rocksdb/db/range_tombstone_fragmenter.cc
Abhishek Madan 7528130e38 Cache fragmented range tombstones in BlockBasedTableReader (#4493)
Summary:
This allows tombstone fragmenting to only be performed when the table is opened, and cached for subsequent accesses.

On the same DB used in #4449, running `readrandom` results in the following:
```
readrandom   :       0.983 micros/op 1017076 ops/sec;   78.3 MB/s (63103 of 100000 found)
```

Now that Get performance in the presence of range tombstones is reasonable, I also compared the performance between a DB with range tombstones, "expanded" range tombstones (several point tombstones that cover the same keys the equivalent range tombstone would cover, a common workaround for DeleteRange), and no range tombstones. The created DBs had 5 million keys each, and DeleteRange was called at regular intervals (depending on the total number of range tombstones being written) after 4.5 million Puts. The table below summarizes the results of a `readwhilewriting` benchmark (in order to provide somewhat more realistic results):
```
   Tombstones?    | avg micros/op | stddev micros/op |  avg ops/s   | stddev ops/s
----------------- | ------------- | ---------------- | ------------ | ------------
None              |        0.6186 |          0.04637 | 1,625,252.90 | 124,679.41
500 Expanded      |        0.6019 |          0.03628 | 1,666,670.40 | 101,142.65
500 Unexpanded    |        0.6435 |          0.03994 | 1,559,979.40 | 104,090.52
1k Expanded       |        0.6034 |          0.04349 | 1,665,128.10 | 125,144.57
1k Unexpanded     |        0.6261 |          0.03093 | 1,600,457.50 |  79,024.94
5k Expanded       |        0.6163 |          0.05926 | 1,636,668.80 | 154,888.85
5k Unexpanded     |        0.6402 |          0.04002 | 1,567,804.70 | 100,965.55
10k Expanded      |        0.6036 |          0.05105 | 1,667,237.70 | 142,830.36
10k Unexpanded    |        0.6128 |          0.02598 | 1,634,633.40 |  72,161.82
25k Expanded      |        0.6198 |          0.04542 | 1,620,980.50 | 116,662.93
25k Unexpanded    |        0.5478 |          0.0362  | 1,833,059.10 | 121,233.81
50k Expanded      |        0.5104 |          0.04347 | 1,973,107.90 | 184,073.49
50k Unexpanded    |        0.4528 |          0.03387 | 2,219,034.50 | 170,984.32
```

After a large enough quantity of range tombstones are written, range tombstone Gets can become faster than reading from an equivalent DB with several point tombstones.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4493

Differential Revision: D10842844

Pulled By: abhimadan

fbshipit-source-id: a7d44534f8120e6aabb65779d26c6b9df954c509
2018-10-25 19:26:44 -07:00

302 lines
11 KiB
C++

// Copyright (c) 2018-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include "db/range_tombstone_fragmenter.h"
#include <algorithm>
#include <functional>
#include <set>
#include <inttypes.h>
#include <stdio.h>
#include "util/autovector.h"
#include "util/kv_map.h"
#include "util/vector_iterator.h"
namespace rocksdb {
FragmentedRangeTombstoneList::FragmentedRangeTombstoneList(
std::unique_ptr<InternalIterator> unfragmented_tombstones,
const InternalKeyComparator& icmp, bool one_time_use,
SequenceNumber snapshot) {
if (unfragmented_tombstones == nullptr) {
return;
}
bool is_sorted = true;
int num_tombstones = 0;
InternalKey pinned_last_start_key;
Slice last_start_key;
for (unfragmented_tombstones->SeekToFirst(); unfragmented_tombstones->Valid();
unfragmented_tombstones->Next(), num_tombstones++) {
if (num_tombstones > 0 &&
icmp.Compare(last_start_key, unfragmented_tombstones->key()) > 0) {
is_sorted = false;
break;
}
if (unfragmented_tombstones->IsKeyPinned()) {
last_start_key = unfragmented_tombstones->key();
} else {
pinned_last_start_key.DecodeFrom(unfragmented_tombstones->key());
last_start_key = pinned_last_start_key.Encode();
}
}
if (is_sorted) {
FragmentTombstones(std::move(unfragmented_tombstones), icmp, one_time_use,
snapshot);
return;
}
// Sort the tombstones before fragmenting them.
std::vector<std::string> keys, values;
keys.reserve(num_tombstones);
values.reserve(num_tombstones);
for (unfragmented_tombstones->SeekToFirst(); unfragmented_tombstones->Valid();
unfragmented_tombstones->Next()) {
keys.emplace_back(unfragmented_tombstones->key().data(),
unfragmented_tombstones->key().size());
values.emplace_back(unfragmented_tombstones->value().data(),
unfragmented_tombstones->value().size());
}
// VectorIterator implicitly sorts by key during construction.
auto iter = std::unique_ptr<VectorIterator>(
new VectorIterator(std::move(keys), std::move(values), &icmp));
FragmentTombstones(std::move(iter), icmp, one_time_use, snapshot);
}
void FragmentedRangeTombstoneList::FragmentTombstones(
std::unique_ptr<InternalIterator> unfragmented_tombstones,
const InternalKeyComparator& icmp, bool one_time_use,
SequenceNumber snapshot) {
Slice cur_start_key(nullptr, 0);
auto cmp = ParsedInternalKeyComparator(&icmp);
// Stores the end keys and sequence numbers of range tombstones with a start
// key less than or equal to cur_start_key. Provides an ordering by end key
// for use in flush_current_tombstones.
std::set<ParsedInternalKey, ParsedInternalKeyComparator> cur_end_keys(cmp);
// Given the next start key in unfragmented_tombstones,
// flush_current_tombstones writes every tombstone fragment that starts
// and ends with a key before next_start_key, and starts with a key greater
// than or equal to cur_start_key.
auto flush_current_tombstones = [&](const Slice& next_start_key) {
auto it = cur_end_keys.begin();
bool reached_next_start_key = false;
for (; it != cur_end_keys.end() && !reached_next_start_key; ++it) {
Slice cur_end_key = it->user_key;
if (icmp.user_comparator()->Compare(cur_start_key, cur_end_key) == 0) {
// Empty tombstone.
continue;
}
if (icmp.user_comparator()->Compare(next_start_key, cur_end_key) <= 0) {
// All of the end keys in [it, cur_end_keys.end()) are after
// next_start_key, so the tombstones they represent can be used in
// fragments that start with keys greater than or equal to
// next_start_key. However, the end keys we already passed will not be
// used in any more tombstone fragments.
//
// Remove the fully fragmented tombstones and stop iteration after a
// final round of flushing to preserve the tombstones we can create more
// fragments from.
reached_next_start_key = true;
cur_end_keys.erase(cur_end_keys.begin(), it);
cur_end_key = next_start_key;
}
// Flush a range tombstone fragment [cur_start_key, cur_end_key), which
// should not overlap with the last-flushed tombstone fragment.
assert(tombstones_.empty() ||
icmp.user_comparator()->Compare(tombstones_.back().end_key_,
cur_start_key) <= 0);
if (one_time_use) {
SequenceNumber max_seqnum = 0;
for (auto flush_it = it; flush_it != cur_end_keys.end(); ++flush_it) {
max_seqnum = std::max(max_seqnum, flush_it->sequence);
}
// Flush only the tombstone fragment with the highest sequence number.
tombstones_.push_back(
RangeTombstone(cur_start_key, cur_end_key, max_seqnum));
} else {
// Sort the sequence numbers of the tombstones being fragmented in
// descending order, and then flush them in that order.
autovector<SequenceNumber> seqnums_to_flush;
for (auto flush_it = it; flush_it != cur_end_keys.end(); ++flush_it) {
seqnums_to_flush.push_back(flush_it->sequence);
}
std::sort(seqnums_to_flush.begin(), seqnums_to_flush.end(),
std::greater<SequenceNumber>());
for (const auto seq : seqnums_to_flush) {
tombstones_.push_back(
RangeTombstone(cur_start_key, cur_end_key, seq));
}
}
cur_start_key = cur_end_key;
}
if (!reached_next_start_key) {
// There is a gap between the last flushed tombstone fragment and
// the next tombstone's start key. Remove all the end keys in
// the working set, since we have fully fragmented their corresponding
// tombstones.
cur_end_keys.clear();
}
cur_start_key = next_start_key;
};
pinned_iters_mgr_.StartPinning();
bool no_tombstones = true;
for (unfragmented_tombstones->SeekToFirst(); unfragmented_tombstones->Valid();
unfragmented_tombstones->Next()) {
const Slice& ikey = unfragmented_tombstones->key();
Slice tombstone_start_key = ExtractUserKey(ikey);
SequenceNumber tombstone_seq = GetInternalKeySeqno(ikey);
if (one_time_use && tombstone_seq > snapshot) {
// The tombstone is not visible by this snapshot.
continue;
}
no_tombstones = false;
Slice tombstone_end_key = unfragmented_tombstones->value();
if (!unfragmented_tombstones->IsValuePinned()) {
pinned_slices_.emplace_back(tombstone_end_key.data(),
tombstone_end_key.size());
tombstone_end_key = pinned_slices_.back();
}
if (!cur_end_keys.empty() && icmp.user_comparator()->Compare(
cur_start_key, tombstone_start_key) != 0) {
// The start key has changed. Flush all tombstones that start before
// this new start key.
flush_current_tombstones(tombstone_start_key);
}
if (unfragmented_tombstones->IsKeyPinned()) {
cur_start_key = tombstone_start_key;
} else {
pinned_slices_.emplace_back(tombstone_start_key.data(),
tombstone_start_key.size());
cur_start_key = pinned_slices_.back();
}
cur_end_keys.emplace(tombstone_end_key, tombstone_seq, kTypeRangeDeletion);
}
if (!cur_end_keys.empty()) {
ParsedInternalKey last_end_key = *std::prev(cur_end_keys.end());
flush_current_tombstones(last_end_key.user_key);
}
if (!no_tombstones) {
pinned_iters_mgr_.PinIterator(unfragmented_tombstones.release(),
false /* arena */);
}
}
FragmentedRangeTombstoneIterator::FragmentedRangeTombstoneIterator(
const FragmentedRangeTombstoneList* tombstones,
const InternalKeyComparator& icmp)
: tombstone_cmp_(icmp.user_comparator()),
icmp_(&icmp),
ucmp_(icmp.user_comparator()),
tombstones_(tombstones) {
assert(tombstones_ != nullptr);
pos_ = tombstones_->end();
pinned_pos_ = tombstones_->end();
}
FragmentedRangeTombstoneIterator::FragmentedRangeTombstoneIterator(
const std::shared_ptr<const FragmentedRangeTombstoneList>& tombstones,
const InternalKeyComparator& icmp)
: tombstone_cmp_(icmp.user_comparator()),
icmp_(&icmp),
ucmp_(icmp.user_comparator()),
tombstones_ref_(tombstones),
tombstones_(tombstones_ref_.get()) {
assert(tombstones_ != nullptr);
pos_ = tombstones_->end();
pinned_pos_ = tombstones_->end();
}
void FragmentedRangeTombstoneIterator::SeekToFirst() {
pos_ = tombstones_->begin();
}
void FragmentedRangeTombstoneIterator::SeekToLast() {
pos_ = tombstones_->end();
Prev();
}
void FragmentedRangeTombstoneIterator::Seek(const Slice& target) {
if (tombstones_->empty()) {
pos_ = tombstones_->end();
return;
}
RangeTombstone search(ExtractUserKey(target), ExtractUserKey(target),
GetInternalKeySeqno(target));
pos_ = std::lower_bound(tombstones_->begin(), tombstones_->end(), search,
tombstone_cmp_);
}
void FragmentedRangeTombstoneIterator::SeekForPrev(const Slice& target) {
Seek(target);
if (!Valid()) {
SeekToLast();
}
ParsedInternalKey parsed_target;
if (!ParseInternalKey(target, &parsed_target)) {
assert(false);
}
ParsedInternalKey parsed_start_key;
ParseKey(&parsed_start_key);
while (Valid() && icmp_->Compare(parsed_target, parsed_start_key) < 0) {
Prev();
ParseKey(&parsed_start_key);
}
}
void FragmentedRangeTombstoneIterator::Next() { ++pos_; }
void FragmentedRangeTombstoneIterator::Prev() {
if (pos_ == tombstones_->begin()) {
pos_ = tombstones_->end();
return;
}
--pos_;
}
bool FragmentedRangeTombstoneIterator::Valid() const {
return tombstones_ != nullptr && pos_ != tombstones_->end();
}
SequenceNumber MaxCoveringTombstoneSeqnum(
FragmentedRangeTombstoneIterator* tombstone_iter, const Slice& lookup_key,
const Comparator* ucmp) {
if (tombstone_iter == nullptr) {
return 0;
}
SequenceNumber snapshot = GetInternalKeySeqno(lookup_key);
Slice user_key = ExtractUserKey(lookup_key);
tombstone_iter->Seek(lookup_key);
SequenceNumber highest_covering_seqnum = 0;
if (!tombstone_iter->Valid()) {
// Seeked past the last tombstone
tombstone_iter->Prev();
}
while (tombstone_iter->Valid() &&
ucmp->Compare(user_key, tombstone_iter->value()) < 0) {
if (tombstone_iter->seq() <= snapshot &&
ucmp->Compare(tombstone_iter->user_key(), user_key) <= 0) {
highest_covering_seqnum =
std::max(highest_covering_seqnum, tombstone_iter->seq());
}
tombstone_iter->Prev();
}
return highest_covering_seqnum;
}
} // namespace rocksdb