rocksdb/table/block_based/block_based_table_builder.cc
Peter Dillinger 31da5e34c1 C++20 compatibility (#6697)
Summary:
Based on https://github.com/facebook/rocksdb/issues/6648 (CLA Signed), but heavily modified / extended:

* Implicit capture of this via [=] deprecated in C++20, and [=,this] not standard before C++20 -> now using explicit capture lists
* Implicit copy operator deprecated in gcc 9 -> add explicit '= default' definition
* std::random_shuffle deprecated in C++17 and removed in C++20 -> migrated to a replacement in RocksDB random.h API
* Add the ability to build with different std version though -DCMAKE_CXX_STANDARD=11/14/17/20 on the cmake command line
* Minimal rebuild flag of MSVC is deprecated and is forbidden with /std:c++latest (C++20)
* Added MSVC 2019 C++11 & MSVC 2019 C++20 in AppVeyor
* Added GCC 9 C++11 & GCC9 C++20 in Travis
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6697

Test Plan: make check and CI

Reviewed By: cheng-chang

Differential Revision: D21020318

Pulled By: pdillinger

fbshipit-source-id: 12311be5dbd8675a0e2c817f7ec50fa11c18ab91
2020-04-20 13:24:25 -07:00

1703 lines
64 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "table/block_based/block_based_table_builder.h"
#include <assert.h>
#include <stdio.h>
#include <atomic>
#include <list>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include "db/dbformat.h"
#include "index_builder.h"
#include "port/lang.h"
#include "rocksdb/cache.h"
#include "rocksdb/comparator.h"
#include "rocksdb/env.h"
#include "rocksdb/flush_block_policy.h"
#include "rocksdb/merge_operator.h"
#include "rocksdb/table.h"
#include "table/block_based/block.h"
#include "table/block_based/block_based_filter_block.h"
#include "table/block_based/block_based_table_factory.h"
#include "table/block_based/block_based_table_reader.h"
#include "table/block_based/block_builder.h"
#include "table/block_based/filter_block.h"
#include "table/block_based/filter_policy_internal.h"
#include "table/block_based/full_filter_block.h"
#include "table/block_based/partitioned_filter_block.h"
#include "table/format.h"
#include "table/table_builder.h"
#include "memory/memory_allocator.h"
#include "util/coding.h"
#include "util/compression.h"
#include "util/crc32c.h"
#include "util/stop_watch.h"
#include "util/string_util.h"
#include "util/work_queue.h"
#include "util/xxhash.h"
namespace ROCKSDB_NAMESPACE {
extern const std::string kHashIndexPrefixesBlock;
extern const std::string kHashIndexPrefixesMetadataBlock;
typedef BlockBasedTableOptions::IndexType IndexType;
// Without anonymous namespace here, we fail the warning -Wmissing-prototypes
namespace {
// Create a filter block builder based on its type.
FilterBlockBuilder* CreateFilterBlockBuilder(
const ImmutableCFOptions& /*opt*/, const MutableCFOptions& mopt,
const FilterBuildingContext& context,
const bool use_delta_encoding_for_index_values,
PartitionedIndexBuilder* const p_index_builder) {
const BlockBasedTableOptions& table_opt = context.table_options;
if (table_opt.filter_policy == nullptr) return nullptr;
FilterBitsBuilder* filter_bits_builder =
BloomFilterPolicy::GetBuilderFromContext(context);
if (filter_bits_builder == nullptr) {
return new BlockBasedFilterBlockBuilder(mopt.prefix_extractor.get(),
table_opt);
} else {
if (table_opt.partition_filters) {
assert(p_index_builder != nullptr);
// Since after partition cut request from filter builder it takes time
// until index builder actully cuts the partition, we take the lower bound
// as partition size.
assert(table_opt.block_size_deviation <= 100);
auto partition_size =
static_cast<uint32_t>(((table_opt.metadata_block_size *
(100 - table_opt.block_size_deviation)) +
99) /
100);
partition_size = std::max(partition_size, static_cast<uint32_t>(1));
return new PartitionedFilterBlockBuilder(
mopt.prefix_extractor.get(), table_opt.whole_key_filtering,
filter_bits_builder, table_opt.index_block_restart_interval,
use_delta_encoding_for_index_values, p_index_builder, partition_size);
} else {
return new FullFilterBlockBuilder(mopt.prefix_extractor.get(),
table_opt.whole_key_filtering,
filter_bits_builder);
}
}
}
bool GoodCompressionRatio(size_t compressed_size, size_t raw_size) {
// Check to see if compressed less than 12.5%
return compressed_size < raw_size - (raw_size / 8u);
}
bool CompressBlockInternal(const Slice& raw,
const CompressionInfo& compression_info,
uint32_t format_version,
std::string* compressed_output) {
// Will return compressed block contents if (1) the compression method is
// supported in this platform and (2) the compression rate is "good enough".
switch (compression_info.type()) {
case kSnappyCompression:
return Snappy_Compress(compression_info, raw.data(), raw.size(),
compressed_output);
case kZlibCompression:
return Zlib_Compress(
compression_info,
GetCompressFormatForVersion(kZlibCompression, format_version),
raw.data(), raw.size(), compressed_output);
case kBZip2Compression:
return BZip2_Compress(
compression_info,
GetCompressFormatForVersion(kBZip2Compression, format_version),
raw.data(), raw.size(), compressed_output);
case kLZ4Compression:
return LZ4_Compress(
compression_info,
GetCompressFormatForVersion(kLZ4Compression, format_version),
raw.data(), raw.size(), compressed_output);
case kLZ4HCCompression:
return LZ4HC_Compress(
compression_info,
GetCompressFormatForVersion(kLZ4HCCompression, format_version),
raw.data(), raw.size(), compressed_output);
case kXpressCompression:
return XPRESS_Compress(raw.data(), raw.size(), compressed_output);
case kZSTD:
case kZSTDNotFinalCompression:
return ZSTD_Compress(compression_info, raw.data(), raw.size(),
compressed_output);
default:
// Do not recognize this compression type
return false;
}
}
} // namespace
// format_version is the block format as defined in include/rocksdb/table.h
Slice CompressBlock(const Slice& raw, const CompressionInfo& info,
CompressionType* type, uint32_t format_version,
bool do_sample, std::string* compressed_output,
std::string* sampled_output_fast,
std::string* sampled_output_slow) {
*type = info.type();
if (info.type() == kNoCompression && !info.SampleForCompression()) {
return raw;
}
// If requested, we sample one in every N block with a
// fast and slow compression algorithm and report the stats.
// The users can use these stats to decide if it is worthwhile
// enabling compression and they also get a hint about which
// compression algorithm wil be beneficial.
if (do_sample && info.SampleForCompression() &&
Random::GetTLSInstance()->OneIn((int)info.SampleForCompression()) &&
sampled_output_fast && sampled_output_slow) {
// Sampling with a fast compression algorithm
if (LZ4_Supported() || Snappy_Supported()) {
CompressionType c =
LZ4_Supported() ? kLZ4Compression : kSnappyCompression;
CompressionContext context(c);
CompressionOptions options;
CompressionInfo info_tmp(options, context,
CompressionDict::GetEmptyDict(), c,
info.SampleForCompression());
CompressBlockInternal(raw, info_tmp, format_version, sampled_output_fast);
}
// Sampling with a slow but high-compression algorithm
if (ZSTD_Supported() || Zlib_Supported()) {
CompressionType c = ZSTD_Supported() ? kZSTD : kZlibCompression;
CompressionContext context(c);
CompressionOptions options;
CompressionInfo info_tmp(options, context,
CompressionDict::GetEmptyDict(), c,
info.SampleForCompression());
CompressBlockInternal(raw, info_tmp, format_version, sampled_output_slow);
}
}
// Actually compress the data
if (*type != kNoCompression) {
if (CompressBlockInternal(raw, info, format_version, compressed_output) &&
GoodCompressionRatio(compressed_output->size(), raw.size())) {
return *compressed_output;
}
}
// Compression method is not supported, or not good
// compression ratio, so just fall back to uncompressed form.
*type = kNoCompression;
return raw;
}
// kBlockBasedTableMagicNumber was picked by running
// echo rocksdb.table.block_based | sha1sum
// and taking the leading 64 bits.
// Please note that kBlockBasedTableMagicNumber may also be accessed by other
// .cc files
// for that reason we declare it extern in the header but to get the space
// allocated
// it must be not extern in one place.
const uint64_t kBlockBasedTableMagicNumber = 0x88e241b785f4cff7ull;
// We also support reading and writing legacy block based table format (for
// backwards compatibility)
const uint64_t kLegacyBlockBasedTableMagicNumber = 0xdb4775248b80fb57ull;
// A collector that collects properties of interest to block-based table.
// For now this class looks heavy-weight since we only write one additional
// property.
// But in the foreseeable future, we will add more and more properties that are
// specific to block-based table.
class BlockBasedTableBuilder::BlockBasedTablePropertiesCollector
: public IntTblPropCollector {
public:
explicit BlockBasedTablePropertiesCollector(
BlockBasedTableOptions::IndexType index_type, bool whole_key_filtering,
bool prefix_filtering)
: index_type_(index_type),
whole_key_filtering_(whole_key_filtering),
prefix_filtering_(prefix_filtering) {}
Status InternalAdd(const Slice& /*key*/, const Slice& /*value*/,
uint64_t /*file_size*/) override {
// Intentionally left blank. Have no interest in collecting stats for
// individual key/value pairs.
return Status::OK();
}
virtual void BlockAdd(uint64_t /* blockRawBytes */,
uint64_t /* blockCompressedBytesFast */,
uint64_t /* blockCompressedBytesSlow */) override {
// Intentionally left blank. No interest in collecting stats for
// blocks.
return;
}
Status Finish(UserCollectedProperties* properties) override {
std::string val;
PutFixed32(&val, static_cast<uint32_t>(index_type_));
properties->insert({BlockBasedTablePropertyNames::kIndexType, val});
properties->insert({BlockBasedTablePropertyNames::kWholeKeyFiltering,
whole_key_filtering_ ? kPropTrue : kPropFalse});
properties->insert({BlockBasedTablePropertyNames::kPrefixFiltering,
prefix_filtering_ ? kPropTrue : kPropFalse});
return Status::OK();
}
// The name of the properties collector can be used for debugging purpose.
const char* Name() const override {
return "BlockBasedTablePropertiesCollector";
}
UserCollectedProperties GetReadableProperties() const override {
// Intentionally left blank.
return UserCollectedProperties();
}
private:
BlockBasedTableOptions::IndexType index_type_;
bool whole_key_filtering_;
bool prefix_filtering_;
};
struct BlockBasedTableBuilder::Rep {
const ImmutableCFOptions ioptions;
const MutableCFOptions moptions;
const BlockBasedTableOptions table_options;
const InternalKeyComparator& internal_comparator;
WritableFileWriter* file;
std::atomic<uint64_t> offset;
Status status;
IOStatus io_status;
// Synchronize status & io_status accesses across threads from main thread,
// compression thread and write thread in parallel compression.
std::mutex status_mutex;
std::mutex io_status_mutex;
size_t alignment;
BlockBuilder data_block;
// Buffers uncompressed data blocks and keys to replay later. Needed when
// compression dictionary is enabled so we can finalize the dictionary before
// compressing any data blocks.
// TODO(ajkr): ideally we don't buffer all keys and all uncompressed data
// blocks as it's redundant, but it's easier to implement for now.
std::vector<std::pair<std::string, std::vector<std::string>>>
data_block_and_keys_buffers;
BlockBuilder range_del_block;
InternalKeySliceTransform internal_prefix_transform;
std::unique_ptr<IndexBuilder> index_builder;
PartitionedIndexBuilder* p_index_builder_ = nullptr;
std::string last_key;
const Slice* first_key_in_next_block = nullptr;
CompressionType compression_type;
uint64_t sample_for_compression;
CompressionOptions compression_opts;
std::unique_ptr<CompressionDict> compression_dict;
std::vector<std::unique_ptr<CompressionContext>> compression_ctxs;
std::vector<std::unique_ptr<UncompressionContext>> verify_ctxs;
std::unique_ptr<UncompressionDict> verify_dict;
size_t data_begin_offset = 0;
TableProperties props;
// States of the builder.
//
// - `kBuffered`: This is the initial state where zero or more data blocks are
// accumulated uncompressed in-memory. From this state, call
// `EnterUnbuffered()` to finalize the compression dictionary if enabled,
// compress/write out any buffered blocks, and proceed to the `kUnbuffered`
// state.
//
// - `kUnbuffered`: This is the state when compression dictionary is finalized
// either because it wasn't enabled in the first place or it's been created
// from sampling previously buffered data. In this state, blocks are simply
// compressed/written out as they fill up. From this state, call `Finish()`
// to complete the file (write meta-blocks, etc.), or `Abandon()` to delete
// the partially created file.
//
// - `kClosed`: This indicates either `Finish()` or `Abandon()` has been
// called, so the table builder is no longer usable. We must be in this
// state by the time the destructor runs.
enum class State {
kBuffered,
kUnbuffered,
kClosed,
};
State state;
const bool use_delta_encoding_for_index_values;
std::unique_ptr<FilterBlockBuilder> filter_builder;
char compressed_cache_key_prefix[BlockBasedTable::kMaxCacheKeyPrefixSize];
size_t compressed_cache_key_prefix_size;
BlockHandle pending_handle; // Handle to add to index block
std::string compressed_output;
std::unique_ptr<FlushBlockPolicy> flush_block_policy;
int level_at_creation;
uint32_t column_family_id;
const std::string& column_family_name;
uint64_t creation_time = 0;
uint64_t oldest_key_time = 0;
const uint64_t target_file_size;
uint64_t file_creation_time = 0;
std::vector<std::unique_ptr<IntTblPropCollector>> table_properties_collectors;
std::unique_ptr<ParallelCompressionRep> pc_rep;
uint64_t get_offset() { return offset.load(std::memory_order_relaxed); }
void set_offset(uint64_t o) { offset.store(o, std::memory_order_relaxed); }
Rep(const ImmutableCFOptions& _ioptions, const MutableCFOptions& _moptions,
const BlockBasedTableOptions& table_opt,
const InternalKeyComparator& icomparator,
const std::vector<std::unique_ptr<IntTblPropCollectorFactory>>*
int_tbl_prop_collector_factories,
uint32_t _column_family_id, WritableFileWriter* f,
const CompressionType _compression_type,
const uint64_t _sample_for_compression,
const CompressionOptions& _compression_opts, const bool skip_filters,
const int _level_at_creation, const std::string& _column_family_name,
const uint64_t _creation_time, const uint64_t _oldest_key_time,
const uint64_t _target_file_size, const uint64_t _file_creation_time)
: ioptions(_ioptions),
moptions(_moptions),
table_options(table_opt),
internal_comparator(icomparator),
file(f),
offset(0),
alignment(table_options.block_align
? std::min(table_options.block_size, kDefaultPageSize)
: 0),
data_block(table_options.block_restart_interval,
table_options.use_delta_encoding,
false /* use_value_delta_encoding */,
icomparator.user_comparator()
->CanKeysWithDifferentByteContentsBeEqual()
? BlockBasedTableOptions::kDataBlockBinarySearch
: table_options.data_block_index_type,
table_options.data_block_hash_table_util_ratio),
range_del_block(1 /* block_restart_interval */),
internal_prefix_transform(_moptions.prefix_extractor.get()),
compression_type(_compression_type),
sample_for_compression(_sample_for_compression),
compression_opts(_compression_opts),
compression_dict(),
compression_ctxs(_compression_opts.parallel_threads),
verify_ctxs(_compression_opts.parallel_threads),
verify_dict(),
state((_compression_opts.max_dict_bytes > 0) ? State::kBuffered
: State::kUnbuffered),
use_delta_encoding_for_index_values(table_opt.format_version >= 4 &&
!table_opt.block_align),
compressed_cache_key_prefix_size(0),
flush_block_policy(
table_options.flush_block_policy_factory->NewFlushBlockPolicy(
table_options, data_block)),
level_at_creation(_level_at_creation),
column_family_id(_column_family_id),
column_family_name(_column_family_name),
creation_time(_creation_time),
oldest_key_time(_oldest_key_time),
target_file_size(_target_file_size),
file_creation_time(_file_creation_time) {
for (uint32_t i = 0; i < compression_opts.parallel_threads; i++) {
compression_ctxs[i].reset(new CompressionContext(compression_type));
}
if (table_options.index_type ==
BlockBasedTableOptions::kTwoLevelIndexSearch) {
p_index_builder_ = PartitionedIndexBuilder::CreateIndexBuilder(
&internal_comparator, use_delta_encoding_for_index_values,
table_options);
index_builder.reset(p_index_builder_);
} else {
index_builder.reset(IndexBuilder::CreateIndexBuilder(
table_options.index_type, &internal_comparator,
&this->internal_prefix_transform, use_delta_encoding_for_index_values,
table_options));
}
if (skip_filters) {
filter_builder = nullptr;
} else {
FilterBuildingContext context(table_options);
context.column_family_name = column_family_name;
context.compaction_style = ioptions.compaction_style;
context.level_at_creation = level_at_creation;
context.info_log = ioptions.info_log;
filter_builder.reset(CreateFilterBlockBuilder(
ioptions, moptions, context, use_delta_encoding_for_index_values,
p_index_builder_));
}
for (auto& collector_factories : *int_tbl_prop_collector_factories) {
table_properties_collectors.emplace_back(
collector_factories->CreateIntTblPropCollector(column_family_id));
}
table_properties_collectors.emplace_back(
new BlockBasedTablePropertiesCollector(
table_options.index_type, table_options.whole_key_filtering,
_moptions.prefix_extractor != nullptr));
if (table_options.verify_compression) {
for (uint32_t i = 0; i < compression_opts.parallel_threads; i++) {
verify_ctxs[i].reset(new UncompressionContext(
UncompressionContext::NoCache(), compression_type));
}
}
}
Rep(const Rep&) = delete;
Rep& operator=(const Rep&) = delete;
~Rep() {}
};
struct BlockBasedTableBuilder::ParallelCompressionRep {
// Keys is a wrapper of vector of strings avoiding
// releasing string memories during vector clear()
// in order to save memory allocation overhead
class Keys {
public:
Keys() : keys_(kKeysInitSize), size_(0) {}
void PushBack(const Slice& key) {
if (size_ == keys_.size()) {
keys_.emplace_back(key.data(), key.size());
} else {
keys_[size_].assign(key.data(), key.size());
}
size_++;
}
void SwapAssign(std::vector<std::string>& keys) {
size_ = keys.size();
std::swap(keys_, keys);
}
void Clear() { size_ = 0; }
size_t Size() { return size_; }
std::string& Back() { return keys_[size_ - 1]; }
std::string& operator[](size_t idx) {
assert(idx < size_);
return keys_[idx];
}
private:
const size_t kKeysInitSize = 32;
std::vector<std::string> keys_;
size_t size_;
};
std::unique_ptr<Keys> curr_block_keys;
class BlockRepSlot;
// BlockRep instances are fetched from and recycled to
// block_rep_pool during parallel compression.
struct BlockRep {
Slice contents;
std::unique_ptr<std::string> data;
std::unique_ptr<std::string> compressed_data;
CompressionType compression_type;
std::unique_ptr<std::string> first_key_in_next_block;
std::unique_ptr<Keys> keys;
std::unique_ptr<BlockRepSlot> slot;
Status status;
};
// Use a vector of BlockRep as a buffer for a determined number
// of BlockRep structures. All data referenced by pointers in
// BlockRep will be freed when this vector is destructed.
typedef std::vector<BlockRep> BlockRepBuffer;
BlockRepBuffer block_rep_buf;
// Use a thread-safe queue for concurrent access from block
// building thread and writer thread.
typedef WorkQueue<BlockRep*> BlockRepPool;
BlockRepPool block_rep_pool;
// Use BlockRepSlot to keep block order in write thread.
// slot_ will pass references to BlockRep
class BlockRepSlot {
public:
BlockRepSlot() : slot_(1) {}
template <typename T>
void Fill(T&& rep) {
slot_.push(std::forward<T>(rep));
};
void Take(BlockRep*& rep) { slot_.pop(rep); }
private:
// slot_ will pass references to BlockRep in block_rep_buf,
// and those references are always valid before the destruction of
// block_rep_buf.
WorkQueue<BlockRep*> slot_;
};
// Compression queue will pass references to BlockRep in block_rep_buf,
// and those references are always valid before the destruction of
// block_rep_buf.
typedef WorkQueue<BlockRep*> CompressQueue;
CompressQueue compress_queue;
std::vector<port::Thread> compress_thread_pool;
// Write queue will pass references to BlockRep::slot in block_rep_buf,
// and those references are always valid before the corresponding
// BlockRep::slot is destructed, which is before the destruction of
// block_rep_buf.
typedef WorkQueue<BlockRepSlot*> WriteQueue;
WriteQueue write_queue;
std::unique_ptr<port::Thread> write_thread;
// Raw bytes compressed so far.
uint64_t raw_bytes_compressed;
// Size of current block being appended.
uint64_t raw_bytes_curr_block;
// Raw bytes under compression and not appended yet.
std::atomic<uint64_t> raw_bytes_inflight;
// Number of blocks under compression and not appended yet.
std::atomic<uint64_t> blocks_inflight;
// Current compression ratio, maintained by BGWorkWriteRawBlock.
std::atomic<double> curr_compression_ratio;
// Estimated SST file size.
std::atomic<uint64_t> estimated_file_size;
// Wait for the completion of first block compression to get a
// non-zero compression ratio.
bool first_block;
std::condition_variable first_block_cond;
std::mutex first_block_mutex;
bool finished;
ParallelCompressionRep(uint32_t parallel_threads)
: curr_block_keys(new Keys()),
block_rep_buf(parallel_threads),
block_rep_pool(parallel_threads),
compress_queue(parallel_threads),
write_queue(parallel_threads),
raw_bytes_compressed(0),
raw_bytes_curr_block(0),
raw_bytes_inflight(0),
blocks_inflight(0),
curr_compression_ratio(0),
estimated_file_size(0),
first_block(true),
finished(false) {
for (uint32_t i = 0; i < parallel_threads; i++) {
block_rep_buf[i].contents = Slice();
block_rep_buf[i].data.reset(new std::string());
block_rep_buf[i].compressed_data.reset(new std::string());
block_rep_buf[i].compression_type = CompressionType();
block_rep_buf[i].first_key_in_next_block.reset(new std::string());
block_rep_buf[i].keys.reset(new Keys());
block_rep_buf[i].slot.reset(new BlockRepSlot());
block_rep_buf[i].status = Status::OK();
block_rep_pool.push(&block_rep_buf[i]);
}
}
~ParallelCompressionRep() { block_rep_pool.finish(); }
};
BlockBasedTableBuilder::BlockBasedTableBuilder(
const ImmutableCFOptions& ioptions, const MutableCFOptions& moptions,
const BlockBasedTableOptions& table_options,
const InternalKeyComparator& internal_comparator,
const std::vector<std::unique_ptr<IntTblPropCollectorFactory>>*
int_tbl_prop_collector_factories,
uint32_t column_family_id, WritableFileWriter* file,
const CompressionType compression_type,
const uint64_t sample_for_compression,
const CompressionOptions& compression_opts, const bool skip_filters,
const std::string& column_family_name, const int level_at_creation,
const uint64_t creation_time, const uint64_t oldest_key_time,
const uint64_t target_file_size, const uint64_t file_creation_time) {
BlockBasedTableOptions sanitized_table_options(table_options);
if (sanitized_table_options.format_version == 0 &&
sanitized_table_options.checksum != kCRC32c) {
ROCKS_LOG_WARN(
ioptions.info_log,
"Silently converting format_version to 1 because checksum is "
"non-default");
// silently convert format_version to 1 to keep consistent with current
// behavior
sanitized_table_options.format_version = 1;
}
rep_ = new Rep(ioptions, moptions, sanitized_table_options,
internal_comparator, int_tbl_prop_collector_factories,
column_family_id, file, compression_type,
sample_for_compression, compression_opts, skip_filters,
level_at_creation, column_family_name, creation_time,
oldest_key_time, target_file_size, file_creation_time);
if (rep_->filter_builder != nullptr) {
rep_->filter_builder->StartBlock(0);
}
if (table_options.block_cache_compressed.get() != nullptr) {
BlockBasedTable::GenerateCachePrefix(
table_options.block_cache_compressed.get(), file->writable_file(),
&rep_->compressed_cache_key_prefix[0],
&rep_->compressed_cache_key_prefix_size);
}
if (rep_->compression_opts.parallel_threads > 1) {
rep_->pc_rep.reset(
new ParallelCompressionRep(rep_->compression_opts.parallel_threads));
rep_->pc_rep->compress_thread_pool.reserve(
rep_->compression_opts.parallel_threads);
for (uint32_t i = 0; i < rep_->compression_opts.parallel_threads; i++) {
rep_->pc_rep->compress_thread_pool.emplace_back([this, i] {
BGWorkCompression(*(rep_->compression_ctxs[i]),
rep_->verify_ctxs[i].get());
});
}
rep_->pc_rep->write_thread.reset(
new port::Thread([this] { BGWorkWriteRawBlock(); }));
}
}
BlockBasedTableBuilder::~BlockBasedTableBuilder() {
// Catch errors where caller forgot to call Finish()
assert(rep_->state == Rep::State::kClosed);
delete rep_;
}
void BlockBasedTableBuilder::Add(const Slice& key, const Slice& value) {
Rep* r = rep_;
assert(rep_->state != Rep::State::kClosed);
if (!ok()) return;
ValueType value_type = ExtractValueType(key);
if (IsValueType(value_type)) {
#ifndef NDEBUG
if (r->props.num_entries > r->props.num_range_deletions) {
assert(r->internal_comparator.Compare(key, Slice(r->last_key)) > 0);
}
#endif // NDEBUG
auto should_flush = r->flush_block_policy->Update(key, value);
if (should_flush) {
assert(!r->data_block.empty());
r->first_key_in_next_block = &key;
Flush();
if (r->state == Rep::State::kBuffered &&
r->data_begin_offset > r->target_file_size) {
EnterUnbuffered();
}
// Add item to index block.
// We do not emit the index entry for a block until we have seen the
// first key for the next data block. This allows us to use shorter
// keys in the index block. For example, consider a block boundary
// between the keys "the quick brown fox" and "the who". We can use
// "the r" as the key for the index block entry since it is >= all
// entries in the first block and < all entries in subsequent
// blocks.
if (ok() && r->state == Rep::State::kUnbuffered) {
if (r->compression_opts.parallel_threads > 1) {
r->pc_rep->curr_block_keys->Clear();
} else {
r->index_builder->AddIndexEntry(&r->last_key, &key,
r->pending_handle);
}
}
}
// Note: PartitionedFilterBlockBuilder requires key being added to filter
// builder after being added to index builder.
if (r->state == Rep::State::kUnbuffered) {
if (r->compression_opts.parallel_threads > 1) {
r->pc_rep->curr_block_keys->PushBack(key);
} else {
if (r->filter_builder != nullptr) {
size_t ts_sz =
r->internal_comparator.user_comparator()->timestamp_size();
r->filter_builder->Add(ExtractUserKeyAndStripTimestamp(key, ts_sz));
}
}
}
r->last_key.assign(key.data(), key.size());
r->data_block.Add(key, value);
if (r->state == Rep::State::kBuffered) {
// Buffer keys to be replayed during `Finish()` once compression
// dictionary has been finalized.
if (r->data_block_and_keys_buffers.empty() || should_flush) {
r->data_block_and_keys_buffers.emplace_back();
}
r->data_block_and_keys_buffers.back().second.emplace_back(key.ToString());
} else {
if (r->compression_opts.parallel_threads == 1) {
r->index_builder->OnKeyAdded(key);
}
}
// TODO offset passed in is not accurate for parallel compression case
NotifyCollectTableCollectorsOnAdd(key, value, r->get_offset(),
r->table_properties_collectors,
r->ioptions.info_log);
} else if (value_type == kTypeRangeDeletion) {
r->range_del_block.Add(key, value);
// TODO offset passed in is not accurate for parallel compression case
NotifyCollectTableCollectorsOnAdd(key, value, r->get_offset(),
r->table_properties_collectors,
r->ioptions.info_log);
} else {
assert(false);
}
r->props.num_entries++;
r->props.raw_key_size += key.size();
r->props.raw_value_size += value.size();
if (value_type == kTypeDeletion || value_type == kTypeSingleDeletion) {
r->props.num_deletions++;
} else if (value_type == kTypeRangeDeletion) {
r->props.num_deletions++;
r->props.num_range_deletions++;
} else if (value_type == kTypeMerge) {
r->props.num_merge_operands++;
}
}
void BlockBasedTableBuilder::Flush() {
Rep* r = rep_;
assert(rep_->state != Rep::State::kClosed);
if (!ok()) return;
if (r->data_block.empty()) return;
if (r->compression_opts.parallel_threads > 1 &&
r->state == Rep::State::kUnbuffered) {
ParallelCompressionRep::BlockRep* block_rep = nullptr;
r->pc_rep->block_rep_pool.pop(block_rep);
assert(block_rep != nullptr);
r->data_block.Finish();
assert(block_rep->data);
r->data_block.SwapAndReset(*(block_rep->data));
block_rep->contents = *(block_rep->data);
block_rep->compression_type = r->compression_type;
std::swap(block_rep->keys, r->pc_rep->curr_block_keys);
r->pc_rep->curr_block_keys->Clear();
if (r->first_key_in_next_block == nullptr) {
block_rep->first_key_in_next_block.reset(nullptr);
} else {
block_rep->first_key_in_next_block->assign(
r->first_key_in_next_block->data(),
r->first_key_in_next_block->size());
}
uint64_t new_raw_bytes_inflight =
r->pc_rep->raw_bytes_inflight.fetch_add(block_rep->data->size(),
std::memory_order_relaxed) +
block_rep->data->size();
uint64_t new_blocks_inflight =
r->pc_rep->blocks_inflight.fetch_add(1, std::memory_order_relaxed) + 1;
r->pc_rep->estimated_file_size.store(
r->get_offset() +
static_cast<uint64_t>(static_cast<double>(new_raw_bytes_inflight) *
r->pc_rep->curr_compression_ratio.load(
std::memory_order_relaxed)) +
new_blocks_inflight * kBlockTrailerSize,
std::memory_order_relaxed);
// Read out first_block here to avoid data race with BGWorkWriteRawBlock
bool first_block = r->pc_rep->first_block;
assert(block_rep->status.ok());
if (!r->pc_rep->write_queue.push(block_rep->slot.get())) {
return;
}
if (!r->pc_rep->compress_queue.push(block_rep)) {
return;
}
if (first_block) {
std::unique_lock<std::mutex> lock(r->pc_rep->first_block_mutex);
r->pc_rep->first_block_cond.wait(lock,
[r] { return !r->pc_rep->first_block; });
}
} else {
WriteBlock(&r->data_block, &r->pending_handle, true /* is_data_block */);
}
}
void BlockBasedTableBuilder::WriteBlock(BlockBuilder* block,
BlockHandle* handle,
bool is_data_block) {
WriteBlock(block->Finish(), handle, is_data_block);
block->Reset();
}
void BlockBasedTableBuilder::WriteBlock(const Slice& raw_block_contents,
BlockHandle* handle,
bool is_data_block) {
Rep* r = rep_;
Slice block_contents;
CompressionType type;
if (r->state == Rep::State::kBuffered) {
assert(is_data_block);
assert(!r->data_block_and_keys_buffers.empty());
r->data_block_and_keys_buffers.back().first = raw_block_contents.ToString();
r->data_begin_offset += r->data_block_and_keys_buffers.back().first.size();
return;
}
CompressAndVerifyBlock(raw_block_contents, is_data_block,
*(r->compression_ctxs[0]), r->verify_ctxs[0].get(),
r->compressed_output, block_contents, type, r->status);
if (!ok()) {
return;
}
WriteRawBlock(block_contents, type, handle, is_data_block);
r->compressed_output.clear();
if (is_data_block) {
if (r->filter_builder != nullptr) {
r->filter_builder->StartBlock(r->get_offset());
}
r->props.data_size = r->get_offset();
++r->props.num_data_blocks;
}
}
void BlockBasedTableBuilder::BGWorkCompression(
CompressionContext& compression_ctx, UncompressionContext* verify_ctx) {
ParallelCompressionRep::BlockRep* block_rep;
while (rep_->pc_rep->compress_queue.pop(block_rep)) {
CompressAndVerifyBlock(block_rep->contents, true, /* is_data_block*/
compression_ctx, verify_ctx,
*(block_rep->compressed_data), block_rep->contents,
block_rep->compression_type, block_rep->status);
block_rep->slot->Fill(block_rep);
}
}
void BlockBasedTableBuilder::CompressAndVerifyBlock(
const Slice& raw_block_contents, bool is_data_block,
CompressionContext& compression_ctx, UncompressionContext* verify_ctx_ptr,
std::string& compressed_output, Slice& block_contents,
CompressionType& type, Status& out_status) {
// File format contains a sequence of blocks where each block has:
// block_data: uint8[n]
// type: uint8
// crc: uint32
assert(ok());
Rep* r = rep_;
type = r->compression_type;
uint64_t sample_for_compression = r->sample_for_compression;
bool abort_compression = false;
StopWatchNano timer(
r->ioptions.env,
ShouldReportDetailedTime(r->ioptions.env, r->ioptions.statistics));
if (raw_block_contents.size() < kCompressionSizeLimit) {
const CompressionDict* compression_dict;
if (!is_data_block || r->compression_dict == nullptr) {
compression_dict = &CompressionDict::GetEmptyDict();
} else {
compression_dict = r->compression_dict.get();
}
assert(compression_dict != nullptr);
CompressionInfo compression_info(r->compression_opts, compression_ctx,
*compression_dict, type,
sample_for_compression);
std::string sampled_output_fast;
std::string sampled_output_slow;
block_contents = CompressBlock(
raw_block_contents, compression_info, &type,
r->table_options.format_version, is_data_block /* do_sample */,
&compressed_output, &sampled_output_fast, &sampled_output_slow);
// notify collectors on block add
NotifyCollectTableCollectorsOnBlockAdd(
r->table_properties_collectors, raw_block_contents.size(),
sampled_output_fast.size(), sampled_output_slow.size());
// Some of the compression algorithms are known to be unreliable. If
// the verify_compression flag is set then try to de-compress the
// compressed data and compare to the input.
if (type != kNoCompression && r->table_options.verify_compression) {
// Retrieve the uncompressed contents into a new buffer
const UncompressionDict* verify_dict;
if (!is_data_block || r->verify_dict == nullptr) {
verify_dict = &UncompressionDict::GetEmptyDict();
} else {
verify_dict = r->verify_dict.get();
}
assert(verify_dict != nullptr);
BlockContents contents;
UncompressionInfo uncompression_info(*verify_ctx_ptr, *verify_dict,
r->compression_type);
Status stat = UncompressBlockContentsForCompressionType(
uncompression_info, block_contents.data(), block_contents.size(),
&contents, r->table_options.format_version, r->ioptions);
if (stat.ok()) {
bool compressed_ok = contents.data.compare(raw_block_contents) == 0;
if (!compressed_ok) {
// The result of the compression was invalid. abort.
abort_compression = true;
ROCKS_LOG_ERROR(r->ioptions.info_log,
"Decompressed block did not match raw block");
out_status =
Status::Corruption("Decompressed block did not match raw block");
}
} else {
// Decompression reported an error. abort.
out_status = Status::Corruption("Could not decompress");
abort_compression = true;
}
}
} else {
// Block is too big to be compressed.
abort_compression = true;
}
// Abort compression if the block is too big, or did not pass
// verification.
if (abort_compression) {
RecordTick(r->ioptions.statistics, NUMBER_BLOCK_NOT_COMPRESSED);
type = kNoCompression;
block_contents = raw_block_contents;
} else if (type != kNoCompression) {
if (ShouldReportDetailedTime(r->ioptions.env, r->ioptions.statistics)) {
RecordTimeToHistogram(r->ioptions.statistics, COMPRESSION_TIMES_NANOS,
timer.ElapsedNanos());
}
RecordInHistogram(r->ioptions.statistics, BYTES_COMPRESSED,
raw_block_contents.size());
RecordTick(r->ioptions.statistics, NUMBER_BLOCK_COMPRESSED);
} else if (type != r->compression_type) {
RecordTick(r->ioptions.statistics, NUMBER_BLOCK_NOT_COMPRESSED);
}
}
void BlockBasedTableBuilder::WriteRawBlock(const Slice& block_contents,
CompressionType type,
BlockHandle* handle,
bool is_data_block) {
Rep* r = rep_;
Status s = Status::OK();
IOStatus io_s = IOStatus::OK();
StopWatch sw(r->ioptions.env, r->ioptions.statistics, WRITE_RAW_BLOCK_MICROS);
handle->set_offset(r->get_offset());
handle->set_size(block_contents.size());
assert(status().ok());
assert(io_status().ok());
io_s = r->file->Append(block_contents);
if (io_s.ok()) {
char trailer[kBlockTrailerSize];
trailer[0] = type;
char* trailer_without_type = trailer + 1;
switch (r->table_options.checksum) {
case kNoChecksum:
EncodeFixed32(trailer_without_type, 0);
break;
case kCRC32c: {
auto crc = crc32c::Value(block_contents.data(), block_contents.size());
crc = crc32c::Extend(crc, trailer, 1); // Extend to cover block type
EncodeFixed32(trailer_without_type, crc32c::Mask(crc));
break;
}
case kxxHash: {
XXH32_state_t* const state = XXH32_createState();
XXH32_reset(state, 0);
XXH32_update(state, block_contents.data(),
static_cast<uint32_t>(block_contents.size()));
XXH32_update(state, trailer, 1); // Extend to cover block type
EncodeFixed32(trailer_without_type, XXH32_digest(state));
XXH32_freeState(state);
break;
}
case kxxHash64: {
XXH64_state_t* const state = XXH64_createState();
XXH64_reset(state, 0);
XXH64_update(state, block_contents.data(),
static_cast<uint32_t>(block_contents.size()));
XXH64_update(state, trailer, 1); // Extend to cover block type
EncodeFixed32(
trailer_without_type,
static_cast<uint32_t>(XXH64_digest(state) & // lower 32 bits
uint64_t{0xffffffff}));
XXH64_freeState(state);
break;
}
}
assert(io_s.ok());
TEST_SYNC_POINT_CALLBACK(
"BlockBasedTableBuilder::WriteRawBlock:TamperWithChecksum",
static_cast<char*>(trailer));
io_s = r->file->Append(Slice(trailer, kBlockTrailerSize));
if (io_s.ok()) {
s = InsertBlockInCache(block_contents, type, handle);
if (!s.ok()) {
SetStatusAtom(s);
}
} else {
SetIOStatusAtom(io_s);
}
if (s.ok() && io_s.ok()) {
r->set_offset(r->get_offset() + block_contents.size() +
kBlockTrailerSize);
if (r->table_options.block_align && is_data_block) {
size_t pad_bytes =
(r->alignment - ((block_contents.size() + kBlockTrailerSize) &
(r->alignment - 1))) &
(r->alignment - 1);
io_s = r->file->Pad(pad_bytes);
if (io_s.ok()) {
r->set_offset(r->get_offset() + pad_bytes);
} else {
SetIOStatusAtom(io_s);
}
}
if (r->compression_opts.parallel_threads > 1) {
if (!r->pc_rep->finished) {
assert(r->pc_rep->raw_bytes_compressed +
r->pc_rep->raw_bytes_curr_block >
0);
r->pc_rep->curr_compression_ratio.store(
(r->pc_rep->curr_compression_ratio.load(
std::memory_order_relaxed) *
r->pc_rep->raw_bytes_compressed +
block_contents.size()) /
static_cast<double>(r->pc_rep->raw_bytes_compressed +
r->pc_rep->raw_bytes_curr_block),
std::memory_order_relaxed);
r->pc_rep->raw_bytes_compressed += r->pc_rep->raw_bytes_curr_block;
uint64_t new_raw_bytes_inflight =
r->pc_rep->raw_bytes_inflight.fetch_sub(
r->pc_rep->raw_bytes_curr_block, std::memory_order_relaxed) -
r->pc_rep->raw_bytes_curr_block;
uint64_t new_blocks_inflight = r->pc_rep->blocks_inflight.fetch_sub(
1, std::memory_order_relaxed) -
1;
r->pc_rep->estimated_file_size.store(
r->get_offset() +
static_cast<uint64_t>(
static_cast<double>(new_raw_bytes_inflight) *
r->pc_rep->curr_compression_ratio.load(
std::memory_order_relaxed)) +
new_blocks_inflight * kBlockTrailerSize,
std::memory_order_relaxed);
} else {
r->pc_rep->estimated_file_size.store(r->get_offset(),
std::memory_order_relaxed);
}
}
}
} else {
SetIOStatusAtom(io_s);
}
if (!io_s.ok() && s.ok()) {
SetStatusAtom(io_s);
}
}
void BlockBasedTableBuilder::BGWorkWriteRawBlock() {
Rep* r = rep_;
ParallelCompressionRep::BlockRepSlot* slot;
ParallelCompressionRep::BlockRep* block_rep;
while (r->pc_rep->write_queue.pop(slot)) {
slot->Take(block_rep);
if (!block_rep->status.ok()) {
SetStatusAtom(block_rep->status);
break;
}
for (size_t i = 0; i < block_rep->keys->Size(); i++) {
auto& key = (*block_rep->keys)[i];
if (r->filter_builder != nullptr) {
size_t ts_sz =
r->internal_comparator.user_comparator()->timestamp_size();
r->filter_builder->Add(ExtractUserKeyAndStripTimestamp(key, ts_sz));
}
r->index_builder->OnKeyAdded(key);
}
r->pc_rep->raw_bytes_curr_block = block_rep->data->size();
WriteRawBlock(block_rep->contents, block_rep->compression_type,
&r->pending_handle, true /* is_data_block*/);
if (!r->status.ok()) {
break;
}
if (r->pc_rep->first_block) {
std::lock_guard<std::mutex> lock(r->pc_rep->first_block_mutex);
r->pc_rep->first_block = false;
r->pc_rep->first_block_cond.notify_one();
}
if (r->filter_builder != nullptr) {
r->filter_builder->StartBlock(r->get_offset());
}
r->props.data_size = r->get_offset();
++r->props.num_data_blocks;
if (block_rep->first_key_in_next_block == nullptr) {
r->index_builder->AddIndexEntry(&(block_rep->keys->Back()), nullptr,
r->pending_handle);
} else {
Slice first_key_in_next_block =
Slice(*block_rep->first_key_in_next_block);
r->index_builder->AddIndexEntry(&(block_rep->keys->Back()),
&first_key_in_next_block,
r->pending_handle);
}
block_rep->compressed_data->clear();
r->pc_rep->block_rep_pool.push(block_rep);
}
}
Status BlockBasedTableBuilder::status() const {
if (rep_->compression_opts.parallel_threads > 1) {
std::lock_guard<std::mutex> lock(rep_->status_mutex);
return rep_->status;
} else {
return rep_->status;
}
}
IOStatus BlockBasedTableBuilder::io_status() const {
if (rep_->compression_opts.parallel_threads > 1) {
std::lock_guard<std::mutex> lock(rep_->io_status_mutex);
return rep_->io_status;
} else {
return rep_->io_status;
}
}
void BlockBasedTableBuilder::SetStatusAtom(Status s) {
if (rep_->compression_opts.parallel_threads > 1) {
std::lock_guard<std::mutex> lock(rep_->status_mutex);
rep_->status = s;
} else {
rep_->status = s;
}
}
void BlockBasedTableBuilder::SetIOStatusAtom(IOStatus io_s) {
if (rep_->compression_opts.parallel_threads > 1) {
std::lock_guard<std::mutex> lock(rep_->io_status_mutex);
rep_->io_status = io_s;
} else {
rep_->io_status = io_s;
}
}
static void DeleteCachedBlockContents(const Slice& /*key*/, void* value) {
BlockContents* bc = reinterpret_cast<BlockContents*>(value);
delete bc;
}
//
// Make a copy of the block contents and insert into compressed block cache
//
Status BlockBasedTableBuilder::InsertBlockInCache(const Slice& block_contents,
const CompressionType type,
const BlockHandle* handle) {
Rep* r = rep_;
Cache* block_cache_compressed = r->table_options.block_cache_compressed.get();
if (type != kNoCompression && block_cache_compressed != nullptr) {
size_t size = block_contents.size();
auto ubuf =
AllocateBlock(size + 1, block_cache_compressed->memory_allocator());
memcpy(ubuf.get(), block_contents.data(), size);
ubuf[size] = type;
BlockContents* block_contents_to_cache =
new BlockContents(std::move(ubuf), size);
#ifndef NDEBUG
block_contents_to_cache->is_raw_block = true;
#endif // NDEBUG
// make cache key by appending the file offset to the cache prefix id
char* end = EncodeVarint64(
r->compressed_cache_key_prefix + r->compressed_cache_key_prefix_size,
handle->offset());
Slice key(r->compressed_cache_key_prefix,
static_cast<size_t>(end - r->compressed_cache_key_prefix));
// Insert into compressed block cache.
block_cache_compressed->Insert(
key, block_contents_to_cache,
block_contents_to_cache->ApproximateMemoryUsage(),
&DeleteCachedBlockContents);
// Invalidate OS cache.
r->file->InvalidateCache(static_cast<size_t>(r->get_offset()), size);
}
return Status::OK();
}
void BlockBasedTableBuilder::WriteFilterBlock(
MetaIndexBuilder* meta_index_builder) {
BlockHandle filter_block_handle;
bool empty_filter_block = (rep_->filter_builder == nullptr ||
rep_->filter_builder->NumAdded() == 0);
if (ok() && !empty_filter_block) {
Status s = Status::Incomplete();
while (ok() && s.IsIncomplete()) {
Slice filter_content =
rep_->filter_builder->Finish(filter_block_handle, &s);
assert(s.ok() || s.IsIncomplete());
rep_->props.filter_size += filter_content.size();
WriteRawBlock(filter_content, kNoCompression, &filter_block_handle);
}
}
if (ok() && !empty_filter_block) {
// Add mapping from "<filter_block_prefix>.Name" to location
// of filter data.
std::string key;
if (rep_->filter_builder->IsBlockBased()) {
key = BlockBasedTable::kFilterBlockPrefix;
} else {
key = rep_->table_options.partition_filters
? BlockBasedTable::kPartitionedFilterBlockPrefix
: BlockBasedTable::kFullFilterBlockPrefix;
}
key.append(rep_->table_options.filter_policy->Name());
meta_index_builder->Add(key, filter_block_handle);
}
}
void BlockBasedTableBuilder::WriteIndexBlock(
MetaIndexBuilder* meta_index_builder, BlockHandle* index_block_handle) {
IndexBuilder::IndexBlocks index_blocks;
auto index_builder_status = rep_->index_builder->Finish(&index_blocks);
if (index_builder_status.IsIncomplete()) {
// We we have more than one index partition then meta_blocks are not
// supported for the index. Currently meta_blocks are used only by
// HashIndexBuilder which is not multi-partition.
assert(index_blocks.meta_blocks.empty());
} else if (ok() && !index_builder_status.ok()) {
rep_->status = index_builder_status;
}
if (ok()) {
for (const auto& item : index_blocks.meta_blocks) {
BlockHandle block_handle;
WriteBlock(item.second, &block_handle, false /* is_data_block */);
if (!ok()) {
break;
}
meta_index_builder->Add(item.first, block_handle);
}
}
if (ok()) {
if (rep_->table_options.enable_index_compression) {
WriteBlock(index_blocks.index_block_contents, index_block_handle, false);
} else {
WriteRawBlock(index_blocks.index_block_contents, kNoCompression,
index_block_handle);
}
}
// If there are more index partitions, finish them and write them out
Status s = index_builder_status;
while (ok() && s.IsIncomplete()) {
s = rep_->index_builder->Finish(&index_blocks, *index_block_handle);
if (!s.ok() && !s.IsIncomplete()) {
rep_->status = s;
return;
}
if (rep_->table_options.enable_index_compression) {
WriteBlock(index_blocks.index_block_contents, index_block_handle, false);
} else {
WriteRawBlock(index_blocks.index_block_contents, kNoCompression,
index_block_handle);
}
// The last index_block_handle will be for the partition index block
}
}
void BlockBasedTableBuilder::WritePropertiesBlock(
MetaIndexBuilder* meta_index_builder) {
BlockHandle properties_block_handle;
if (ok()) {
PropertyBlockBuilder property_block_builder;
rep_->props.column_family_id = rep_->column_family_id;
rep_->props.column_family_name = rep_->column_family_name;
rep_->props.filter_policy_name =
rep_->table_options.filter_policy != nullptr
? rep_->table_options.filter_policy->Name()
: "";
rep_->props.index_size =
rep_->index_builder->IndexSize() + kBlockTrailerSize;
rep_->props.comparator_name = rep_->ioptions.user_comparator != nullptr
? rep_->ioptions.user_comparator->Name()
: "nullptr";
rep_->props.merge_operator_name =
rep_->ioptions.merge_operator != nullptr
? rep_->ioptions.merge_operator->Name()
: "nullptr";
rep_->props.compression_name =
CompressionTypeToString(rep_->compression_type);
rep_->props.compression_options =
CompressionOptionsToString(rep_->compression_opts);
rep_->props.prefix_extractor_name =
rep_->moptions.prefix_extractor != nullptr
? rep_->moptions.prefix_extractor->Name()
: "nullptr";
std::string property_collectors_names = "[";
for (size_t i = 0;
i < rep_->ioptions.table_properties_collector_factories.size(); ++i) {
if (i != 0) {
property_collectors_names += ",";
}
property_collectors_names +=
rep_->ioptions.table_properties_collector_factories[i]->Name();
}
property_collectors_names += "]";
rep_->props.property_collectors_names = property_collectors_names;
if (rep_->table_options.index_type ==
BlockBasedTableOptions::kTwoLevelIndexSearch) {
assert(rep_->p_index_builder_ != nullptr);
rep_->props.index_partitions = rep_->p_index_builder_->NumPartitions();
rep_->props.top_level_index_size =
rep_->p_index_builder_->TopLevelIndexSize(rep_->offset);
}
rep_->props.index_key_is_user_key =
!rep_->index_builder->seperator_is_key_plus_seq();
rep_->props.index_value_is_delta_encoded =
rep_->use_delta_encoding_for_index_values;
rep_->props.creation_time = rep_->creation_time;
rep_->props.oldest_key_time = rep_->oldest_key_time;
rep_->props.file_creation_time = rep_->file_creation_time;
// Add basic properties
property_block_builder.AddTableProperty(rep_->props);
// Add use collected properties
NotifyCollectTableCollectorsOnFinish(rep_->table_properties_collectors,
rep_->ioptions.info_log,
&property_block_builder);
WriteRawBlock(property_block_builder.Finish(), kNoCompression,
&properties_block_handle);
}
if (ok()) {
#ifndef NDEBUG
{
uint64_t props_block_offset = properties_block_handle.offset();
uint64_t props_block_size = properties_block_handle.size();
TEST_SYNC_POINT_CALLBACK(
"BlockBasedTableBuilder::WritePropertiesBlock:GetPropsBlockOffset",
&props_block_offset);
TEST_SYNC_POINT_CALLBACK(
"BlockBasedTableBuilder::WritePropertiesBlock:GetPropsBlockSize",
&props_block_size);
}
#endif // !NDEBUG
meta_index_builder->Add(kPropertiesBlock, properties_block_handle);
}
}
void BlockBasedTableBuilder::WriteCompressionDictBlock(
MetaIndexBuilder* meta_index_builder) {
if (rep_->compression_dict != nullptr &&
rep_->compression_dict->GetRawDict().size()) {
BlockHandle compression_dict_block_handle;
if (ok()) {
WriteRawBlock(rep_->compression_dict->GetRawDict(), kNoCompression,
&compression_dict_block_handle);
#ifndef NDEBUG
Slice compression_dict = rep_->compression_dict->GetRawDict();
TEST_SYNC_POINT_CALLBACK(
"BlockBasedTableBuilder::WriteCompressionDictBlock:RawDict",
&compression_dict);
#endif // NDEBUG
}
if (ok()) {
meta_index_builder->Add(kCompressionDictBlock,
compression_dict_block_handle);
}
}
}
void BlockBasedTableBuilder::WriteRangeDelBlock(
MetaIndexBuilder* meta_index_builder) {
if (ok() && !rep_->range_del_block.empty()) {
BlockHandle range_del_block_handle;
WriteRawBlock(rep_->range_del_block.Finish(), kNoCompression,
&range_del_block_handle);
meta_index_builder->Add(kRangeDelBlock, range_del_block_handle);
}
}
void BlockBasedTableBuilder::WriteFooter(BlockHandle& metaindex_block_handle,
BlockHandle& index_block_handle) {
Rep* r = rep_;
// No need to write out new footer if we're using default checksum.
// We're writing legacy magic number because we want old versions of RocksDB
// be able to read files generated with new release (just in case if
// somebody wants to roll back after an upgrade)
// TODO(icanadi) at some point in the future, when we're absolutely sure
// nobody will roll back to RocksDB 2.x versions, retire the legacy magic
// number and always write new table files with new magic number
bool legacy = (r->table_options.format_version == 0);
// this is guaranteed by BlockBasedTableBuilder's constructor
assert(r->table_options.checksum == kCRC32c ||
r->table_options.format_version != 0);
Footer footer(
legacy ? kLegacyBlockBasedTableMagicNumber : kBlockBasedTableMagicNumber,
r->table_options.format_version);
footer.set_metaindex_handle(metaindex_block_handle);
footer.set_index_handle(index_block_handle);
footer.set_checksum(r->table_options.checksum);
std::string footer_encoding;
footer.EncodeTo(&footer_encoding);
assert(r->status.ok());
assert(r->io_status.ok());
r->io_status = r->file->Append(footer_encoding);
if (r->io_status.ok()) {
r->set_offset(r->get_offset() + footer_encoding.size());
}
r->status = r->io_status;
}
void BlockBasedTableBuilder::EnterUnbuffered() {
Rep* r = rep_;
assert(r->state == Rep::State::kBuffered);
r->state = Rep::State::kUnbuffered;
const size_t kSampleBytes = r->compression_opts.zstd_max_train_bytes > 0
? r->compression_opts.zstd_max_train_bytes
: r->compression_opts.max_dict_bytes;
Random64 generator{r->creation_time};
std::string compression_dict_samples;
std::vector<size_t> compression_dict_sample_lens;
if (!r->data_block_and_keys_buffers.empty()) {
while (compression_dict_samples.size() < kSampleBytes) {
size_t rand_idx =
static_cast<size_t>(
generator.Uniform(r->data_block_and_keys_buffers.size()));
size_t copy_len =
std::min(kSampleBytes - compression_dict_samples.size(),
r->data_block_and_keys_buffers[rand_idx].first.size());
compression_dict_samples.append(
r->data_block_and_keys_buffers[rand_idx].first, 0, copy_len);
compression_dict_sample_lens.emplace_back(copy_len);
}
}
// final data block flushed, now we can generate dictionary from the samples.
// OK if compression_dict_samples is empty, we'll just get empty dictionary.
std::string dict;
if (r->compression_opts.zstd_max_train_bytes > 0) {
dict = ZSTD_TrainDictionary(compression_dict_samples,
compression_dict_sample_lens,
r->compression_opts.max_dict_bytes);
} else {
dict = std::move(compression_dict_samples);
}
r->compression_dict.reset(new CompressionDict(dict, r->compression_type,
r->compression_opts.level));
r->verify_dict.reset(new UncompressionDict(
dict, r->compression_type == kZSTD ||
r->compression_type == kZSTDNotFinalCompression));
for (size_t i = 0; ok() && i < r->data_block_and_keys_buffers.size(); ++i) {
auto& data_block = r->data_block_and_keys_buffers[i].first;
auto& keys = r->data_block_and_keys_buffers[i].second;
assert(!data_block.empty());
assert(!keys.empty());
if (r->compression_opts.parallel_threads > 1) {
ParallelCompressionRep::BlockRep* block_rep;
r->pc_rep->block_rep_pool.pop(block_rep);
std::swap(*(block_rep->data), data_block);
block_rep->contents = *(block_rep->data);
block_rep->compression_type = r->compression_type;
block_rep->keys->SwapAssign(keys);
if (i + 1 < r->data_block_and_keys_buffers.size()) {
block_rep->first_key_in_next_block->assign(
r->data_block_and_keys_buffers[i + 1].second.front());
} else {
block_rep->first_key_in_next_block.reset(nullptr);
}
assert(block_rep->status.ok());
if (!r->pc_rep->write_queue.push(block_rep->slot.get())) {
return;
}
if (!r->pc_rep->compress_queue.push(block_rep)) {
return;
}
} else {
for (const auto& key : keys) {
if (r->filter_builder != nullptr) {
size_t ts_sz =
r->internal_comparator.user_comparator()->timestamp_size();
r->filter_builder->Add(ExtractUserKeyAndStripTimestamp(key, ts_sz));
}
r->index_builder->OnKeyAdded(key);
}
WriteBlock(Slice(data_block), &r->pending_handle,
true /* is_data_block */);
if (ok() && i + 1 < r->data_block_and_keys_buffers.size()) {
Slice first_key_in_next_block =
r->data_block_and_keys_buffers[i + 1].second.front();
Slice* first_key_in_next_block_ptr = &first_key_in_next_block;
r->index_builder->AddIndexEntry(
&keys.back(), first_key_in_next_block_ptr, r->pending_handle);
}
}
}
r->data_block_and_keys_buffers.clear();
}
Status BlockBasedTableBuilder::Finish() {
Rep* r = rep_;
assert(r->state != Rep::State::kClosed);
bool empty_data_block = r->data_block.empty();
r->first_key_in_next_block = nullptr;
Flush();
if (r->state == Rep::State::kBuffered) {
EnterUnbuffered();
}
if (r->compression_opts.parallel_threads > 1) {
r->pc_rep->compress_queue.finish();
for (auto& thread : r->pc_rep->compress_thread_pool) {
thread.join();
}
r->pc_rep->write_queue.finish();
r->pc_rep->write_thread->join();
r->pc_rep->finished = true;
} else {
// To make sure properties block is able to keep the accurate size of index
// block, we will finish writing all index entries first.
if (ok() && !empty_data_block) {
r->index_builder->AddIndexEntry(
&r->last_key, nullptr /* no next data block */, r->pending_handle);
}
}
// Write meta blocks, metaindex block and footer in the following order.
// 1. [meta block: filter]
// 2. [meta block: index]
// 3. [meta block: compression dictionary]
// 4. [meta block: range deletion tombstone]
// 5. [meta block: properties]
// 6. [metaindex block]
// 7. Footer
BlockHandle metaindex_block_handle, index_block_handle;
MetaIndexBuilder meta_index_builder;
WriteFilterBlock(&meta_index_builder);
WriteIndexBlock(&meta_index_builder, &index_block_handle);
WriteCompressionDictBlock(&meta_index_builder);
WriteRangeDelBlock(&meta_index_builder);
WritePropertiesBlock(&meta_index_builder);
if (ok()) {
// flush the meta index block
WriteRawBlock(meta_index_builder.Finish(), kNoCompression,
&metaindex_block_handle);
}
if (ok()) {
WriteFooter(metaindex_block_handle, index_block_handle);
}
r->state = Rep::State::kClosed;
return r->status;
}
void BlockBasedTableBuilder::Abandon() {
assert(rep_->state != Rep::State::kClosed);
if (rep_->compression_opts.parallel_threads > 1) {
rep_->pc_rep->compress_queue.finish();
for (auto& thread : rep_->pc_rep->compress_thread_pool) {
thread.join();
}
rep_->pc_rep->write_queue.finish();
rep_->pc_rep->write_thread->join();
rep_->pc_rep->finished = true;
}
rep_->state = Rep::State::kClosed;
}
uint64_t BlockBasedTableBuilder::NumEntries() const {
return rep_->props.num_entries;
}
bool BlockBasedTableBuilder::IsEmpty() const {
return rep_->props.num_entries == 0 && rep_->props.num_range_deletions == 0;
}
uint64_t BlockBasedTableBuilder::FileSize() const { return rep_->offset; }
uint64_t BlockBasedTableBuilder::EstimatedFileSize() const {
if (rep_->compression_opts.parallel_threads > 1) {
// Use compression ratio so far and inflight raw bytes to estimate
// final SST size.
return rep_->pc_rep->estimated_file_size.load(std::memory_order_relaxed);
} else {
return FileSize();
}
}
bool BlockBasedTableBuilder::NeedCompact() const {
for (const auto& collector : rep_->table_properties_collectors) {
if (collector->NeedCompact()) {
return true;
}
}
return false;
}
TableProperties BlockBasedTableBuilder::GetTableProperties() const {
TableProperties ret = rep_->props;
for (const auto& collector : rep_->table_properties_collectors) {
for (const auto& prop : collector->GetReadableProperties()) {
ret.readable_properties.insert(prop);
}
collector->Finish(&ret.user_collected_properties);
}
return ret;
}
std::string BlockBasedTableBuilder::GetFileChecksum() const {
if (rep_->file != nullptr) {
return rep_->file->GetFileChecksum();
} else {
return kUnknownFileChecksum;
}
}
const char* BlockBasedTableBuilder::GetFileChecksumFuncName() const {
if (rep_->file != nullptr) {
return rep_->file->GetFileChecksumFuncName();
} else {
return kUnknownFileChecksumFuncName.c_str();
}
}
const std::string BlockBasedTable::kFilterBlockPrefix = "filter.";
const std::string BlockBasedTable::kFullFilterBlockPrefix = "fullfilter.";
const std::string BlockBasedTable::kPartitionedFilterBlockPrefix =
"partitionedfilter.";
} // namespace ROCKSDB_NAMESPACE