rocksdb/util/math128.h
Peter Dillinger 25d54c799c Ribbon: initial (general) algorithms and basic unit test (#7491)
Summary:
This is intended as the first commit toward a near-optimal alternative to static Bloom filters for SSTs. Stephan Walzer and I have agreed upon the name "Ribbon" for a PHSF based on his linear system construction in "Efficient Gauss Elimination for Near-Quadratic Matrices with One Short Random Block per Row, with Applications" ("SGauss") and my much faster "on the fly" algorithm for gaussian elimination (or for this linear system, "banding"), which can be faster than peeling while also more compact and flexible. See util/ribbon_alg.h for more detailed introduction and background. RIBBON = Rapid Incremental Boolean Banding ON-the-fly

This commit just adds generic (templatized) core algorithms and a basic unit test showing some features, including the ability to construct structures within 2.5% space overhead vs. information theoretic lower bound. (Compare to cache-local Bloom filter's ~50% space overhead -> ~30% reduction anticipated.) This commit does not include the storage scheme necessary to make queries fast, especially for filter queries, nor fractional "result bits", but there is some description already and those implementations will come soon. Nor does this commit add FilterPolicy support, for use in SST files, but that will also come soon.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/7491

Reviewed By: jay-zhuang

Differential Revision: D24517954

Pulled By: pdillinger

fbshipit-source-id: 0119ee597e250d7e0edd38ada2ba50d755606fa7
2020-10-25 20:44:49 -07:00

295 lines
8.0 KiB
C++

// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#pragma once
#include "util/coding_lean.h"
#include "util/math.h"
#ifdef TEST_UINT128_COMPAT
#undef HAVE_UINT128_EXTENSION
#endif
namespace ROCKSDB_NAMESPACE {
// Unsigned128 is a 128 bit value supporting (at least) bitwise operators,
// shifts, and comparisons. __uint128_t is not always available.
#ifdef HAVE_UINT128_EXTENSION
using Unsigned128 = __uint128_t;
#else
struct Unsigned128 {
uint64_t lo;
uint64_t hi;
inline Unsigned128() {
static_assert(sizeof(Unsigned128) == 2 * sizeof(uint64_t),
"unexpected overhead in representation");
lo = 0;
hi = 0;
}
inline Unsigned128(uint64_t lower) {
lo = lower;
hi = 0;
}
inline Unsigned128(uint64_t lower, uint64_t upper) {
lo = lower;
hi = upper;
}
explicit operator uint64_t() { return lo; }
explicit operator uint32_t() { return static_cast<uint32_t>(lo); }
};
inline Unsigned128 operator<<(const Unsigned128& lhs, unsigned shift) {
shift &= 127;
Unsigned128 rv;
if (shift >= 64) {
rv.lo = 0;
rv.hi = lhs.lo << (shift & 63);
} else {
uint64_t tmp = lhs.lo;
rv.lo = tmp << shift;
// Ensure shift==0 shifts away everything. (This avoids another
// conditional branch on shift == 0.)
tmp = tmp >> 1 >> (63 - shift);
rv.hi = tmp | (lhs.hi << shift);
}
return rv;
}
inline Unsigned128& operator<<=(Unsigned128& lhs, unsigned shift) {
lhs = lhs << shift;
return lhs;
}
inline Unsigned128 operator>>(const Unsigned128& lhs, unsigned shift) {
shift &= 127;
Unsigned128 rv;
if (shift >= 64) {
rv.hi = 0;
rv.lo = lhs.hi >> (shift & 63);
} else {
uint64_t tmp = lhs.hi;
rv.hi = tmp >> shift;
// Ensure shift==0 shifts away everything
tmp = tmp << 1 << (63 - shift);
rv.lo = tmp | (lhs.lo >> shift);
}
return rv;
}
inline Unsigned128& operator>>=(Unsigned128& lhs, unsigned shift) {
lhs = lhs >> shift;
return lhs;
}
inline Unsigned128 operator&(const Unsigned128& lhs, const Unsigned128& rhs) {
return Unsigned128(lhs.lo & rhs.lo, lhs.hi & rhs.hi);
}
inline Unsigned128& operator&=(Unsigned128& lhs, const Unsigned128& rhs) {
lhs = lhs & rhs;
return lhs;
}
inline Unsigned128 operator|(const Unsigned128& lhs, const Unsigned128& rhs) {
return Unsigned128(lhs.lo | rhs.lo, lhs.hi | rhs.hi);
}
inline Unsigned128& operator|=(Unsigned128& lhs, const Unsigned128& rhs) {
lhs = lhs | rhs;
return lhs;
}
inline Unsigned128 operator^(const Unsigned128& lhs, const Unsigned128& rhs) {
return Unsigned128(lhs.lo ^ rhs.lo, lhs.hi ^ rhs.hi);
}
inline Unsigned128& operator^=(Unsigned128& lhs, const Unsigned128& rhs) {
lhs = lhs ^ rhs;
return lhs;
}
inline Unsigned128 operator~(const Unsigned128& v) {
return Unsigned128(~v.lo, ~v.hi);
}
inline bool operator==(const Unsigned128& lhs, const Unsigned128& rhs) {
return lhs.lo == rhs.lo && lhs.hi == rhs.hi;
}
inline bool operator!=(const Unsigned128& lhs, const Unsigned128& rhs) {
return lhs.lo != rhs.lo || lhs.hi != rhs.hi;
}
inline bool operator>(const Unsigned128& lhs, const Unsigned128& rhs) {
return lhs.hi > rhs.hi || (lhs.hi == rhs.hi && lhs.lo > rhs.lo);
}
inline bool operator<(const Unsigned128& lhs, const Unsigned128& rhs) {
return lhs.hi < rhs.hi || (lhs.hi == rhs.hi && lhs.lo < rhs.lo);
}
inline bool operator>=(const Unsigned128& lhs, const Unsigned128& rhs) {
return lhs.hi > rhs.hi || (lhs.hi == rhs.hi && lhs.lo >= rhs.lo);
}
inline bool operator<=(const Unsigned128& lhs, const Unsigned128& rhs) {
return lhs.hi < rhs.hi || (lhs.hi == rhs.hi && lhs.lo <= rhs.lo);
}
#endif
inline uint64_t Lower64of128(Unsigned128 v) {
#ifdef HAVE_UINT128_EXTENSION
return static_cast<uint64_t>(v);
#else
return v.lo;
#endif
}
inline uint64_t Upper64of128(Unsigned128 v) {
#ifdef HAVE_UINT128_EXTENSION
return static_cast<uint64_t>(v >> 64);
#else
return v.hi;
#endif
}
// This generally compiles down to a single fast instruction on 64-bit.
// This doesn't really make sense as operator* because it's not a
// general 128x128 multiply and provides more output than 64x64 multiply.
inline Unsigned128 Multiply64to128(uint64_t a, uint64_t b) {
#ifdef HAVE_UINT128_EXTENSION
return Unsigned128{a} * Unsigned128{b};
#else
// Full decomposition
// NOTE: GCC seems to fully understand this code as 64-bit x 64-bit
// -> 128-bit multiplication and optimize it appropriately.
uint64_t tmp = uint64_t{b & 0xffffFFFF} * uint64_t{a & 0xffffFFFF};
uint64_t lower = tmp & 0xffffFFFF;
tmp >>= 32;
tmp += uint64_t{b & 0xffffFFFF} * uint64_t{a >> 32};
// Avoid overflow: first add lower 32 of tmp2, and later upper 32
uint64_t tmp2 = uint64_t{b >> 32} * uint64_t{a & 0xffffFFFF};
tmp += tmp2 & 0xffffFFFF;
lower |= tmp << 32;
tmp >>= 32;
tmp += tmp2 >> 32;
tmp += uint64_t{b >> 32} * uint64_t{a >> 32};
return Unsigned128(lower, tmp);
#endif
}
template <>
inline int FloorLog2(Unsigned128 v) {
if (Upper64of128(v) == 0) {
return FloorLog2(Lower64of128(v));
} else {
return FloorLog2(Upper64of128(v)) + 64;
}
}
template <>
inline int CountTrailingZeroBits(Unsigned128 v) {
if (Lower64of128(v) != 0) {
return CountTrailingZeroBits(Lower64of128(v));
} else {
return CountTrailingZeroBits(Upper64of128(v)) + 64;
}
}
template <>
inline int BitsSetToOne(Unsigned128 v) {
return BitsSetToOne(Lower64of128(v)) + BitsSetToOne(Upper64of128(v));
}
template <>
inline int BitParity(Unsigned128 v) {
return BitParity(Lower64of128(v)) ^ BitParity(Upper64of128(v));
}
template <typename T>
struct IsUnsignedUpTo128
: std::integral_constant<bool, std::is_unsigned<T>::value ||
std::is_same<T, Unsigned128>::value> {};
inline void EncodeFixed128(char* dst, Unsigned128 value) {
EncodeFixed64(dst, Lower64of128(value));
EncodeFixed64(dst + 8, Upper64of128(value));
}
inline Unsigned128 DecodeFixed128(const char* ptr) {
Unsigned128 rv = DecodeFixed64(ptr + 8);
return (rv << 64) | DecodeFixed64(ptr);
}
// A version of EncodeFixed* for generic algorithms. Likely to be used
// with Unsigned128, so lives here for now.
template <typename T>
inline void EncodeFixedGeneric(char* /*dst*/, T /*value*/) {
// Unfortunately, GCC does not appear to optimize this simple code down
// to a trivial load on Intel:
//
// T ret_val = 0;
// for (size_t i = 0; i < sizeof(T); ++i) {
// ret_val |= (static_cast<T>(static_cast<unsigned char>(ptr[i])) << (8 *
// i));
// }
// return ret_val;
//
// But does unroll the loop, and does optimize manually unrolled version
// for specific sizes down to a trivial load. I have no idea why it doesn't
// do both on this code.
// So instead, we rely on specializations
static_assert(sizeof(T) == 0, "No specialization provided for this type");
}
template <>
inline void EncodeFixedGeneric(char* dst, uint16_t value) {
return EncodeFixed16(dst, value);
}
template <>
inline void EncodeFixedGeneric(char* dst, uint32_t value) {
return EncodeFixed32(dst, value);
}
template <>
inline void EncodeFixedGeneric(char* dst, uint64_t value) {
return EncodeFixed64(dst, value);
}
template <>
inline void EncodeFixedGeneric(char* dst, Unsigned128 value) {
return EncodeFixed128(dst, value);
}
// A version of EncodeFixed* for generic algorithms.
template <typename T>
inline T DecodeFixedGeneric(const char* /*dst*/) {
static_assert(sizeof(T) == 0, "No specialization provided for this type");
}
template <>
inline uint16_t DecodeFixedGeneric(const char* dst) {
return DecodeFixed16(dst);
}
template <>
inline uint32_t DecodeFixedGeneric(const char* dst) {
return DecodeFixed32(dst);
}
template <>
inline uint64_t DecodeFixedGeneric(const char* dst) {
return DecodeFixed64(dst);
}
template <>
inline Unsigned128 DecodeFixedGeneric(const char* dst) {
return DecodeFixed128(dst);
}
} // namespace ROCKSDB_NAMESPACE