rocksdb/memtable/memtablerep_bench.cc
Siying Dong 95b0e89b5d Improve write buffer manager (and allow the size to be tracked in block cache)
Summary:
Improve write buffer manager in several ways:
1. Size is tracked when arena block is allocated, rather than every allocation, so that it can better track actual memory usage and the tracking overhead is slightly lower.
2. We start to trigger memtable flush when 7/8 of the memory cap hits, instead of 100%, and make 100% much harder to hit.
3. Allow a cache object to be passed into buffer manager and the size allocated by memtable can be costed there. This can help users have one single memory cap across block cache and memtable.
Closes https://github.com/facebook/rocksdb/pull/2350

Differential Revision: D5110648

Pulled By: siying

fbshipit-source-id: b4238113094bf22574001e446b5d88523ba00017
2017-06-02 14:26:56 -07:00

701 lines
24 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
// This source code is also licensed under the GPLv2 license found in the
// COPYING file in the root directory of this source tree.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#ifndef GFLAGS
#include <cstdio>
int main() {
fprintf(stderr, "Please install gflags to run rocksdb tools\n");
return 1;
}
#else
#include <gflags/gflags.h>
#include <atomic>
#include <iostream>
#include <memory>
#include <thread>
#include <type_traits>
#include <vector>
#include "db/dbformat.h"
#include "db/memtable.h"
#include "port/port.h"
#include "port/stack_trace.h"
#include "rocksdb/comparator.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/options.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/write_buffer_manager.h"
#include "util/arena.h"
#include "util/mutexlock.h"
#include "util/stop_watch.h"
#include "util/testutil.h"
using GFLAGS::ParseCommandLineFlags;
using GFLAGS::RegisterFlagValidator;
using GFLAGS::SetUsageMessage;
DEFINE_string(benchmarks, "fillrandom",
"Comma-separated list of benchmarks to run. Options:\n"
"\tfillrandom -- write N random values\n"
"\tfillseq -- write N values in sequential order\n"
"\treadrandom -- read N values in random order\n"
"\treadseq -- scan the DB\n"
"\treadwrite -- 1 thread writes while N - 1 threads "
"do random\n"
"\t reads\n"
"\tseqreadwrite -- 1 thread writes while N - 1 threads "
"do scans\n");
DEFINE_string(memtablerep, "skiplist",
"Which implementation of memtablerep to use. See "
"include/memtablerep.h for\n"
" more details. Options:\n"
"\tskiplist -- backed by a skiplist\n"
"\tvector -- backed by an std::vector\n"
"\thashskiplist -- backed by a hash skip list\n"
"\thashlinklist -- backed by a hash linked list\n"
"\tcuckoo -- backed by a cuckoo hash table");
DEFINE_int64(bucket_count, 1000000,
"bucket_count parameter to pass into NewHashSkiplistRepFactory or "
"NewHashLinkListRepFactory");
DEFINE_int32(
hashskiplist_height, 4,
"skiplist_height parameter to pass into NewHashSkiplistRepFactory");
DEFINE_int32(
hashskiplist_branching_factor, 4,
"branching_factor parameter to pass into NewHashSkiplistRepFactory");
DEFINE_int32(
huge_page_tlb_size, 0,
"huge_page_tlb_size parameter to pass into NewHashLinkListRepFactory");
DEFINE_int32(bucket_entries_logging_threshold, 4096,
"bucket_entries_logging_threshold parameter to pass into "
"NewHashLinkListRepFactory");
DEFINE_bool(if_log_bucket_dist_when_flash, true,
"if_log_bucket_dist_when_flash parameter to pass into "
"NewHashLinkListRepFactory");
DEFINE_int32(
threshold_use_skiplist, 256,
"threshold_use_skiplist parameter to pass into NewHashLinkListRepFactory");
DEFINE_int64(
write_buffer_size, 256,
"write_buffer_size parameter to pass into NewHashCuckooRepFactory");
DEFINE_int64(
average_data_size, 64,
"average_data_size parameter to pass into NewHashCuckooRepFactory");
DEFINE_int64(
hash_function_count, 4,
"hash_function_count parameter to pass into NewHashCuckooRepFactory");
DEFINE_int32(
num_threads, 1,
"Number of concurrent threads to run. If the benchmark includes writes,\n"
"then at most one thread will be a writer");
DEFINE_int32(num_operations, 1000000,
"Number of operations to do for write and random read benchmarks");
DEFINE_int32(num_scans, 10,
"Number of times for each thread to scan the memtablerep for "
"sequential read "
"benchmarks");
DEFINE_int32(item_size, 100, "Number of bytes each item should be");
DEFINE_int32(prefix_length, 8,
"Prefix length to pass into NewFixedPrefixTransform");
/* VectorRep settings */
DEFINE_int64(vectorrep_count, 0,
"Number of entries to reserve on VectorRep initialization");
DEFINE_int64(seed, 0,
"Seed base for random number generators. "
"When 0 it is deterministic.");
namespace rocksdb {
namespace {
struct CallbackVerifyArgs {
bool found;
LookupKey* key;
MemTableRep* table;
InternalKeyComparator* comparator;
};
} // namespace
// Helper for quickly generating random data.
class RandomGenerator {
private:
std::string data_;
unsigned int pos_;
public:
RandomGenerator() {
Random rnd(301);
auto size = (unsigned)std::max(1048576, FLAGS_item_size);
test::RandomString(&rnd, size, &data_);
pos_ = 0;
}
Slice Generate(unsigned int len) {
assert(len <= data_.size());
if (pos_ + len > data_.size()) {
pos_ = 0;
}
pos_ += len;
return Slice(data_.data() + pos_ - len, len);
}
};
enum WriteMode { SEQUENTIAL, RANDOM, UNIQUE_RANDOM };
class KeyGenerator {
public:
KeyGenerator(Random64* rand, WriteMode mode, uint64_t num)
: rand_(rand), mode_(mode), num_(num), next_(0) {
if (mode_ == UNIQUE_RANDOM) {
// NOTE: if memory consumption of this approach becomes a concern,
// we can either break it into pieces and only random shuffle a section
// each time. Alternatively, use a bit map implementation
// (https://reviews.facebook.net/differential/diff/54627/)
values_.resize(num_);
for (uint64_t i = 0; i < num_; ++i) {
values_[i] = i;
}
std::shuffle(
values_.begin(), values_.end(),
std::default_random_engine(static_cast<unsigned int>(FLAGS_seed)));
}
}
uint64_t Next() {
switch (mode_) {
case SEQUENTIAL:
return next_++;
case RANDOM:
return rand_->Next() % num_;
case UNIQUE_RANDOM:
return values_[next_++];
}
assert(false);
return std::numeric_limits<uint64_t>::max();
}
private:
Random64* rand_;
WriteMode mode_;
const uint64_t num_;
uint64_t next_;
std::vector<uint64_t> values_;
};
class BenchmarkThread {
public:
explicit BenchmarkThread(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* bytes_written, uint64_t* bytes_read,
uint64_t* sequence, uint64_t num_ops,
uint64_t* read_hits)
: table_(table),
key_gen_(key_gen),
bytes_written_(bytes_written),
bytes_read_(bytes_read),
sequence_(sequence),
num_ops_(num_ops),
read_hits_(read_hits) {}
virtual void operator()() = 0;
virtual ~BenchmarkThread() {}
protected:
MemTableRep* table_;
KeyGenerator* key_gen_;
uint64_t* bytes_written_;
uint64_t* bytes_read_;
uint64_t* sequence_;
uint64_t num_ops_;
uint64_t* read_hits_;
RandomGenerator generator_;
};
class FillBenchmarkThread : public BenchmarkThread {
public:
FillBenchmarkThread(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* bytes_written, uint64_t* bytes_read,
uint64_t* sequence, uint64_t num_ops, uint64_t* read_hits)
: BenchmarkThread(table, key_gen, bytes_written, bytes_read, sequence,
num_ops, read_hits) {}
void FillOne() {
char* buf = nullptr;
auto internal_key_size = 16;
auto encoded_len =
FLAGS_item_size + VarintLength(internal_key_size) + internal_key_size;
KeyHandle handle = table_->Allocate(encoded_len, &buf);
assert(buf != nullptr);
char* p = EncodeVarint32(buf, internal_key_size);
auto key = key_gen_->Next();
EncodeFixed64(p, key);
p += 8;
EncodeFixed64(p, ++(*sequence_));
p += 8;
Slice bytes = generator_.Generate(FLAGS_item_size);
memcpy(p, bytes.data(), FLAGS_item_size);
p += FLAGS_item_size;
assert(p == buf + encoded_len);
table_->Insert(handle);
*bytes_written_ += encoded_len;
}
void operator()() override {
for (unsigned int i = 0; i < num_ops_; ++i) {
FillOne();
}
}
};
class ConcurrentFillBenchmarkThread : public FillBenchmarkThread {
public:
ConcurrentFillBenchmarkThread(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* bytes_written, uint64_t* bytes_read,
uint64_t* sequence, uint64_t num_ops,
uint64_t* read_hits,
std::atomic_int* threads_done)
: FillBenchmarkThread(table, key_gen, bytes_written, bytes_read, sequence,
num_ops, read_hits) {
threads_done_ = threads_done;
}
void operator()() override {
// # of read threads will be total threads - write threads (always 1). Loop
// while all reads complete.
while ((*threads_done_).load() < (FLAGS_num_threads - 1)) {
FillOne();
}
}
private:
std::atomic_int* threads_done_;
};
class ReadBenchmarkThread : public BenchmarkThread {
public:
ReadBenchmarkThread(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* bytes_written, uint64_t* bytes_read,
uint64_t* sequence, uint64_t num_ops, uint64_t* read_hits)
: BenchmarkThread(table, key_gen, bytes_written, bytes_read, sequence,
num_ops, read_hits) {}
static bool callback(void* arg, const char* entry) {
CallbackVerifyArgs* callback_args = static_cast<CallbackVerifyArgs*>(arg);
assert(callback_args != nullptr);
uint32_t key_length;
const char* key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length);
if ((callback_args->comparator)
->user_comparator()
->Equal(Slice(key_ptr, key_length - 8),
callback_args->key->user_key())) {
callback_args->found = true;
}
return false;
}
void ReadOne() {
std::string user_key;
auto key = key_gen_->Next();
PutFixed64(&user_key, key);
LookupKey lookup_key(user_key, *sequence_);
InternalKeyComparator internal_key_comp(BytewiseComparator());
CallbackVerifyArgs verify_args;
verify_args.found = false;
verify_args.key = &lookup_key;
verify_args.table = table_;
verify_args.comparator = &internal_key_comp;
table_->Get(lookup_key, &verify_args, callback);
if (verify_args.found) {
*bytes_read_ += VarintLength(16) + 16 + FLAGS_item_size;
++*read_hits_;
}
}
void operator()() override {
for (unsigned int i = 0; i < num_ops_; ++i) {
ReadOne();
}
}
};
class SeqReadBenchmarkThread : public BenchmarkThread {
public:
SeqReadBenchmarkThread(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* bytes_written, uint64_t* bytes_read,
uint64_t* sequence, uint64_t num_ops,
uint64_t* read_hits)
: BenchmarkThread(table, key_gen, bytes_written, bytes_read, sequence,
num_ops, read_hits) {}
void ReadOneSeq() {
std::unique_ptr<MemTableRep::Iterator> iter(table_->GetIterator());
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
// pretend to read the value
*bytes_read_ += VarintLength(16) + 16 + FLAGS_item_size;
}
++*read_hits_;
}
void operator()() override {
for (unsigned int i = 0; i < num_ops_; ++i) {
{ ReadOneSeq(); }
}
}
};
class ConcurrentReadBenchmarkThread : public ReadBenchmarkThread {
public:
ConcurrentReadBenchmarkThread(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* bytes_written, uint64_t* bytes_read,
uint64_t* sequence, uint64_t num_ops,
uint64_t* read_hits,
std::atomic_int* threads_done)
: ReadBenchmarkThread(table, key_gen, bytes_written, bytes_read, sequence,
num_ops, read_hits) {
threads_done_ = threads_done;
}
void operator()() override {
for (unsigned int i = 0; i < num_ops_; ++i) {
ReadOne();
}
++*threads_done_;
}
private:
std::atomic_int* threads_done_;
};
class SeqConcurrentReadBenchmarkThread : public SeqReadBenchmarkThread {
public:
SeqConcurrentReadBenchmarkThread(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* bytes_written,
uint64_t* bytes_read, uint64_t* sequence,
uint64_t num_ops, uint64_t* read_hits,
std::atomic_int* threads_done)
: SeqReadBenchmarkThread(table, key_gen, bytes_written, bytes_read,
sequence, num_ops, read_hits) {
threads_done_ = threads_done;
}
void operator()() override {
for (unsigned int i = 0; i < num_ops_; ++i) {
ReadOneSeq();
}
++*threads_done_;
}
private:
std::atomic_int* threads_done_;
};
class Benchmark {
public:
explicit Benchmark(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* sequence, uint32_t num_threads)
: table_(table),
key_gen_(key_gen),
sequence_(sequence),
num_threads_(num_threads) {}
virtual ~Benchmark() {}
virtual void Run() {
std::cout << "Number of threads: " << num_threads_ << std::endl;
std::vector<port::Thread> threads;
uint64_t bytes_written = 0;
uint64_t bytes_read = 0;
uint64_t read_hits = 0;
StopWatchNano timer(Env::Default(), true);
RunThreads(&threads, &bytes_written, &bytes_read, true, &read_hits);
auto elapsed_time = static_cast<double>(timer.ElapsedNanos() / 1000);
std::cout << "Elapsed time: " << static_cast<int>(elapsed_time) << " us"
<< std::endl;
if (bytes_written > 0) {
auto MiB_written = static_cast<double>(bytes_written) / (1 << 20);
auto write_throughput = MiB_written / (elapsed_time / 1000000);
std::cout << "Total bytes written: " << MiB_written << " MiB"
<< std::endl;
std::cout << "Write throughput: " << write_throughput << " MiB/s"
<< std::endl;
auto us_per_op = elapsed_time / num_write_ops_per_thread_;
std::cout << "write us/op: " << us_per_op << std::endl;
}
if (bytes_read > 0) {
auto MiB_read = static_cast<double>(bytes_read) / (1 << 20);
auto read_throughput = MiB_read / (elapsed_time / 1000000);
std::cout << "Total bytes read: " << MiB_read << " MiB" << std::endl;
std::cout << "Read throughput: " << read_throughput << " MiB/s"
<< std::endl;
auto us_per_op = elapsed_time / num_read_ops_per_thread_;
std::cout << "read us/op: " << us_per_op << std::endl;
}
}
virtual void RunThreads(std::vector<port::Thread>* threads,
uint64_t* bytes_written, uint64_t* bytes_read,
bool write, uint64_t* read_hits) = 0;
protected:
MemTableRep* table_;
KeyGenerator* key_gen_;
uint64_t* sequence_;
uint64_t num_write_ops_per_thread_;
uint64_t num_read_ops_per_thread_;
const uint32_t num_threads_;
};
class FillBenchmark : public Benchmark {
public:
explicit FillBenchmark(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* sequence)
: Benchmark(table, key_gen, sequence, 1) {
num_write_ops_per_thread_ = FLAGS_num_operations;
}
void RunThreads(std::vector<port::Thread>* threads, uint64_t* bytes_written,
uint64_t* bytes_read, bool write,
uint64_t* read_hits) override {
FillBenchmarkThread(table_, key_gen_, bytes_written, bytes_read, sequence_,
num_write_ops_per_thread_, read_hits)();
}
};
class ReadBenchmark : public Benchmark {
public:
explicit ReadBenchmark(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* sequence)
: Benchmark(table, key_gen, sequence, FLAGS_num_threads) {
num_read_ops_per_thread_ = FLAGS_num_operations / FLAGS_num_threads;
}
void RunThreads(std::vector<port::Thread>* threads, uint64_t* bytes_written,
uint64_t* bytes_read, bool write,
uint64_t* read_hits) override {
for (int i = 0; i < FLAGS_num_threads; ++i) {
threads->emplace_back(
ReadBenchmarkThread(table_, key_gen_, bytes_written, bytes_read,
sequence_, num_read_ops_per_thread_, read_hits));
}
for (auto& thread : *threads) {
thread.join();
}
std::cout << "read hit%: "
<< (static_cast<double>(*read_hits) / FLAGS_num_operations) * 100
<< std::endl;
}
};
class SeqReadBenchmark : public Benchmark {
public:
explicit SeqReadBenchmark(MemTableRep* table, uint64_t* sequence)
: Benchmark(table, nullptr, sequence, FLAGS_num_threads) {
num_read_ops_per_thread_ = FLAGS_num_scans;
}
void RunThreads(std::vector<port::Thread>* threads, uint64_t* bytes_written,
uint64_t* bytes_read, bool write,
uint64_t* read_hits) override {
for (int i = 0; i < FLAGS_num_threads; ++i) {
threads->emplace_back(SeqReadBenchmarkThread(
table_, key_gen_, bytes_written, bytes_read, sequence_,
num_read_ops_per_thread_, read_hits));
}
for (auto& thread : *threads) {
thread.join();
}
}
};
template <class ReadThreadType>
class ReadWriteBenchmark : public Benchmark {
public:
explicit ReadWriteBenchmark(MemTableRep* table, KeyGenerator* key_gen,
uint64_t* sequence)
: Benchmark(table, key_gen, sequence, FLAGS_num_threads) {
num_read_ops_per_thread_ =
FLAGS_num_threads <= 1
? 0
: (FLAGS_num_operations / (FLAGS_num_threads - 1));
num_write_ops_per_thread_ = FLAGS_num_operations;
}
void RunThreads(std::vector<port::Thread>* threads, uint64_t* bytes_written,
uint64_t* bytes_read, bool write,
uint64_t* read_hits) override {
std::atomic_int threads_done;
threads_done.store(0);
threads->emplace_back(ConcurrentFillBenchmarkThread(
table_, key_gen_, bytes_written, bytes_read, sequence_,
num_write_ops_per_thread_, read_hits, &threads_done));
for (int i = 1; i < FLAGS_num_threads; ++i) {
threads->emplace_back(
ReadThreadType(table_, key_gen_, bytes_written, bytes_read, sequence_,
num_read_ops_per_thread_, read_hits, &threads_done));
}
for (auto& thread : *threads) {
thread.join();
}
}
};
} // namespace rocksdb
void PrintWarnings() {
#if defined(__GNUC__) && !defined(__OPTIMIZE__)
fprintf(stdout,
"WARNING: Optimization is disabled: benchmarks unnecessarily slow\n");
#endif
#ifndef NDEBUG
fprintf(stdout,
"WARNING: Assertions are enabled; benchmarks unnecessarily slow\n");
#endif
}
int main(int argc, char** argv) {
rocksdb::port::InstallStackTraceHandler();
SetUsageMessage(std::string("\nUSAGE:\n") + std::string(argv[0]) +
" [OPTIONS]...");
ParseCommandLineFlags(&argc, &argv, true);
PrintWarnings();
rocksdb::Options options;
std::unique_ptr<rocksdb::MemTableRepFactory> factory;
if (FLAGS_memtablerep == "skiplist") {
factory.reset(new rocksdb::SkipListFactory);
#ifndef ROCKSDB_LITE
} else if (FLAGS_memtablerep == "vector") {
factory.reset(new rocksdb::VectorRepFactory);
} else if (FLAGS_memtablerep == "hashskiplist") {
factory.reset(rocksdb::NewHashSkipListRepFactory(
FLAGS_bucket_count, FLAGS_hashskiplist_height,
FLAGS_hashskiplist_branching_factor));
options.prefix_extractor.reset(
rocksdb::NewFixedPrefixTransform(FLAGS_prefix_length));
} else if (FLAGS_memtablerep == "hashlinklist") {
factory.reset(rocksdb::NewHashLinkListRepFactory(
FLAGS_bucket_count, FLAGS_huge_page_tlb_size,
FLAGS_bucket_entries_logging_threshold,
FLAGS_if_log_bucket_dist_when_flash, FLAGS_threshold_use_skiplist));
options.prefix_extractor.reset(
rocksdb::NewFixedPrefixTransform(FLAGS_prefix_length));
} else if (FLAGS_memtablerep == "cuckoo") {
factory.reset(rocksdb::NewHashCuckooRepFactory(
FLAGS_write_buffer_size, FLAGS_average_data_size,
static_cast<uint32_t>(FLAGS_hash_function_count)));
options.prefix_extractor.reset(
rocksdb::NewFixedPrefixTransform(FLAGS_prefix_length));
#endif // ROCKSDB_LITE
} else {
fprintf(stdout, "Unknown memtablerep: %s\n", FLAGS_memtablerep.c_str());
exit(1);
}
rocksdb::InternalKeyComparator internal_key_comp(
rocksdb::BytewiseComparator());
rocksdb::MemTable::KeyComparator key_comp(internal_key_comp);
rocksdb::Arena arena;
rocksdb::WriteBufferManager wb(FLAGS_write_buffer_size);
uint64_t sequence;
auto createMemtableRep = [&] {
sequence = 0;
return factory->CreateMemTableRep(key_comp, &arena,
options.prefix_extractor.get(),
options.info_log.get());
};
std::unique_ptr<rocksdb::MemTableRep> memtablerep;
rocksdb::Random64 rng(FLAGS_seed);
const char* benchmarks = FLAGS_benchmarks.c_str();
while (benchmarks != nullptr) {
std::unique_ptr<rocksdb::KeyGenerator> key_gen;
const char* sep = strchr(benchmarks, ',');
rocksdb::Slice name;
if (sep == nullptr) {
name = benchmarks;
benchmarks = nullptr;
} else {
name = rocksdb::Slice(benchmarks, sep - benchmarks);
benchmarks = sep + 1;
}
std::unique_ptr<rocksdb::Benchmark> benchmark;
if (name == rocksdb::Slice("fillseq")) {
memtablerep.reset(createMemtableRep());
key_gen.reset(new rocksdb::KeyGenerator(&rng, rocksdb::SEQUENTIAL,
FLAGS_num_operations));
benchmark.reset(new rocksdb::FillBenchmark(memtablerep.get(),
key_gen.get(), &sequence));
} else if (name == rocksdb::Slice("fillrandom")) {
memtablerep.reset(createMemtableRep());
key_gen.reset(new rocksdb::KeyGenerator(&rng, rocksdb::UNIQUE_RANDOM,
FLAGS_num_operations));
benchmark.reset(new rocksdb::FillBenchmark(memtablerep.get(),
key_gen.get(), &sequence));
} else if (name == rocksdb::Slice("readrandom")) {
key_gen.reset(new rocksdb::KeyGenerator(&rng, rocksdb::RANDOM,
FLAGS_num_operations));
benchmark.reset(new rocksdb::ReadBenchmark(memtablerep.get(),
key_gen.get(), &sequence));
} else if (name == rocksdb::Slice("readseq")) {
key_gen.reset(new rocksdb::KeyGenerator(&rng, rocksdb::SEQUENTIAL,
FLAGS_num_operations));
benchmark.reset(
new rocksdb::SeqReadBenchmark(memtablerep.get(), &sequence));
} else if (name == rocksdb::Slice("readwrite")) {
memtablerep.reset(createMemtableRep());
key_gen.reset(new rocksdb::KeyGenerator(&rng, rocksdb::RANDOM,
FLAGS_num_operations));
benchmark.reset(new rocksdb::ReadWriteBenchmark<
rocksdb::ConcurrentReadBenchmarkThread>(memtablerep.get(),
key_gen.get(), &sequence));
} else if (name == rocksdb::Slice("seqreadwrite")) {
memtablerep.reset(createMemtableRep());
key_gen.reset(new rocksdb::KeyGenerator(&rng, rocksdb::RANDOM,
FLAGS_num_operations));
benchmark.reset(new rocksdb::ReadWriteBenchmark<
rocksdb::SeqConcurrentReadBenchmarkThread>(memtablerep.get(),
key_gen.get(), &sequence));
} else {
std::cout << "WARNING: skipping unknown benchmark '" << name.ToString()
<< std::endl;
continue;
}
std::cout << "Running " << name.ToString() << std::endl;
benchmark->Run();
}
return 0;
}
#endif // GFLAGS