rocksdb/utilities/transactions/write_unprepared_txn_db.cc
Maysam Yabandeh fe642cbee6 WritePrepared: fix race condition in reading batch with duplicate keys (#5147)
Summary:
When ReadOption doesn't specify a snapshot, WritePrepared::Get used kMaxSequenceNumber to avoid the cost of creating a new snapshot object (that requires sync over db_mutex). This creates a race condition if it is reading from the writes of a transaction that had duplicate keys: each instance of duplicate key is inserted with a different sequence number and depending on the ordering the ::Get might skip the newer one and read the older one that is obsolete.
The patch fixes that by using last published seq as the snapshot sequence number. It also adds a check after the read is done to ensure that the max_evicted_seq has not advanced the aforementioned seq, which is a very unlikely event. If it did, then the read is not valid since the seq is not backed by an actually snapshot to let IsInSnapshot handle that properly when an overlapping commit is evicted from commit cache.
A unit  test is added to reproduce the race condition with duplicate keys.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5147

Differential Revision: D14758815

Pulled By: maysamyabandeh

fbshipit-source-id: a56915657132cf6ba5e3f5ea1b5d78c803407719
2019-04-12 14:40:41 -07:00

423 lines
15 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#ifndef ROCKSDB_LITE
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include "utilities/transactions/write_unprepared_txn_db.h"
#include "rocksdb/utilities/transaction_db.h"
#include "util/cast_util.h"
namespace rocksdb {
// Instead of reconstructing a Transaction object, and calling rollback on it,
// we can be more efficient with RollbackRecoveredTransaction by skipping
// unnecessary steps (eg. updating CommitMap, reconstructing keyset)
Status WriteUnpreparedTxnDB::RollbackRecoveredTransaction(
const DBImpl::RecoveredTransaction* rtxn) {
// TODO(lth): Reduce duplicate code with WritePrepared rollback logic.
assert(rtxn->unprepared_);
auto cf_map_shared_ptr = WritePreparedTxnDB::GetCFHandleMap();
auto cf_comp_map_shared_ptr = WritePreparedTxnDB::GetCFComparatorMap();
WriteOptions w_options;
// If we crash during recovery, we can just recalculate and rewrite the
// rollback batch.
w_options.disableWAL = true;
class InvalidSnapshotReadCallback : public ReadCallback {
public:
InvalidSnapshotReadCallback(SequenceNumber snapshot)
: ReadCallback(snapshot) {}
inline bool IsVisibleFullCheck(SequenceNumber) override {
// The seq provided as snapshot is the seq right before we have locked and
// wrote to it, so whatever is there, it is committed.
return true;
}
// Ignore the refresh request since we are confident that our snapshot seq
// is not going to be affected by concurrent compactions (not enabled yet.)
void Refresh(SequenceNumber) override {}
};
// Iterate starting with largest sequence number.
for (auto it = rtxn->batches_.rbegin(); it != rtxn->batches_.rend(); it++) {
auto last_visible_txn = it->first - 1;
const auto& batch = it->second.batch_;
WriteBatch rollback_batch;
struct RollbackWriteBatchBuilder : public WriteBatch::Handler {
DBImpl* db_;
ReadOptions roptions;
InvalidSnapshotReadCallback callback;
WriteBatch* rollback_batch_;
std::map<uint32_t, const Comparator*>& comparators_;
std::map<uint32_t, ColumnFamilyHandle*>& handles_;
using CFKeys = std::set<Slice, SetComparator>;
std::map<uint32_t, CFKeys> keys_;
bool rollback_merge_operands_;
RollbackWriteBatchBuilder(
DBImpl* db, SequenceNumber snap_seq, WriteBatch* dst_batch,
std::map<uint32_t, const Comparator*>& comparators,
std::map<uint32_t, ColumnFamilyHandle*>& handles,
bool rollback_merge_operands)
: db_(db),
callback(snap_seq),
// disable min_uncommitted optimization
rollback_batch_(dst_batch),
comparators_(comparators),
handles_(handles),
rollback_merge_operands_(rollback_merge_operands) {}
Status Rollback(uint32_t cf, const Slice& key) {
Status s;
CFKeys& cf_keys = keys_[cf];
if (cf_keys.size() == 0) { // just inserted
auto cmp = comparators_[cf];
keys_[cf] = CFKeys(SetComparator(cmp));
}
auto res = cf_keys.insert(key);
if (res.second ==
false) { // second is false if a element already existed.
return s;
}
PinnableSlice pinnable_val;
bool not_used;
auto cf_handle = handles_[cf];
s = db_->GetImpl(roptions, cf_handle, key, &pinnable_val, &not_used,
&callback);
assert(s.ok() || s.IsNotFound());
if (s.ok()) {
s = rollback_batch_->Put(cf_handle, key, pinnable_val);
assert(s.ok());
} else if (s.IsNotFound()) {
// There has been no readable value before txn. By adding a delete we
// make sure that there will be none afterwards either.
s = rollback_batch_->Delete(cf_handle, key);
assert(s.ok());
} else {
// Unexpected status. Return it to the user.
}
return s;
}
Status PutCF(uint32_t cf, const Slice& key,
const Slice& /*val*/) override {
return Rollback(cf, key);
}
Status DeleteCF(uint32_t cf, const Slice& key) override {
return Rollback(cf, key);
}
Status SingleDeleteCF(uint32_t cf, const Slice& key) override {
return Rollback(cf, key);
}
Status MergeCF(uint32_t cf, const Slice& key,
const Slice& /*val*/) override {
if (rollback_merge_operands_) {
return Rollback(cf, key);
} else {
return Status::OK();
}
}
// Recovered batches do not contain 2PC markers.
Status MarkNoop(bool) override { return Status::InvalidArgument(); }
Status MarkBeginPrepare(bool) override {
return Status::InvalidArgument();
}
Status MarkEndPrepare(const Slice&) override {
return Status::InvalidArgument();
}
Status MarkCommit(const Slice&) override {
return Status::InvalidArgument();
}
Status MarkRollback(const Slice&) override {
return Status::InvalidArgument();
}
} rollback_handler(db_impl_, last_visible_txn, &rollback_batch,
*cf_comp_map_shared_ptr.get(), *cf_map_shared_ptr.get(),
txn_db_options_.rollback_merge_operands);
auto s = batch->Iterate(&rollback_handler);
if (!s.ok()) {
return s;
}
// The Rollback marker will be used as a batch separator
WriteBatchInternal::MarkRollback(&rollback_batch, rtxn->name_);
const uint64_t kNoLogRef = 0;
const bool kDisableMemtable = true;
const size_t kOneBatch = 1;
uint64_t seq_used = kMaxSequenceNumber;
s = db_impl_->WriteImpl(w_options, &rollback_batch, nullptr, nullptr,
kNoLogRef, !kDisableMemtable, &seq_used, kOneBatch);
if (!s.ok()) {
return s;
}
// If two_write_queues, we must manually release the sequence number to
// readers.
if (db_impl_->immutable_db_options().two_write_queues) {
db_impl_->SetLastPublishedSequence(seq_used);
}
}
return Status::OK();
}
Status WriteUnpreparedTxnDB::Initialize(
const std::vector<size_t>& compaction_enabled_cf_indices,
const std::vector<ColumnFamilyHandle*>& handles) {
// TODO(lth): Reduce code duplication in this function.
auto dbimpl = reinterpret_cast<DBImpl*>(GetRootDB());
assert(dbimpl != nullptr);
db_impl_->SetSnapshotChecker(new WritePreparedSnapshotChecker(this));
// A callback to commit a single sub-batch
class CommitSubBatchPreReleaseCallback : public PreReleaseCallback {
public:
explicit CommitSubBatchPreReleaseCallback(WritePreparedTxnDB* db)
: db_(db) {}
Status Callback(SequenceNumber commit_seq,
bool is_mem_disabled __attribute__((__unused__)),
uint64_t) override {
assert(!is_mem_disabled);
db_->AddCommitted(commit_seq, commit_seq);
return Status::OK();
}
private:
WritePreparedTxnDB* db_;
};
db_impl_->SetRecoverableStatePreReleaseCallback(
new CommitSubBatchPreReleaseCallback(this));
// PessimisticTransactionDB::Initialize
for (auto cf_ptr : handles) {
AddColumnFamily(cf_ptr);
}
// Verify cf options
for (auto handle : handles) {
ColumnFamilyDescriptor cfd;
Status s = handle->GetDescriptor(&cfd);
if (!s.ok()) {
return s;
}
s = VerifyCFOptions(cfd.options);
if (!s.ok()) {
return s;
}
}
// Re-enable compaction for the column families that initially had
// compaction enabled.
std::vector<ColumnFamilyHandle*> compaction_enabled_cf_handles;
compaction_enabled_cf_handles.reserve(compaction_enabled_cf_indices.size());
for (auto index : compaction_enabled_cf_indices) {
compaction_enabled_cf_handles.push_back(handles[index]);
}
// create 'real' transactions from recovered shell transactions
auto rtxns = dbimpl->recovered_transactions();
for (auto rtxn : rtxns) {
auto recovered_trx = rtxn.second;
assert(recovered_trx);
assert(recovered_trx->batches_.size() >= 1);
assert(recovered_trx->name_.length());
// We can only rollback transactions after AdvanceMaxEvictedSeq is called,
// but AddPrepared must occur before AdvanceMaxEvictedSeq, which is why
// two iterations is required.
if (recovered_trx->unprepared_) {
continue;
}
WriteOptions w_options;
w_options.sync = true;
TransactionOptions t_options;
auto first_log_number = recovered_trx->batches_.begin()->second.log_number_;
auto first_seq = recovered_trx->batches_.begin()->first;
auto last_prepare_batch_cnt =
recovered_trx->batches_.begin()->second.batch_cnt_;
Transaction* real_trx = BeginTransaction(w_options, t_options, nullptr);
assert(real_trx);
auto wupt =
static_cast_with_check<WriteUnpreparedTxn, Transaction>(real_trx);
real_trx->SetLogNumber(first_log_number);
real_trx->SetId(first_seq);
Status s = real_trx->SetName(recovered_trx->name_);
if (!s.ok()) {
break;
}
wupt->prepare_batch_cnt_ = last_prepare_batch_cnt;
for (auto batch : recovered_trx->batches_) {
const auto& seq = batch.first;
const auto& batch_info = batch.second;
auto cnt = batch_info.batch_cnt_ ? batch_info.batch_cnt_ : 1;
assert(batch_info.log_number_);
for (size_t i = 0; i < cnt; i++) {
AddPrepared(seq + i);
}
assert(wupt->unprep_seqs_.count(seq) == 0);
wupt->unprep_seqs_[seq] = cnt;
KeySetBuilder keyset_handler(wupt,
txn_db_options_.rollback_merge_operands);
s = batch_info.batch_->Iterate(&keyset_handler);
assert(s.ok());
if (!s.ok()) {
break;
}
}
wupt->write_batch_.Clear();
WriteBatchInternal::InsertNoop(wupt->write_batch_.GetWriteBatch());
real_trx->SetState(Transaction::PREPARED);
if (!s.ok()) {
break;
}
}
SequenceNumber prev_max = max_evicted_seq_;
SequenceNumber last_seq = db_impl_->GetLatestSequenceNumber();
AdvanceMaxEvictedSeq(prev_max, last_seq);
// Create a gap between max and the next snapshot. This simplifies the logic
// in IsInSnapshot by not having to consider the special case of max ==
// snapshot after recovery. This is tested in IsInSnapshotEmptyMapTest.
if (last_seq) {
db_impl_->versions_->SetLastAllocatedSequence(last_seq + 1);
db_impl_->versions_->SetLastSequence(last_seq + 1);
db_impl_->versions_->SetLastPublishedSequence(last_seq + 1);
}
Status s;
// Rollback unprepared transactions.
for (auto rtxn : rtxns) {
auto recovered_trx = rtxn.second;
if (recovered_trx->unprepared_) {
s = RollbackRecoveredTransaction(recovered_trx);
if (!s.ok()) {
return s;
}
continue;
}
}
if (s.ok()) {
dbimpl->DeleteAllRecoveredTransactions();
// Compaction should start only after max_evicted_seq_ is set AND recovered
// transactions are either added to PrepareHeap or rolled back.
s = EnableAutoCompaction(compaction_enabled_cf_handles);
}
return s;
}
Transaction* WriteUnpreparedTxnDB::BeginTransaction(
const WriteOptions& write_options, const TransactionOptions& txn_options,
Transaction* old_txn) {
if (old_txn != nullptr) {
ReinitializeTransaction(old_txn, write_options, txn_options);
return old_txn;
} else {
return new WriteUnpreparedTxn(this, write_options, txn_options);
}
}
// Struct to hold ownership of snapshot and read callback for iterator cleanup.
struct WriteUnpreparedTxnDB::IteratorState {
IteratorState(WritePreparedTxnDB* txn_db, SequenceNumber sequence,
std::shared_ptr<ManagedSnapshot> s,
SequenceNumber min_uncommitted, WriteUnpreparedTxn* txn)
: callback(txn_db, sequence, min_uncommitted, txn), snapshot(s) {}
SequenceNumber MaxVisibleSeq() { return callback.max_visible_seq(); }
WriteUnpreparedTxnReadCallback callback;
std::shared_ptr<ManagedSnapshot> snapshot;
};
namespace {
static void CleanupWriteUnpreparedTxnDBIterator(void* arg1, void* /*arg2*/) {
delete reinterpret_cast<WriteUnpreparedTxnDB::IteratorState*>(arg1);
}
} // anonymous namespace
Iterator* WriteUnpreparedTxnDB::NewIterator(const ReadOptions& options,
ColumnFamilyHandle* column_family,
WriteUnpreparedTxn* txn) {
// TODO(lth): Refactor so that this logic is shared with WritePrepared.
constexpr bool ALLOW_BLOB = true;
constexpr bool ALLOW_REFRESH = true;
std::shared_ptr<ManagedSnapshot> own_snapshot = nullptr;
SequenceNumber snapshot_seq;
SequenceNumber min_uncommitted = 0;
if (options.snapshot != nullptr) {
snapshot_seq = options.snapshot->GetSequenceNumber();
min_uncommitted =
static_cast_with_check<const SnapshotImpl, const Snapshot>(
options.snapshot)
->min_uncommitted_;
} else {
auto* snapshot = GetSnapshot();
// We take a snapshot to make sure that the related data in the commit map
// are not deleted.
snapshot_seq = snapshot->GetSequenceNumber();
min_uncommitted =
static_cast_with_check<const SnapshotImpl, const Snapshot>(snapshot)
->min_uncommitted_;
own_snapshot = std::make_shared<ManagedSnapshot>(db_impl_, snapshot);
}
assert(snapshot_seq != kMaxSequenceNumber);
auto* cfd = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family)->cfd();
auto* state =
new IteratorState(this, snapshot_seq, own_snapshot, min_uncommitted, txn);
auto* db_iter =
db_impl_->NewIteratorImpl(options, cfd, state->MaxVisibleSeq(),
&state->callback, !ALLOW_BLOB, !ALLOW_REFRESH);
db_iter->RegisterCleanup(CleanupWriteUnpreparedTxnDBIterator, state, nullptr);
return db_iter;
}
Status KeySetBuilder::PutCF(uint32_t cf, const Slice& key,
const Slice& /*val*/) {
txn_->UpdateWriteKeySet(cf, key);
return Status::OK();
}
Status KeySetBuilder::DeleteCF(uint32_t cf, const Slice& key) {
txn_->UpdateWriteKeySet(cf, key);
return Status::OK();
}
Status KeySetBuilder::SingleDeleteCF(uint32_t cf, const Slice& key) {
txn_->UpdateWriteKeySet(cf, key);
return Status::OK();
}
Status KeySetBuilder::MergeCF(uint32_t cf, const Slice& key,
const Slice& /*val*/) {
if (rollback_merge_operands_) {
txn_->UpdateWriteKeySet(cf, key);
}
return Status::OK();
}
} // namespace rocksdb
#endif // ROCKSDB_LITE