {
PERF_TIMER_GUARD(write_memtable_time);
if (!parallel) {
// w.sequence will be set inside InsertInto
w.status = WriteBatchInternal::InsertInto(
write_group, current_sequence, column_family_memtables_.get(),
&flush_scheduler_, &trim_history_scheduler_,
write_options.ignore_missing_column_families,
0 /*recovery_log_number*/, this, parallel, seq_per_batch_,
batch_per_txn_);
} else {
write_group.last_sequence = last_sequence;
write_thread_.LaunchParallelMemTableWriters(&write_group);
in_parallel_group = true;
// Each parallel follower is doing each own writes. The leader should
// also do its own.
if (w.ShouldWriteToMemtable()) {
ColumnFamilyMemTablesImpl column_family_memtables(
versions_->GetColumnFamilySet());
assert(w.sequence == current_sequence);
w.status = WriteBatchInternal::InsertInto(
&w, w.sequence, &column_family_memtables, &flush_scheduler_,
&trim_history_scheduler_,
write_options.ignore_missing_column_families, 0 /*log_number*/,
this, true /*concurrent_memtable_writes*/, seq_per_batch_,
w.batch_cnt, batch_per_txn_,
write_options.memtable_insert_hint_per_batch);
}
}
if (seq_used != nullptr) {
*seq_used = w.sequence;
}
}
}
PERF_TIMER_START(write_pre_and_post_process_time);
if (!w.CallbackFailed()) {
if (!io_s.ok()) {
assert(pre_release_cb_status.ok());
IOStatusCheck(io_s);
} else {
WriteStatusCheck(pre_release_cb_status);
}
} else {
assert(io_s.ok() && pre_release_cb_status.ok());
}
if (need_log_sync) {
mutex_.Lock();
if (status.ok()) {
status = MarkLogsSynced(logfile_number_, need_log_dir_sync);
} else {
MarkLogsNotSynced(logfile_number_);
}
mutex_.Unlock();
// Requesting sync with two_write_queues_ is expected to be very rare. We
// hence provide a simple implementation that is not necessarily efficient.
if (two_write_queues_) {
if (manual_wal_flush_) {
status = FlushWAL(true);
} else {
status = SyncWAL();
}
}
}
bool should_exit_batch_group = true;
if (in_parallel_group) {
// CompleteParallelWorker returns true if this thread should
// handle exit, false means somebody else did
should_exit_batch_group = write_thread_.CompleteParallelMemTableWriter(&w);
}
if (should_exit_batch_group) {
if (status.ok()) {
// Note: if we are to resume after non-OK statuses we need to revisit how
// we reacts to non-OK statuses here.
versions_->SetLastSequence(last_sequence);
}
MemTableInsertStatusCheck(w.status);
write_thread_.ExitAsBatchGroupLeader(write_group, status);
}
if (status.ok()) {
status = w.FinalStatus();
}
return status;
}
Status DBImpl::PipelinedWriteImpl(const WriteOptions& write_options,
WriteBatch* my_batch, WriteCallback* callback,
uint64_t* log_used, uint64_t log_ref,
bool disable_memtable, uint64_t* seq_used) {
PERF_TIMER_GUARD(write_pre_and_post_process_time);
StopWatch write_sw(immutable_db_options_.clock, stats_, DB_WRITE);
WriteContext write_context;
WriteThread::Writer w(write_options, my_batch, callback, log_ref,
disable_memtable, /*_batch_cnt=*/0,
/*_pre_release_callback=*/nullptr);
write_thread_.JoinBatchGroup(&w);
TEST_SYNC_POINT("DBImplWrite::PipelinedWriteImpl:AfterJoinBatchGroup");
if (w.state == WriteThread::STATE_GROUP_LEADER) {
WriteThread::WriteGroup wal_write_group;
if (w.callback && !w.callback->AllowWriteBatching()) {
write_thread_.WaitForMemTableWriters();
}
mutex_.Lock();
bool need_log_sync = !write_options.disableWAL && write_options.sync;
bool need_log_dir_sync = need_log_sync && !log_dir_synced_;
// PreprocessWrite does its own perf timing.
PERF_TIMER_STOP(write_pre_and_post_process_time);
w.status = PreprocessWrite(write_options, &need_log_sync, &write_context);
PERF_TIMER_START(write_pre_and_post_process_time);
log::Writer* log_writer = logs_.back().writer;
mutex_.Unlock();
// This can set non-OK status if callback fail.
last_batch_group_size_ =
write_thread_.EnterAsBatchGroupLeader(&w, &wal_write_group);
const SequenceNumber current_sequence =
write_thread_.UpdateLastSequence(versions_->LastSequence()) + 1;
size_t total_count = 0;
size_t total_byte_size = 0;
if (w.status.ok()) {
// TODO: this use of operator bool on `tracer_` can avoid unnecessary lock
// grabs but does not seem thread-safe.
if (tracer_) {
InstrumentedMutexLock lock(&trace_mutex_);
if (tracer_ != nullptr && tracer_->IsWriteOrderPreserved()) {
for (auto* writer : wal_write_group) {
// TODO: maybe handle the tracing status?
tracer_->Write(writer->batch).PermitUncheckedError();
}
}
}
SequenceNumber next_sequence = current_sequence;
for (auto* writer : wal_write_group) {
assert(writer);
if (writer->CheckCallback(this)) {
if (writer->ShouldWriteToMemtable()) {
writer->sequence = next_sequence;
size_t count = WriteBatchInternal::Count(writer->batch);
next_sequence += count;
total_count += count;
}
total_byte_size = WriteBatchInternal::AppendedByteSize(
total_byte_size, WriteBatchInternal::ByteSize(writer->batch));
}
}
if (w.disable_wal) {
has_unpersisted_data_.store(true, std::memory_order_relaxed);
}
write_thread_.UpdateLastSequence(current_sequence + total_count - 1);
}
auto stats = default_cf_internal_stats_;
stats->AddDBStats(InternalStats::kIntStatsNumKeysWritten, total_count);
RecordTick(stats_, NUMBER_KEYS_WRITTEN, total_count);
stats->AddDBStats(InternalStats::kIntStatsBytesWritten, total_byte_size);
RecordTick(stats_, BYTES_WRITTEN, total_byte_size);
RecordInHistogram(stats_, BYTES_PER_WRITE, total_byte_size);
PERF_TIMER_STOP(write_pre_and_post_process_time);
IOStatus io_s;
io_s.PermitUncheckedError(); // Allow io_s to be uninitialized
if (w.status.ok() && !write_options.disableWAL) {
PERF_TIMER_GUARD(write_wal_time);
stats->AddDBStats(InternalStats::kIntStatsWriteDoneBySelf, 1);
RecordTick(stats_, WRITE_DONE_BY_SELF, 1);
if (wal_write_group.size > 1) {
stats->AddDBStats(InternalStats::kIntStatsWriteDoneByOther,
wal_write_group.size - 1);
RecordTick(stats_, WRITE_DONE_BY_OTHER, wal_write_group.size - 1);
}
io_s = WriteToWAL(wal_write_group, log_writer, log_used, need_log_sync,
need_log_dir_sync, current_sequence);
w.status = io_s;
}
if (!w.CallbackFailed()) {
if (!io_s.ok()) {
IOStatusCheck(io_s);
} else {
WriteStatusCheck(w.status);
}
}
if (need_log_sync) {
mutex_.Lock();
if (w.status.ok()) {
w.status = MarkLogsSynced(logfile_number_, need_log_dir_sync);
} else {
MarkLogsNotSynced(logfile_number_);
}
mutex_.Unlock();
}
write_thread_.ExitAsBatchGroupLeader(wal_write_group, w.status);
}
// NOTE: the memtable_write_group is declared before the following
// `if` statement because its lifetime needs to be longer
// that the inner context of the `if` as a reference to it
// may be used further below within the outer _write_thread
WriteThread::WriteGroup memtable_write_group;
if (w.state == WriteThread::STATE_MEMTABLE_WRITER_LEADER) {
PERF_TIMER_GUARD(write_memtable_time);
assert(w.ShouldWriteToMemtable());
write_thread_.EnterAsMemTableWriter(&w, &memtable_write_group);
if (memtable_write_group.size > 1 &&
immutable_db_options_.allow_concurrent_memtable_write) {
write_thread_.LaunchParallelMemTableWriters(&memtable_write_group);
} else {
memtable_write_group.status = WriteBatchInternal::InsertInto(
memtable_write_group, w.sequence, column_family_memtables_.get(),
&flush_scheduler_, &trim_history_scheduler_,
write_options.ignore_missing_column_families, 0 /*log_number*/, this,
false /*concurrent_memtable_writes*/, seq_per_batch_, batch_per_txn_);
versions_->SetLastSequence(memtable_write_group.last_sequence);
write_thread_.ExitAsMemTableWriter(&w, memtable_write_group);
}
} else {
// NOTE: the memtable_write_group is never really used,
// so we need to set its status to pass ASSERT_STATUS_CHECKED
memtable_write_group.status.PermitUncheckedError();
}
if (w.state == WriteThread::STATE_PARALLEL_MEMTABLE_WRITER) {
assert(w.ShouldWriteToMemtable());
ColumnFamilyMemTablesImpl column_family_memtables(
versions_->GetColumnFamilySet());
w.status = WriteBatchInternal::InsertInto(
&w, w.sequence, &column_family_memtables, &flush_scheduler_,
&trim_history_scheduler_, write_options.ignore_missing_column_families,
0 /*log_number*/, this, true /*concurrent_memtable_writes*/,
false /*seq_per_batch*/, 0 /*batch_cnt*/, true /*batch_per_txn*/,
write_options.memtable_insert_hint_per_batch);
if (write_thread_.CompleteParallelMemTableWriter(&w)) {
MemTableInsertStatusCheck(w.status);
versions_->SetLastSequence(w.write_group->last_sequence);
write_thread_.ExitAsMemTableWriter(&w, *w.write_group);
}
}
if (seq_used != nullptr) {
*seq_used = w.sequence;
}
assert(w.state == WriteThread::STATE_COMPLETED);
return w.FinalStatus();
}
Status DBImpl::UnorderedWriteMemtable(const WriteOptions& write_options,
WriteBatch* my_batch,
WriteCallback* callback, uint64_t log_ref,
SequenceNumber seq,
const size_t sub_batch_cnt) {
PERF_TIMER_GUARD(write_pre_and_post_process_time);
StopWatch write_sw(immutable_db_options_.clock, stats_, DB_WRITE);
WriteThread::Writer w(write_options, my_batch, callback, log_ref,
false /*disable_memtable*/);
if (w.CheckCallback(this) && w.ShouldWriteToMemtable()) {
w.sequence = seq;
size_t total_count = WriteBatchInternal::Count(my_batch);
InternalStats* stats = default_cf_internal_stats_;
stats->AddDBStats(InternalStats::kIntStatsNumKeysWritten, total_count);
RecordTick(stats_, NUMBER_KEYS_WRITTEN, total_count);
ColumnFamilyMemTablesImpl column_family_memtables(
versions_->GetColumnFamilySet());
w.status = WriteBatchInternal::InsertInto(
&w, w.sequence, &column_family_memtables, &flush_scheduler_,
&trim_history_scheduler_, write_options.ignore_missing_column_families,
0 /*log_number*/, this, true /*concurrent_memtable_writes*/,
seq_per_batch_, sub_batch_cnt, true /*batch_per_txn*/,
write_options.memtable_insert_hint_per_batch);
if (write_options.disableWAL) {
has_unpersisted_data_.store(true, std::memory_order_relaxed);
}
}
size_t pending_cnt = pending_memtable_writes_.fetch_sub(1) - 1;
if (pending_cnt == 0) {
// switch_cv_ waits until pending_memtable_writes_ = 0. Locking its mutex
// before notify ensures that cv is in waiting state when it is notified
// thus not missing the update to pending_memtable_writes_ even though it is
// not modified under the mutex.
std::lock_guard<std::mutex> lck(switch_mutex_);
switch_cv_.notify_all();
}
WriteStatusCheck(w.status);
if (!w.FinalStatus().ok()) {
return w.FinalStatus();
}
return Status::OK();
}
// The 2nd write queue. If enabled it will be used only for WAL-only writes.
// This is the only queue that updates LastPublishedSequence which is only
// applicable in a two-queue setting.
Status DBImpl::WriteImplWALOnly(
WriteThread* write_thread, const WriteOptions& write_options,
WriteBatch* my_batch, WriteCallback* callback, uint64_t* log_used,
const uint64_t log_ref, uint64_t* seq_used, const size_t sub_batch_cnt,
PreReleaseCallback* pre_release_callback, const AssignOrder assign_order,
const PublishLastSeq publish_last_seq, const bool disable_memtable) {
PERF_TIMER_GUARD(write_pre_and_post_process_time);
WriteThread::Writer w(write_options, my_batch, callback, log_ref,
disable_memtable, sub_batch_cnt, pre_release_callback);
StopWatch write_sw(immutable_db_options_.clock, stats_, DB_WRITE);
write_thread->JoinBatchGroup(&w);
assert(w.state != WriteThread::STATE_PARALLEL_MEMTABLE_WRITER);
if (w.state == WriteThread::STATE_COMPLETED) {
if (log_used != nullptr) {
*log_used = w.log_used;
}
if (seq_used != nullptr) {
*seq_used = w.sequence;
}
return w.FinalStatus();
}
// else we are the leader of the write batch group
assert(w.state == WriteThread::STATE_GROUP_LEADER);
if (publish_last_seq == kDoPublishLastSeq) {
Status status;
// Currently we only use kDoPublishLastSeq in unordered_write
assert(immutable_db_options_.unordered_write);
WriteContext write_context;
if (error_handler_.IsDBStopped()) {
status = error_handler_.GetBGError();
}
// TODO(myabandeh): Make preliminary checks thread-safe so we could do them
// without paying the cost of obtaining the mutex.
if (status.ok()) {
InstrumentedMutexLock l(&mutex_);
bool need_log_sync = false;
status = PreprocessWrite(write_options, &need_log_sync, &write_context);
WriteStatusCheckOnLocked(status);
}
if (!status.ok()) {
WriteThread::WriteGroup write_group;
write_thread->EnterAsBatchGroupLeader(&w, &write_group);
write_thread->ExitAsBatchGroupLeader(write_group, status);
return status;
}
}
WriteThread::WriteGroup write_group;
uint64_t last_sequence;
write_thread->EnterAsBatchGroupLeader(&w, &write_group);
// Note: no need to update last_batch_group_size_ here since the batch writes
// to WAL only
// TODO: this use of operator bool on `tracer_` can avoid unnecessary lock
// grabs but does not seem thread-safe.
if (tracer_) {
InstrumentedMutexLock lock(&trace_mutex_);
if (tracer_ != nullptr && tracer_->IsWriteOrderPreserved()) {
for (auto* writer : write_group) {
// TODO: maybe handle the tracing status?
tracer_->Write(writer->batch).PermitUncheckedError();
}
}
}
size_t pre_release_callback_cnt = 0;
size_t total_byte_size = 0;
for (auto* writer : write_group) {
assert(writer);
if (writer->CheckCallback(this)) {
total_byte_size = WriteBatchInternal::AppendedByteSize(
total_byte_size, WriteBatchInternal::ByteSize(writer->batch));
if (writer->pre_release_callback) {
pre_release_callback_cnt++;
}
}
}
const bool concurrent_update = true;
// Update stats while we are an exclusive group leader, so we know
// that nobody else can be writing to these particular stats.
// We're optimistic, updating the stats before we successfully
// commit. That lets us release our leader status early.
auto stats = default_cf_internal_stats_;
stats->AddDBStats(InternalStats::kIntStatsBytesWritten, total_byte_size,
concurrent_update);
RecordTick(stats_, BYTES_WRITTEN, total_byte_size);
stats->AddDBStats(InternalStats::kIntStatsWriteDoneBySelf, 1,
concurrent_update);
RecordTick(stats_, WRITE_DONE_BY_SELF);
auto write_done_by_other = write_group.size - 1;
if (write_done_by_other > 0) {
stats->AddDBStats(InternalStats::kIntStatsWriteDoneByOther,
write_done_by_other, concurrent_update);
RecordTick(stats_, WRITE_DONE_BY_OTHER, write_done_by_other);
}
RecordInHistogram(stats_, BYTES_PER_WRITE, total_byte_size);
PERF_TIMER_STOP(write_pre_and_post_process_time);
PERF_TIMER_GUARD(write_wal_time);
// LastAllocatedSequence is increased inside WriteToWAL under
// wal_write_mutex_ to ensure ordered events in WAL
size_t seq_inc = 0 /* total_count */;
if (assign_order == kDoAssignOrder) {
size_t total_batch_cnt = 0;
for (auto* writer : write_group) {
assert(writer->batch_cnt || !seq_per_batch_);
if (!writer->CallbackFailed()) {
total_batch_cnt += writer->batch_cnt;
}
}
seq_inc = total_batch_cnt;
}
Status status;
IOStatus io_s;
io_s.PermitUncheckedError(); // Allow io_s to be uninitialized
if (!write_options.disableWAL) {
io_s = ConcurrentWriteToWAL(write_group, log_used, &last_sequence, seq_inc);
status = io_s;
} else {
// Otherwise we inc seq number to do solely the seq allocation
last_sequence = versions_->FetchAddLastAllocatedSequence(seq_inc);
}
size_t memtable_write_cnt = 0;
auto curr_seq = last_sequence + 1;
for (auto* writer : write_group) {
if (writer->CallbackFailed()) {
continue;
}
writer->sequence = curr_seq;
if (assign_order == kDoAssignOrder) {
assert(writer->batch_cnt || !seq_per_batch_);
curr_seq += writer->batch_cnt;
}
if (!writer->disable_memtable) {
memtable_write_cnt++;
}
// else seq advances only by memtable writes
}
if (status.ok() && write_options.sync) {
assert(!write_options.disableWAL);
// Requesting sync with two_write_queues_ is expected to be very rare. We
// hance provide a simple implementation that is not necessarily efficient.
if (manual_wal_flush_) {
status = FlushWAL(true);
} else {
status = SyncWAL();
}
}
PERF_TIMER_START(write_pre_and_post_process_time);
if (!w.CallbackFailed()) {
if (!io_s.ok()) {
IOStatusCheck(io_s);
} else {
WriteStatusCheck(status);
}
}
if (status.ok()) {
size_t index = 0;
for (auto* writer : write_group) {
if (!writer->CallbackFailed() && writer->pre_release_callback) {
assert(writer->sequence != kMaxSequenceNumber);
Status ws = writer->pre_release_callback->Callback(
writer->sequence, disable_memtable, writer->log_used, index++,
pre_release_callback_cnt);
if (!ws.ok()) {
status = ws;
break;
}
}
}
}
if (publish_last_seq == kDoPublishLastSeq) {
versions_->SetLastSequence(last_sequence + seq_inc);
// Currently we only use kDoPublishLastSeq in unordered_write
assert(immutable_db_options_.unordered_write);
}
if (immutable_db_options_.unordered_write && status.ok()) {
pending_memtable_writes_ += memtable_write_cnt;
}
write_thread->ExitAsBatchGroupLeader(write_group, status);
if (status.ok()) {
status = w.FinalStatus();
}
if (seq_used != nullptr) {
*seq_used = w.sequence;
}
return status;
}
void DBImpl::WriteStatusCheckOnLocked(const Status& status) {
// Is setting bg_error_ enough here? This will at least stop
// compaction and fail any further writes.
// Caller must hold mutex_.
assert(!status.IsIOFenced() || !error_handler_.GetBGError().ok());
mutex_.AssertHeld();
if (immutable_db_options_.paranoid_checks && !status.ok() &&
!status.IsBusy() && !status.IsIncomplete()) {
// Maybe change the return status to void?
error_handler_.SetBGError(status, BackgroundErrorReason::kWriteCallback);
}
}
void DBImpl::WriteStatusCheck(const Status& status) {
// Is setting bg_error_ enough here? This will at least stop
// compaction and fail any further writes.
assert(!status.IsIOFenced() || !error_handler_.GetBGError().ok());
if (immutable_db_options_.paranoid_checks && !status.ok() &&
!status.IsBusy() && !status.IsIncomplete()) {
mutex_.Lock();
// Maybe change the return status to void?
error_handler_.SetBGError(status, BackgroundErrorReason::kWriteCallback);
mutex_.Unlock();
}
}
void DBImpl::IOStatusCheck(const IOStatus& io_status) {
// Is setting bg_error_ enough here? This will at least stop
// compaction and fail any further writes.
if ((immutable_db_options_.paranoid_checks && !io_status.ok() &&
!io_status.IsBusy() && !io_status.IsIncomplete()) ||
io_status.IsIOFenced()) {
mutex_.Lock();
// Maybe change the return status to void?
error_handler_.SetBGError(io_status, BackgroundErrorReason::kWriteCallback);
mutex_.Unlock();
}
}
void DBImpl::MemTableInsertStatusCheck(const Status& status) {
// A non-OK status here indicates that the state implied by the
// WAL has diverged from the in-memory state. This could be
// because of a corrupt write_batch (very bad), or because the
// client specified an invalid column family and didn't specify
// ignore_missing_column_families.
if (!status.ok()) {
mutex_.Lock();
assert(!error_handler_.IsBGWorkStopped());
// Maybe change the return status to void?
error_handler_.SetBGError(status, BackgroundErrorReason::kMemTable)
.PermitUncheckedError();
mutex_.Unlock();
}
}
Status DBImpl::PreprocessWrite(const WriteOptions& write_options,
bool* need_log_sync,
WriteContext* write_context) {
mutex_.AssertHeld();
assert(write_context != nullptr && need_log_sync != nullptr);
Status status;
if (error_handler_.IsDBStopped()) {
status = error_handler_.GetBGError();
}
PERF_TIMER_GUARD(write_scheduling_flushes_compactions_time);
assert(!single_column_family_mode_ ||
versions_->GetColumnFamilySet()->NumberOfColumnFamilies() == 1);
if (UNLIKELY(status.ok() && !single_column_family_mode_ &&
total_log_size_ > GetMaxTotalWalSize())) {
WaitForPendingWrites();
status = SwitchWAL(write_context);
}
if (UNLIKELY(status.ok() && write_buffer_manager_->ShouldFlush())) {
// Before a new memtable is added in SwitchMemtable(),
// write_buffer_manager_->ShouldFlush() will keep returning true. If another
// thread is writing to another DB with the same write buffer, they may also
// be flushed. We may end up with flushing much more DBs than needed. It's
// suboptimal but still correct.
WaitForPendingWrites();
status = HandleWriteBufferManagerFlush(write_context);
}
if (UNLIKELY(status.ok() && !trim_history_scheduler_.Empty())) {
status = TrimMemtableHistory(write_context);
}
if (UNLIKELY(status.ok() && !flush_scheduler_.Empty())) {
WaitForPendingWrites();
status = ScheduleFlushes(write_context);
}
PERF_TIMER_STOP(write_scheduling_flushes_compactions_time);
PERF_TIMER_GUARD(write_pre_and_post_process_time);
if (UNLIKELY(status.ok() && (write_controller_.IsStopped() ||
write_controller_.NeedsDelay()))) {
PERF_TIMER_STOP(write_pre_and_post_process_time);
PERF_TIMER_GUARD(write_delay_time);
// We don't know size of curent batch so that we always use the size
// for previous one. It might create a fairness issue that expiration
// might happen for smaller writes but larger writes can go through.
// Can optimize it if it is an issue.
status = DelayWrite(last_batch_group_size_, write_options);
PERF_TIMER_START(write_pre_and_post_process_time);
}
// If memory usage exceeded beyond a certain threshold,
// write_buffer_manager_->ShouldStall() returns true to all threads writing to
// all DBs and writers will be stalled.
// It does soft checking because WriteBufferManager::buffer_limit_ has already
// exceeded at this point so no new write (including current one) will go
// through until memory usage is decreased.
if (UNLIKELY(status.ok() && write_buffer_manager_->ShouldStall())) {
if (write_options.no_slowdown) {
status = Status::Incomplete("Write stall");
} else {
WriteBufferManagerStallWrites();
}
}
if (status.ok() && *need_log_sync) {
// Wait until the parallel syncs are finished. Any sync process has to sync
// the front log too so it is enough to check the status of front()
// We do a while loop since log_sync_cv_ is signalled when any sync is
// finished
// Note: there does not seem to be a reason to wait for parallel sync at
// this early step but it is not important since parallel sync (SyncWAL) and
// need_log_sync are usually not used together.
while (logs_.front().getting_synced) {
log_sync_cv_.Wait();
}
for (auto& log : logs_) {
assert(!log.getting_synced);
// This is just to prevent the logs to be synced by a parallel SyncWAL
// call. We will do the actual syncing later after we will write to the
// WAL.
// Note: there does not seem to be a reason to set this early before we
// actually write to the WAL
log.getting_synced = true;
}
} else {
*need_log_sync = false;
}
return status;
}
WriteBatch* DBImpl::MergeBatch(const WriteThread::WriteGroup& write_group,
WriteBatch* tmp_batch, size_t* write_with_wal,
WriteBatch** to_be_cached_state) {
assert(write_with_wal != nullptr);
assert(tmp_batch != nullptr);
assert(*to_be_cached_state == nullptr);
WriteBatch* merged_batch = nullptr;
*write_with_wal = 0;
auto* leader = write_group.leader;
assert(!leader->disable_wal); // Same holds for all in the batch group
if (write_group.size == 1 && !leader->CallbackFailed() &&
leader->batch->GetWalTerminationPoint().is_cleared()) {
// we simply write the first WriteBatch to WAL if the group only
// contains one batch, that batch should be written to the WAL,
// and the batch is not wanting to be truncated
merged_batch = leader->batch;
if (WriteBatchInternal::IsLatestPersistentState(merged_batch)) {
*to_be_cached_state = merged_batch;
}
*write_with_wal = 1;
} else {
// WAL needs all of the batches flattened into a single batch.
// We could avoid copying here with an iov-like AddRecord
// interface
merged_batch = tmp_batch;
for (auto writer : write_group) {
if (!writer->CallbackFailed()) {
Status s = WriteBatchInternal::Append(merged_batch, writer->batch,
/*WAL_only*/ true);
// Always returns Status::OK.
assert(s.ok());
if (WriteBatchInternal::IsLatestPersistentState(writer->batch)) {
// We only need to cache the last of such write batch
*to_be_cached_state = writer->batch;
}
(*write_with_wal)++;
}
}
}
return merged_batch;
}
// When two_write_queues_ is disabled, this function is called from the only
// write thread. Otherwise this must be called holding log_write_mutex_.
IOStatus DBImpl::WriteToWAL(const WriteBatch& merged_batch,
log::Writer* log_writer, uint64_t* log_used,
uint64_t* log_size,
Env::IOPriority rate_limiter_priority) {
assert(log_size != nullptr);
Slice log_entry = WriteBatchInternal::Contents(&merged_batch);
*log_size = log_entry.size();
// When two_write_queues_ WriteToWAL has to be protected from concurretn calls
// from the two queues anyway and log_write_mutex_ is already held. Otherwise
// if manual_wal_flush_ is enabled we need to protect log_writer->AddRecord
// from possible concurrent calls via the FlushWAL by the application.
const bool needs_locking = manual_wal_flush_ && !two_write_queues_;
// Due to performance cocerns of missed branch prediction penalize the new
// manual_wal_flush_ feature (by UNLIKELY) instead of the more common case
// when we do not need any locking.
if (UNLIKELY(needs_locking)) {
log_write_mutex_.Lock();
}
IOStatus io_s = log_writer->AddRecord(log_entry, rate_limiter_priority);
if (UNLIKELY(needs_locking)) {
log_write_mutex_.Unlock();
}
if (log_used != nullptr) {
*log_used = logfile_number_;
}
total_log_size_ += log_entry.size();
// TODO(myabandeh): it might be unsafe to access alive_log_files_.back() here
// since alive_log_files_ might be modified concurrently
alive_log_files_.back().AddSize(log_entry.size());
log_empty_ = false;
return io_s;
}
IOStatus DBImpl::WriteToWAL(const WriteThread::WriteGroup& write_group,
log::Writer* log_writer, uint64_t* log_used,
bool need_log_sync, bool need_log_dir_sync,
SequenceNumber sequence) {
IOStatus io_s;
assert(!write_group.leader->disable_wal);
// Same holds for all in the batch group
size_t write_with_wal = 0;
WriteBatch* to_be_cached_state = nullptr;
WriteBatch* merged_batch = MergeBatch(write_group, &tmp_batch_,
&write_with_wal, &to_be_cached_state);
if (merged_batch == write_group.leader->batch) {
write_group.leader->log_used = logfile_number_;
} else if (write_with_wal > 1) {
for (auto writer : write_group) {
writer->log_used = logfile_number_;
}
}
WriteBatchInternal::SetSequence(merged_batch, sequence);
uint64_t log_size;
io_s = WriteToWAL(*merged_batch, log_writer, log_used, &log_size,
write_group.leader->rate_limiter_priority);
if (to_be_cached_state) {
cached_recoverable_state_ = *to_be_cached_state;
cached_recoverable_state_empty_ = false;
}
if (io_s.ok() && need_log_sync) {
StopWatch sw(immutable_db_options_.clock, stats_, WAL_FILE_SYNC_MICROS);
// It's safe to access logs_ with unlocked mutex_ here because:
// - we've set getting_synced=true for all logs,
// so other threads won't pop from logs_ while we're here,
// - only writer thread can push to logs_, and we're in
// writer thread, so no one will push to logs_,
// - as long as other threads don't modify it, it's safe to read
// from std::deque from multiple threads concurrently.
//
// Sync operation should work with locked log_write_mutex_, because:
// when DBOptions.manual_wal_flush_ is set,
// FlushWAL function will be invoked by another thread.
// if without locked log_write_mutex_, the log file may get data
// corruption
const bool needs_locking = manual_wal_flush_ && !two_write_queues_;
if (UNLIKELY(needs_locking)) {
log_write_mutex_.Lock();
}
for (auto& log : logs_) {
io_s = log.writer->file()->Sync(immutable_db_options_.use_fsync);
if (!io_s.ok()) {
break;
}
}
if (UNLIKELY(needs_locking)) {
log_write_mutex_.Unlock();
}
if (io_s.ok() && need_log_dir_sync) {
// We only sync WAL directory the first time WAL syncing is
// requested, so that in case users never turn on WAL sync,
// we can avoid the disk I/O in the write code path.
io_s = directories_.GetWalDir()->FsyncWithDirOptions(
IOOptions(), nullptr,
DirFsyncOptions(DirFsyncOptions::FsyncReason::kNewFileSynced));
}
}
if (merged_batch == &tmp_batch_) {
tmp_batch_.Clear();
}
if (io_s.ok()) {
auto stats = default_cf_internal_stats_;
if (need_log_sync) {
stats->AddDBStats(InternalStats::kIntStatsWalFileSynced, 1);
RecordTick(stats_, WAL_FILE_SYNCED);
}
stats->AddDBStats(InternalStats::kIntStatsWalFileBytes, log_size);
RecordTick(stats_, WAL_FILE_BYTES, log_size);
stats->AddDBStats(InternalStats::kIntStatsWriteWithWal, write_with_wal);
RecordTick(stats_, WRITE_WITH_WAL, write_with_wal);
}
return io_s;
}
IOStatus DBImpl::ConcurrentWriteToWAL(
const WriteThread::WriteGroup& write_group, uint64_t* log_used,
SequenceNumber* last_sequence, size_t seq_inc) {
IOStatus io_s;
assert(!write_group.leader->disable_wal);
// Same holds for all in the batch group
WriteBatch tmp_batch;
size_t write_with_wal = 0;
WriteBatch* to_be_cached_state = nullptr;
WriteBatch* merged_batch =
MergeBatch(write_group, &tmp_batch, &write_with_wal, &to_be_cached_state);
// We need to lock log_write_mutex_ since logs_ and alive_log_files might be
// pushed back concurrently
log_write_mutex_.Lock();
if (merged_batch == write_group.leader->batch) {
write_group.leader->log_used = logfile_number_;
} else if (write_with_wal > 1) {
for (auto writer : write_group) {
writer->log_used = logfile_number_;
}
}
*last_sequence = versions_->FetchAddLastAllocatedSequence(seq_inc);
auto sequence = *last_sequence + 1;
WriteBatchInternal::SetSequence(merged_batch, sequence);
log::Writer* log_writer = logs_.back().writer;
uint64_t log_size;
io_s = WriteToWAL(*merged_batch, log_writer, log_used, &log_size,
write_group.leader->rate_limiter_priority);
if (to_be_cached_state) {
cached_recoverable_state_ = *to_be_cached_state;
cached_recoverable_state_empty_ = false;
}
log_write_mutex_.Unlock();
if (io_s.ok()) {
const bool concurrent = true;
auto stats = default_cf_internal_stats_;
stats->AddDBStats(InternalStats::kIntStatsWalFileBytes, log_size,
concurrent);
RecordTick(stats_, WAL_FILE_BYTES, log_size);
stats->AddDBStats(InternalStats::kIntStatsWriteWithWal, write_with_wal,
concurrent);
RecordTick(stats_, WRITE_WITH_WAL, write_with_wal);
}
return io_s;
}
Status DBImpl::WriteRecoverableState() {
mutex_.AssertHeld();
if (!cached_recoverable_state_empty_) {
bool dont_care_bool;
SequenceNumber next_seq;
if (two_write_queues_) {
log_write_mutex_.Lock();
}
SequenceNumber seq;
if (two_write_queues_) {
seq = versions_->FetchAddLastAllocatedSequence(0);
} else {
seq = versions_->LastSequence();
}
WriteBatchInternal::SetSequence(&cached_recoverable_state_, seq + 1);
auto status = WriteBatchInternal::InsertInto(
&cached_recoverable_state_, column_family_memtables_.get(),
&flush_scheduler_, &trim_history_scheduler_, true,
0 /*recovery_log_number*/, this, false /* concurrent_memtable_writes */,
&next_seq, &dont_care_bool, seq_per_batch_);
auto last_seq = next_seq - 1;
if (two_write_queues_) {
versions_->FetchAddLastAllocatedSequence(last_seq - seq);
versions_->SetLastPublishedSequence(last_seq);
}
versions_->SetLastSequence(last_seq);
if (two_write_queues_) {
log_write_mutex_.Unlock();
}
if (status.ok() && recoverable_state_pre_release_callback_) {
const bool DISABLE_MEMTABLE = true;
for (uint64_t sub_batch_seq = seq + 1;
sub_batch_seq < next_seq && status.ok(); sub_batch_seq++) {
uint64_t const no_log_num = 0;
// Unlock it since the callback might end up locking mutex. e.g.,
// AddCommitted -> AdvanceMaxEvictedSeq -> GetSnapshotListFromDB
mutex_.Unlock();
status = recoverable_state_pre_release_callback_->Callback(
sub_batch_seq, !DISABLE_MEMTABLE, no_log_num, 0, 1);
mutex_.Lock();
}
}
if (status.ok()) {
cached_recoverable_state_.Clear();
cached_recoverable_state_empty_ = true;
}
return status;
}
return Status::OK();
}
void DBImpl::SelectColumnFamiliesForAtomicFlush(
autovector<ColumnFamilyData*>* cfds) {
for (ColumnFamilyData* cfd : *versions_->GetColumnFamilySet()) {
if (cfd->IsDropped()) {
continue;
}
if (cfd->imm()->NumNotFlushed() != 0 || !cfd->mem()->IsEmpty() ||
!cached_recoverable_state_empty_.load()) {
cfds->push_back(cfd);
}
}
}
// Assign sequence number for atomic flush.
void DBImpl::AssignAtomicFlushSeq(const autovector<ColumnFamilyData*>& cfds) {
assert(immutable_db_options_.atomic_flush);
auto seq = versions_->LastSequence();
for (auto cfd : cfds) {
cfd->imm()->AssignAtomicFlushSeq(seq);
}
}
Status DBImpl::SwitchWAL(WriteContext* write_context) {
mutex_.AssertHeld();
assert(write_context != nullptr);
Status status;
if (alive_log_files_.begin()->getting_flushed) {
return status;
}
auto oldest_alive_log = alive_log_files_.begin()->number;
bool flush_wont_release_oldest_log = false;
if (allow_2pc()) {
auto oldest_log_with_uncommitted_prep =
logs_with_prep_tracker_.FindMinLogContainingOutstandingPrep();
assert(oldest_log_with_uncommitted_prep == 0 ||
oldest_log_with_uncommitted_prep >= oldest_alive_log);
if (oldest_log_with_uncommitted_prep > 0 &&
oldest_log_with_uncommitted_prep == oldest_alive_log) {
if (unable_to_release_oldest_log_) {
// we already attempted to flush all column families dependent on
// the oldest alive log but the log still contained uncommitted
// transactions so there is still nothing that we can do.
return status;
} else {
ROCKS_LOG_WARN(
immutable_db_options_.info_log,
"Unable to release oldest log due to uncommitted transaction");
unable_to_release_oldest_log_ = true;
flush_wont_release_oldest_log = true;
}
}
}
if (!flush_wont_release_oldest_log) {
// we only mark this log as getting flushed if we have successfully
// flushed all data in this log. If this log contains outstanding prepared
// transactions then we cannot flush this log until those transactions are
// commited.
unable_to_release_oldest_log_ = false;
alive_log_files_.begin()->getting_flushed = true;
}
ROCKS_LOG_INFO(
immutable_db_options_.info_log,
"Flushing all column families with data in WAL number %" PRIu64
". Total log size is %" PRIu64 " while max_total_wal_size is %" PRIu64,
oldest_alive_log, total_log_size_.load(), GetMaxTotalWalSize());
// no need to refcount because drop is happening in write thread, so can't
// happen while we're in the write thread
autovector<ColumnFamilyData*> cfds;
if (immutable_db_options_.atomic_flush) {
SelectColumnFamiliesForAtomicFlush(&cfds);
} else {
for (auto cfd : *versions_->GetColumnFamilySet()) {
if (cfd->IsDropped()) {
continue;
}
if (cfd->OldestLogToKeep() <= oldest_alive_log) {
cfds.push_back(cfd);
}
}
MaybeFlushStatsCF(&cfds);
}
WriteThread::Writer nonmem_w;
if (two_write_queues_) {
nonmem_write_thread_.EnterUnbatched(&nonmem_w, &mutex_);
}
for (const auto cfd : cfds) {
cfd->Ref();
status = SwitchMemtable(cfd, write_context);
cfd->UnrefAndTryDelete();
if (!status.ok()) {
break;
}
}
if (two_write_queues_) {
nonmem_write_thread_.ExitUnbatched(&nonmem_w);
}
if (status.ok()) {
if (immutable_db_options_.atomic_flush) {
AssignAtomicFlushSeq(cfds);
}
for (auto cfd : cfds) {
cfd->imm()->FlushRequested();
if (!immutable_db_options_.atomic_flush) {
FlushRequest flush_req;
GenerateFlushRequest({cfd}, &flush_req);
SchedulePendingFlush(flush_req, FlushReason::kWalFull);
}
}
if (immutable_db_options_.atomic_flush) {
FlushRequest flush_req;
GenerateFlushRequest(cfds, &flush_req);
SchedulePendingFlush(flush_req, FlushReason::kWalFull);
}
MaybeScheduleFlushOrCompaction();
}
return status;
}
Status DBImpl::HandleWriteBufferManagerFlush(WriteContext* write_context) {
mutex_.AssertHeld();
assert(write_context != nullptr);
Status status;
// Before a new memtable is added in SwitchMemtable(),
// write_buffer_manager_->ShouldFlush() will keep returning true. If another
// thread is writing to another DB with the same write buffer, they may also
// be flushed. We may end up with flushing much more DBs than needed. It's
// suboptimal but still correct.
ROCKS_LOG_INFO(
immutable_db_options_.info_log,
"Flushing column family with oldest memtable entry. Write buffers are "
"using %" ROCKSDB_PRIszt " bytes out of a total of %" ROCKSDB_PRIszt ".",
write_buffer_manager_->memory_usage(),
write_buffer_manager_->buffer_size());
// no need to refcount because drop is happening in write thread, so can't
// happen while we're in the write thread
autovector<ColumnFamilyData*> cfds;
if (immutable_db_options_.atomic_flush) {
SelectColumnFamiliesForAtomicFlush(&cfds);
} else {
ColumnFamilyData* cfd_picked = nullptr;
SequenceNumber seq_num_for_cf_picked = kMaxSequenceNumber;
for (auto cfd : *versions_->GetColumnFamilySet()) {
if (cfd->IsDropped()) {
continue;
}
if (!cfd->mem()->IsEmpty()) {
// We only consider active mem table, hoping immutable memtable is
// already in the process of flushing.
uint64_t seq = cfd->mem()->GetCreationSeq();
if (cfd_picked == nullptr || seq < seq_num_for_cf_picked) {
cfd_picked = cfd;
seq_num_for_cf_picked = seq;
}
}
}
if (cfd_picked != nullptr) {
cfds.push_back(cfd_picked);
}
MaybeFlushStatsCF(&cfds);
}
WriteThread::Writer nonmem_w;
if (two_write_queues_) {
nonmem_write_thread_.EnterUnbatched(&nonmem_w, &mutex_);
}
for (const auto cfd : cfds) {
if (cfd->mem()->IsEmpty()) {
continue;
}
cfd->Ref();
status = SwitchMemtable(cfd, write_context);
cfd->UnrefAndTryDelete();
if (!status.ok()) {
break;
}
}
if (two_write_queues_) {
nonmem_write_thread_.ExitUnbatched(&nonmem_w);
}
if (status.ok()) {
if (immutable_db_options_.atomic_flush) {
AssignAtomicFlushSeq(cfds);
}
for (const auto cfd : cfds) {
cfd->imm()->FlushRequested();
if (!immutable_db_options_.atomic_flush) {
FlushRequest flush_req;
GenerateFlushRequest({cfd}, &flush_req);
SchedulePendingFlush(flush_req, FlushReason::kWriteBufferManager);
}
}
if (immutable_db_options_.atomic_flush) {
FlushRequest flush_req;
GenerateFlushRequest(cfds, &flush_req);
SchedulePendingFlush(flush_req, FlushReason::kWriteBufferManager);
}
MaybeScheduleFlushOrCompaction();
}
return status;
}
uint64_t DBImpl::GetMaxTotalWalSize() const {
mutex_.AssertHeld();
return mutable_db_options_.max_total_wal_size == 0
? 4 * max_total_in_memory_state_
: mutable_db_options_.max_total_wal_size;
}
// REQUIRES: mutex_ is held
// REQUIRES: this thread is currently at the front of the writer queue
Status DBImpl::DelayWrite(uint64_t num_bytes,
const WriteOptions& write_options) {
uint64_t time_delayed = 0;
bool delayed = false;
{
StopWatch sw(immutable_db_options_.clock, stats_, WRITE_STALL,
&time_delayed);
uint64_t delay =
write_controller_.GetDelay(immutable_db_options_.clock, num_bytes);
if (delay > 0) {
if (write_options.no_slowdown) {
return Status::Incomplete("Write stall");
}
TEST_SYNC_POINT("DBImpl::DelayWrite:Sleep");
// Notify write_thread_ about the stall so it can setup a barrier and
// fail any pending writers with no_slowdown
write_thread_.BeginWriteStall();
TEST_SYNC_POINT("DBImpl::DelayWrite:BeginWriteStallDone");
mutex_.Unlock();
// We will delay the write until we have slept for `delay` microseconds
// or we don't need a delay anymore. We check for cancellation every 1ms
// (slightly longer because WriteController minimum delay is 1ms, in
// case of sleep imprecision, rounding, etc.)
const uint64_t kDelayInterval = 1001;
uint64_t stall_end = sw.start_time() + delay;
while (write_controller_.NeedsDelay()) {
if (immutable_db_options_.clock->NowMicros() >= stall_end) {
// We already delayed this write `delay` microseconds
break;
}
delayed = true;
// Sleep for 0.001 seconds
immutable_db_options_.clock->SleepForMicroseconds(kDelayInterval);
}
mutex_.Lock();
write_thread_.EndWriteStall();
}
// Don't wait if there's a background error, even if its a soft error. We
// might wait here indefinitely as the background compaction may never
// finish successfully, resulting in the stall condition lasting
// indefinitely
while (error_handler_.GetBGError().ok() && write_controller_.IsStopped()) {
if (write_options.no_slowdown) {
return Status::Incomplete("Write stall");
}
delayed = true;
// Notify write_thread_ about the stall so it can setup a barrier and
// fail any pending writers with no_slowdown
write_thread_.BeginWriteStall();
TEST_SYNC_POINT("DBImpl::DelayWrite:Wait");
bg_cv_.Wait();
write_thread_.EndWriteStall();
}
}
assert(!delayed || !write_options.no_slowdown);
if (delayed) {
default_cf_internal_stats_->AddDBStats(
InternalStats::kIntStatsWriteStallMicros, time_delayed);
RecordTick(stats_, STALL_MICROS, time_delayed);
}
// If DB is not in read-only mode and write_controller is not stopping
// writes, we can ignore any background errors and allow the write to
// proceed
Status s;
if (write_controller_.IsStopped()) {
// If writes are still stopped, it means we bailed due to a background
// error
s = Status::Incomplete(error_handler_.GetBGError().ToString());
}
if (error_handler_.IsDBStopped()) {
s = error_handler_.GetBGError();
}
return s;
}
// REQUIRES: mutex_ is held
// REQUIRES: this thread is currently at the front of the writer queue
void DBImpl::WriteBufferManagerStallWrites() {
mutex_.AssertHeld();
// First block future writer threads who want to add themselves to the queue
// of WriteThread.
write_thread_.BeginWriteStall();
mutex_.Unlock();
// Change the state to State::Blocked.
static_cast<WBMStallInterface*>(wbm_stall_.get())
->SetState(WBMStallInterface::State::BLOCKED);
// Then WriteBufferManager will add DB instance to its queue
// and block this thread by calling WBMStallInterface::Block().
write_buffer_manager_->BeginWriteStall(wbm_stall_.get());
wbm_stall_->Block();
mutex_.Lock();
// Stall has ended. Signal writer threads so that they can add
// themselves to the WriteThread queue for writes.
write_thread_.EndWriteStall();
}
Status DBImpl::ThrottleLowPriWritesIfNeeded(const WriteOptions& write_options,
WriteBatch* my_batch) {
assert(write_options.low_pri);
// This is called outside the DB mutex. Although it is safe to make the call,
// the consistency condition is not guaranteed to hold. It's OK to live with
// it in this case.
// If we need to speed compaction, it means the compaction is left behind
// and we start to limit low pri writes to a limit.
if (write_controller_.NeedSpeedupCompaction()) {
if (allow_2pc() && (my_batch->HasCommit() || my_batch->HasRollback())) {
// For 2PC, we only rate limit prepare, not commit.
return Status::OK();
}
if (write_options.no_slowdown) {
return Status::Incomplete("Low priority write stall");
} else {
assert(my_batch != nullptr);
// Rate limit those writes. The reason that we don't completely wait
// is that in case the write is heavy, low pri writes may never have
// a chance to run. Now we guarantee we are still slowly making
// progress.
PERF_TIMER_GUARD(write_delay_time);
write_controller_.low_pri_rate_limiter()->Request(
my_batch->GetDataSize(), Env::IO_HIGH, nullptr /* stats */,
RateLimiter::OpType::kWrite);
}
}
return Status::OK();
}
void DBImpl::MaybeFlushStatsCF(autovector<ColumnFamilyData*>* cfds) {
assert(cfds != nullptr);
if (!cfds->empty() && immutable_db_options_.persist_stats_to_disk) {
ColumnFamilyData* cfd_stats =
versions_->GetColumnFamilySet()->GetColumnFamily(
kPersistentStatsColumnFamilyName);
if (cfd_stats != nullptr && !cfd_stats->mem()->IsEmpty()) {
for (ColumnFamilyData* cfd : *cfds) {
if (cfd == cfd_stats) {
// stats CF already included in cfds
return;
}
}
// force flush stats CF when its log number is less than all other CF's
// log numbers
bool force_flush_stats_cf = true;
for (auto* loop_cfd : *versions_->GetColumnFamilySet()) {
if (loop_cfd == cfd_stats) {
continue;
}
if (loop_cfd->GetLogNumber() <= cfd_stats->GetLogNumber()) {
force_flush_stats_cf = false;
}
}
if (force_flush_stats_cf) {
cfds->push_back(cfd_stats);
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"Force flushing stats CF with automated flush "
"to avoid holding old logs");
}
}
}
}
Status DBImpl::TrimMemtableHistory(WriteContext* context) {
autovector<ColumnFamilyData*> cfds;
ColumnFamilyData* tmp_cfd;
while ((tmp_cfd = trim_history_scheduler_.TakeNextColumnFamily()) !=
nullptr) {
cfds.push_back(tmp_cfd);
}
for (auto& cfd : cfds) {
autovector<MemTable*> to_delete;
bool trimmed = cfd->imm()->TrimHistory(&context->memtables_to_free_,
cfd->mem()->MemoryAllocatedBytes());
if (trimmed) {
context->superversion_context.NewSuperVersion();
assert(context->superversion_context.new_superversion.get() != nullptr);
cfd->InstallSuperVersion(&context->superversion_context, &mutex_);
}
if (cfd->UnrefAndTryDelete()) {
cfd = nullptr;
}
}
return Status::OK();
}
Status DBImpl::ScheduleFlushes(WriteContext* context) {
autovector<ColumnFamilyData*> cfds;
if (immutable_db_options_.atomic_flush) {
SelectColumnFamiliesForAtomicFlush(&cfds);
for (auto cfd : cfds) {
cfd->Ref();
}
flush_scheduler_.Clear();
} else {
ColumnFamilyData* tmp_cfd;
while ((tmp_cfd = flush_scheduler_.TakeNextColumnFamily()) != nullptr) {
cfds.push_back(tmp_cfd);
}
MaybeFlushStatsCF(&cfds);
}
Status status;
WriteThread::Writer nonmem_w;
if (two_write_queues_) {
nonmem_write_thread_.EnterUnbatched(&nonmem_w, &mutex_);
}
for (auto& cfd : cfds) {
if (!cfd->mem()->IsEmpty()) {
status = SwitchMemtable(cfd, context);
}
if (cfd->UnrefAndTryDelete()) {
cfd = nullptr;
}
if (!status.ok()) {
break;
}
}
if (two_write_queues_) {
nonmem_write_thread_.ExitUnbatched(&nonmem_w);
}
if (status.ok()) {
if (immutable_db_options_.atomic_flush) {
AssignAtomicFlushSeq(cfds);
FlushRequest flush_req;
GenerateFlushRequest(cfds, &flush_req);
SchedulePendingFlush(flush_req, FlushReason::kWriteBufferFull);
} else {
for (auto* cfd : cfds) {
FlushRequest flush_req;
GenerateFlushRequest({cfd}, &flush_req);
SchedulePendingFlush(flush_req, FlushReason::kWriteBufferFull);
}
}
MaybeScheduleFlushOrCompaction();
}
return status;
}
#ifndef ROCKSDB_LITE
void DBImpl::NotifyOnMemTableSealed(ColumnFamilyData* /*cfd*/,
const MemTableInfo& mem_table_info) {
if (immutable_db_options_.listeners.size() == 0U) {
return;
}
if (shutting_down_.load(std::memory_order_acquire)) {
return;
}
for (auto listener : immutable_db_options_.listeners) {
listener->OnMemTableSealed(mem_table_info);
}
}
#endif // ROCKSDB_LITE
// REQUIRES: mutex_ is held
// REQUIRES: this thread is currently at the front of the writer queue
// REQUIRES: this thread is currently at the front of the 2nd writer queue if
// two_write_queues_ is true (This is to simplify the reasoning.)
Status DBImpl::SwitchMemtable(ColumnFamilyData* cfd, WriteContext* context) {
mutex_.AssertHeld();
log::Writer* new_log = nullptr;
MemTable* new_mem = nullptr;
IOStatus io_s;
// Recoverable state is persisted in WAL. After memtable switch, WAL might
// be deleted, so we write the state to memtable to be persisted as well.
Status s = WriteRecoverableState();
if (!s.ok()) {
return s;
}
// Attempt to switch to a new memtable and trigger flush of old.
// Do this without holding the dbmutex lock.
assert(versions_->prev_log_number() == 0);
if (two_write_queues_) {
log_write_mutex_.Lock();
}
bool creating_new_log = !log_empty_;
if (two_write_queues_) {
log_write_mutex_.Unlock();
}
uint64_t recycle_log_number = 0;
if (creating_new_log && immutable_db_options_.recycle_log_file_num &&
!log_recycle_files_.empty()) {
recycle_log_number = log_recycle_files_.front();
}
uint64_t new_log_number =
creating_new_log ? versions_->NewFileNumber() : logfile_number_;
const MutableCFOptions mutable_cf_options = *cfd->GetLatestMutableCFOptions();
// Set memtable_info for memtable sealed callback
#ifndef ROCKSDB_LITE
MemTableInfo memtable_info;
memtable_info.cf_name = cfd->GetName();
memtable_info.first_seqno = cfd->mem()->GetFirstSequenceNumber();
memtable_info.earliest_seqno = cfd->mem()->GetEarliestSequenceNumber();
memtable_info.num_entries = cfd->mem()->num_entries();
memtable_info.num_deletes = cfd->mem()->num_deletes();
#endif // ROCKSDB_LITE
// Log this later after lock release. It may be outdated, e.g., if background
// flush happens before logging, but that should be ok.
int num_imm_unflushed = cfd->imm()->NumNotFlushed();
const auto preallocate_block_size =
GetWalPreallocateBlockSize(mutable_cf_options.write_buffer_size);
mutex_.Unlock();
if (creating_new_log) {
// TODO: Write buffer size passed in should be max of all CF's instead
// of mutable_cf_options.write_buffer_size.
io_s = CreateWAL(new_log_number, recycle_log_number, preallocate_block_size,
&new_log);
if (s.ok()) {
s = io_s;
}
}
if (s.ok()) {
SequenceNumber seq = versions_->LastSequence();
new_mem = cfd->ConstructNewMemtable(mutable_cf_options, seq);
context->superversion_context.NewSuperVersion();
}
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"[%s] New memtable created with log file: #%" PRIu64
". Immutable memtables: %d.\n",
cfd->GetName().c_str(), new_log_number, num_imm_unflushed);
mutex_.Lock();
if (recycle_log_number != 0) {
// Since renaming the file is done outside DB mutex, we need to ensure
// concurrent full purges don't delete the file while we're recycling it.
// To achieve that we hold the old log number in the recyclable list until
// after it has been renamed.
assert(log_recycle_files_.front() == recycle_log_number);
log_recycle_files_.pop_front();
}
if (s.ok() && creating_new_log) {
log_write_mutex_.Lock();
assert(new_log != nullptr);
if (!logs_.empty()) {
// Alway flush the buffer of the last log before switching to a new one
log::Writer* cur_log_writer = logs_.back().writer;
io_s = cur_log_writer->WriteBuffer();
if (s.ok()) {
s = io_s;
}
if (!s.ok()) {
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"[%s] Failed to switch from #%" PRIu64 " to #%" PRIu64
" WAL file\n",
cfd->GetName().c_str(), cur_log_writer->get_log_number(),
new_log_number);
}
}
if (s.ok()) {
logfile_number_ = new_log_number;
log_empty_ = true;
log_dir_synced_ = false;
logs_.emplace_back(logfile_number_, new_log);
alive_log_files_.push_back(LogFileNumberSize(logfile_number_));
}
log_write_mutex_.Unlock();
}
if (!s.ok()) {
// how do we fail if we're not creating new log?
assert(creating_new_log);
delete new_mem;
delete new_log;
context->superversion_context.new_superversion.reset();
// We may have lost data from the WritableFileBuffer in-memory buffer for
// the current log, so treat it as a fatal error and set bg_error
if (!io_s.ok()) {
error_handler_.SetBGError(io_s, BackgroundErrorReason::kMemTable);
} else {
error_handler_.SetBGError(s, BackgroundErrorReason::kMemTable);
}
// Read back bg_error in order to get the right severity
s = error_handler_.GetBGError();
return s;
}
bool empty_cf_updated = false;
if (immutable_db_options_.track_and_verify_wals_in_manifest &&
!immutable_db_options_.allow_2pc && creating_new_log) {
// In non-2pc mode, WALs become obsolete if they do not contain unflushed
// data. Updating the empty CF's log number might cause some WALs to become
// obsolete. So we should track the WAL obsoletion event before actually
// updating the empty CF's log number.
uint64_t min_wal_number_to_keep =
versions_->PreComputeMinLogNumberWithUnflushedData(logfile_number_);
if (min_wal_number_to_keep >
versions_->GetWalSet().GetMinWalNumberToKeep()) {
// Get a snapshot of the empty column families.
// LogAndApply may release and reacquire db
// mutex, during that period, column family may become empty (e.g. its
// flush succeeds), then it affects the computed min_log_number_to_keep,
// so we take a snapshot for consistency of column family data
// status. If a column family becomes non-empty afterwards, its active log
// should still be the created new log, so the min_log_number_to_keep is
// not affected.
autovector<ColumnFamilyData*> empty_cfs;
for (auto cf : *versions_->GetColumnFamilySet()) {
if (cf->IsEmpty()) {
empty_cfs.push_back(cf);
}
}
VersionEdit wal_deletion;
wal_deletion.DeleteWalsBefore(min_wal_number_to_keep);
s = versions_->LogAndApplyToDefaultColumnFamily(&wal_deletion, &mutex_);
if (!s.ok() && versions_->io_status().IsIOError()) {
s = error_handler_.SetBGError(versions_->io_status(),
BackgroundErrorReason::kManifestWrite);
}
if (!s.ok()) {
return s;
}
for (auto cf : empty_cfs) {
if (cf->IsEmpty()) {
cf->SetLogNumber(logfile_number_);
// MEMPURGE: No need to change this, because new adds
// should still receive new sequence numbers.
cf->mem()->SetCreationSeq(versions_->LastSequence());
} // cf may become non-empty.
}
empty_cf_updated = true;
}
}
if (!empty_cf_updated) {
for (auto cf : *versions_->GetColumnFamilySet()) {
// all this is just optimization to delete logs that
// are no longer needed -- if CF is empty, that means it
// doesn't need that particular log to stay alive, so we just
// advance the log number. no need to persist this in the manifest
if (cf->IsEmpty()) {
if (creating_new_log) {
cf->SetLogNumber(logfile_number_);
}
cf->mem()->SetCreationSeq(versions_->LastSequence());
}
}
}
cfd->mem()->SetNextLogNumber(logfile_number_);
assert(new_mem != nullptr);
cfd->imm()->Add(cfd->mem(), &context->memtables_to_free_);
new_mem->Ref();
cfd->SetMemtable(new_mem);
InstallSuperVersionAndScheduleWork(cfd, &context->superversion_context,
mutable_cf_options);
#ifndef ROCKSDB_LITE
mutex_.Unlock();
// Notify client that memtable is sealed, now that we have successfully
// installed a new memtable
NotifyOnMemTableSealed(cfd, memtable_info);
mutex_.Lock();
#endif // ROCKSDB_LITE
// It is possible that we got here without checking the value of i_os, but
// that is okay. If we did, it most likely means that s was already an error.
// In any case, ignore any unchecked error for i_os here.
io_s.PermitUncheckedError();
return s;
}
size_t DBImpl::GetWalPreallocateBlockSize(uint64_t write_buffer_size) const {
mutex_.AssertHeld();
size_t bsize =
static_cast<size_t>(write_buffer_size / 10 + write_buffer_size);
// Some users might set very high write_buffer_size and rely on
// max_total_wal_size or other parameters to control the WAL size.
if (mutable_db_options_.max_total_wal_size > 0) {
bsize = std::min<size_t>(
bsize, static_cast<size_t>(mutable_db_options_.max_total_wal_size));
}
if (immutable_db_options_.db_write_buffer_size > 0) {
bsize = std::min<size_t>(bsize, immutable_db_options_.db_write_buffer_size);
}
if (immutable_db_options_.write_buffer_manager &&
immutable_db_options_.write_buffer_manager->enabled()) {
bsize = std::min<size_t>(
bsize, immutable_db_options_.write_buffer_manager->buffer_size());
}
return bsize;
}
// Default implementations of convenience methods that subclasses of DB
// can call if they wish
Status DB::Put(const WriteOptions& opt, ColumnFamilyHandle* column_family,
const Slice& key, const Slice& value) {
// Pre-allocate size of write batch conservatively.
// 8 bytes are taken by header, 4 bytes for count, 1 byte for type,
// and we allocate 11 extra bytes for key length, as well as value length.
WriteBatch batch(key.size() + value.size() + 24);
Status s = batch.Put(column_family, key, value);
if (!s.ok()) {
return s;
}
return Write(opt, &batch);
}
Status DB::Put(const WriteOptions& opt, ColumnFamilyHandle* column_family,
const Slice& key, const Slice& ts, const Slice& value) {
ColumnFamilyHandle* default_cf = DefaultColumnFamily();
assert(default_cf);
const Comparator* const default_cf_ucmp = default_cf->GetComparator();
assert(default_cf_ucmp);
WriteBatch batch(0, 0, 0, default_cf_ucmp->timestamp_size());
Status s = batch.Put(column_family, key, ts, value);
if (!s.ok()) {
return s;
}
return Write(opt, &batch);
}
Status DB::Delete(const WriteOptions& opt, ColumnFamilyHandle* column_family,
const Slice& key) {
WriteBatch batch;
Status s = batch.Delete(column_family, key);
if (!s.ok()) {
return s;
}
return Write(opt, &batch);
}
Status DB::Delete(const WriteOptions& opt, ColumnFamilyHandle* column_family,
const Slice& key, const Slice& ts) {
ColumnFamilyHandle* default_cf = DefaultColumnFamily();
assert(default_cf);
const Comparator* const default_cf_ucmp = default_cf->GetComparator();
assert(default_cf_ucmp);
WriteBatch batch(0, 0, 0, default_cf_ucmp->timestamp_size());
Status s = batch.Delete(column_family, key, ts);
if (!s.ok()) {
return s;
}
return Write(opt, &batch);
}
Status DB::SingleDelete(const WriteOptions& opt,
ColumnFamilyHandle* column_family, const Slice& key) {
WriteBatch batch;
Status s = batch.SingleDelete(column_family, key);
if (!s.ok()) {
return s;
}
return Write(opt, &batch);
}
Status DB::SingleDelete(const WriteOptions& opt,
ColumnFamilyHandle* column_family, const Slice& key,
const Slice& ts) {
ColumnFamilyHandle* default_cf = DefaultColumnFamily();
assert(default_cf);
const Comparator* const default_cf_ucmp = default_cf->GetComparator();
assert(default_cf_ucmp);
WriteBatch batch(0, 0, 0, default_cf_ucmp->timestamp_size());
Status s = batch.SingleDelete(column_family, key, ts);
if (!s.ok()) {
return s;
}
return Write(opt, &batch);
}
Status DB::DeleteRange(const WriteOptions& opt,
ColumnFamilyHandle* column_family,
const Slice& begin_key, const Slice& end_key) {
WriteBatch batch;
Status s = batch.DeleteRange(column_family, begin_key, end_key);
if (!s.ok()) {
return s;
}
return Write(opt, &batch);
}
Status DB::Merge(const WriteOptions& opt, ColumnFamilyHandle* column_family,
const Slice& key, const Slice& value) {
WriteBatch batch;
Status s = batch.Merge(column_family, key, value);
if (!s.ok()) {
return s;
}
return Write(opt, &batch);
}
} // namespace ROCKSDB_NAMESPACE