rocksdb/port/win/io_win.cc
Dmitri Smirnov 3c233ca4ea Fix Windows environment issues
Summary:
Enable directIO on WritableFileImpl::Append
     with offset being current length of the file.
     Enable UniqueID tests on Windows, disable others but
     leeting them to compile. Unique tests are valuable to
     detect failures on different filesystems and upcoming
     ReFS.
     Clear output in WinEnv Getchildren.This is different from
     previous strategy, do not touch output on failure.
     Make sure DBTest.OpenWhenOpen works with windows error message
Closes https://github.com/facebook/rocksdb/pull/1746

Differential Revision: D4385681

Pulled By: IslamAbdelRahman

fbshipit-source-id: c07b702
2017-01-09 15:54:12 -08:00

1147 lines
31 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "port/win/io_win.h"
#include "util/sync_point.h"
#include "util/coding.h"
#include "util/iostats_context_imp.h"
#include "util/aligned_buffer.h"
namespace rocksdb {
namespace port {
/*
* DirectIOHelper
*/
namespace {
const size_t kSectorSize = 512;
inline
bool IsPowerOfTwo(const size_t alignment) {
return ((alignment) & (alignment - 1)) == 0;
}
inline
bool IsSectorAligned(const size_t off) {
return (off & (kSectorSize - 1)) == 0;
}
inline
bool IsAligned(size_t alignment, const void* ptr) {
return ((uintptr_t(ptr)) & (alignment - 1)) == 0;
}
}
std::string GetWindowsErrSz(DWORD err) {
LPSTR lpMsgBuf;
FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, err,
0, // Default language
reinterpret_cast<LPSTR>(&lpMsgBuf), 0, NULL);
std::string Err = lpMsgBuf;
LocalFree(lpMsgBuf);
return Err;
}
// We preserve the original name of this interface to denote the original idea
// behind it.
// All reads happen by a specified offset and pwrite interface does not change
// the position of the file pointer. Judging from the man page and errno it does
// execute
// lseek atomically to return the position of the file back where it was.
// WriteFile() does not
// have this capability. Therefore, for both pread and pwrite the pointer is
// advanced to the next position
// which is fine for writes because they are (should be) sequential.
// Because all the reads/writes happen by the specified offset, the caller in
// theory should not
// rely on the current file offset.
SSIZE_T pwrite(HANDLE hFile, const char* src, size_t numBytes,
uint64_t offset) {
assert(numBytes <= std::numeric_limits<DWORD>::max());
OVERLAPPED overlapped = { 0 };
ULARGE_INTEGER offsetUnion;
offsetUnion.QuadPart = offset;
overlapped.Offset = offsetUnion.LowPart;
overlapped.OffsetHigh = offsetUnion.HighPart;
SSIZE_T result = 0;
unsigned long bytesWritten = 0;
if (FALSE == WriteFile(hFile, src, static_cast<DWORD>(numBytes), &bytesWritten,
&overlapped)) {
result = -1;
} else {
result = bytesWritten;
}
return result;
}
// See comments for pwrite above
SSIZE_T pread(HANDLE hFile, char* src, size_t numBytes, uint64_t offset) {
assert(numBytes <= std::numeric_limits<DWORD>::max());
OVERLAPPED overlapped = { 0 };
ULARGE_INTEGER offsetUnion;
offsetUnion.QuadPart = offset;
overlapped.Offset = offsetUnion.LowPart;
overlapped.OffsetHigh = offsetUnion.HighPart;
SSIZE_T result = 0;
unsigned long bytesRead = 0;
if (FALSE == ReadFile(hFile, src, static_cast<DWORD>(numBytes), &bytesRead,
&overlapped)) {
return -1;
} else {
result = bytesRead;
}
return result;
}
// SetFileInformationByHandle() is capable of fast pre-allocates.
// However, this does not change the file end position unless the file is
// truncated and the pre-allocated space is not considered filled with zeros.
Status fallocate(const std::string& filename, HANDLE hFile,
uint64_t to_size) {
Status status;
FILE_ALLOCATION_INFO alloc_info;
alloc_info.AllocationSize.QuadPart = to_size;
if (!SetFileInformationByHandle(hFile, FileAllocationInfo, &alloc_info,
sizeof(FILE_ALLOCATION_INFO))) {
auto lastError = GetLastError();
status = IOErrorFromWindowsError(
"Failed to pre-allocate space: " + filename, lastError);
}
return status;
}
Status ftruncate(const std::string& filename, HANDLE hFile,
uint64_t toSize) {
Status status;
FILE_END_OF_FILE_INFO end_of_file;
end_of_file.EndOfFile.QuadPart = toSize;
if (!SetFileInformationByHandle(hFile, FileEndOfFileInfo, &end_of_file,
sizeof(FILE_END_OF_FILE_INFO))) {
auto lastError = GetLastError();
status = IOErrorFromWindowsError("Failed to Set end of file: " + filename,
lastError);
}
return status;
}
size_t GetUniqueIdFromFile(HANDLE hFile, char* id, size_t max_size) {
if (max_size < kMaxVarint64Length * 3) {
return 0;
}
// This function has to be re-worked for cases when
// ReFS file system introduced on Windows Server 2012 is used
BY_HANDLE_FILE_INFORMATION FileInfo;
BOOL result = GetFileInformationByHandle(hFile, &FileInfo);
TEST_SYNC_POINT_CALLBACK("GetUniqueIdFromFile:FS_IOC_GETVERSION", &result);
if (!result) {
return 0;
}
char* rid = id;
rid = EncodeVarint64(rid, uint64_t(FileInfo.dwVolumeSerialNumber));
rid = EncodeVarint64(rid, uint64_t(FileInfo.nFileIndexHigh));
rid = EncodeVarint64(rid, uint64_t(FileInfo.nFileIndexLow));
assert(rid >= id);
return static_cast<size_t>(rid - id);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// WinMmapReadableFile
WinMmapReadableFile::WinMmapReadableFile(const std::string& fileName,
HANDLE hFile, HANDLE hMap,
const void* mapped_region,
size_t length)
: WinFileData(fileName, hFile, false /* use_direct_io */),
hMap_(hMap),
mapped_region_(mapped_region),
length_(length) {}
WinMmapReadableFile::~WinMmapReadableFile() {
BOOL ret = ::UnmapViewOfFile(mapped_region_);
assert(ret);
ret = ::CloseHandle(hMap_);
assert(ret);
}
Status WinMmapReadableFile::Read(uint64_t offset, size_t n, Slice* result,
char* scratch) const {
Status s;
if (offset > length_) {
*result = Slice();
return IOError(filename_, EINVAL);
} else if (offset + n > length_) {
n = length_ - offset;
}
*result =
Slice(reinterpret_cast<const char*>(mapped_region_)+offset, n);
return s;
}
Status WinMmapReadableFile::InvalidateCache(size_t offset, size_t length) {
return Status::OK();
}
size_t WinMmapReadableFile::GetUniqueId(char* id, size_t max_size) const {
return GetUniqueIdFromFile(hFile_, id, max_size);
}
///////////////////////////////////////////////////////////////////////////////
/// WinMmapFile
// Can only truncate or reserve to a sector size aligned if
// used on files that are opened with Unbuffered I/O
Status WinMmapFile::TruncateFile(uint64_t toSize) {
return ftruncate(filename_, hFile_, toSize);
}
Status WinMmapFile::UnmapCurrentRegion() {
Status status;
if (mapped_begin_ != nullptr) {
if (!::UnmapViewOfFile(mapped_begin_)) {
status = IOErrorFromWindowsError(
"Failed to unmap file view: " + filename_, GetLastError());
}
// Move on to the next portion of the file
file_offset_ += view_size_;
// UnmapView automatically sends data to disk but not the metadata
// which is good and provides some equivalent of fdatasync() on Linux
// therefore, we donot need separate flag for metadata
mapped_begin_ = nullptr;
mapped_end_ = nullptr;
dst_ = nullptr;
last_sync_ = nullptr;
pending_sync_ = false;
}
return status;
}
Status WinMmapFile::MapNewRegion() {
Status status;
assert(mapped_begin_ == nullptr);
size_t minDiskSize = file_offset_ + view_size_;
if (minDiskSize > reserved_size_) {
status = Allocate(file_offset_, view_size_);
if (!status.ok()) {
return status;
}
}
// Need to remap
if (hMap_ == NULL || reserved_size_ > mapping_size_) {
if (hMap_ != NULL) {
// Unmap the previous one
BOOL ret = ::CloseHandle(hMap_);
assert(ret);
hMap_ = NULL;
}
ULARGE_INTEGER mappingSize;
mappingSize.QuadPart = reserved_size_;
hMap_ = CreateFileMappingA(
hFile_,
NULL, // Security attributes
PAGE_READWRITE, // There is not a write only mode for mapping
mappingSize.HighPart, // Enable mapping the whole file but the actual
// amount mapped is determined by MapViewOfFile
mappingSize.LowPart,
NULL); // Mapping name
if (NULL == hMap_) {
return IOErrorFromWindowsError(
"WindowsMmapFile failed to create file mapping for: " + filename_,
GetLastError());
}
mapping_size_ = reserved_size_;
}
ULARGE_INTEGER offset;
offset.QuadPart = file_offset_;
// View must begin at the granularity aligned offset
mapped_begin_ = reinterpret_cast<char*>(
MapViewOfFileEx(hMap_, FILE_MAP_WRITE, offset.HighPart, offset.LowPart,
view_size_, NULL));
if (!mapped_begin_) {
status = IOErrorFromWindowsError(
"WindowsMmapFile failed to map file view: " + filename_,
GetLastError());
} else {
mapped_end_ = mapped_begin_ + view_size_;
dst_ = mapped_begin_;
last_sync_ = mapped_begin_;
pending_sync_ = false;
}
return status;
}
Status WinMmapFile::PreallocateInternal(uint64_t spaceToReserve) {
return fallocate(filename_, hFile_, spaceToReserve);
}
WinMmapFile::WinMmapFile(const std::string& fname, HANDLE hFile, size_t page_size,
size_t allocation_granularity, const EnvOptions& options)
: WinFileData(fname, hFile, false),
hMap_(NULL),
page_size_(page_size),
allocation_granularity_(allocation_granularity),
reserved_size_(0),
mapping_size_(0),
view_size_(0),
mapped_begin_(nullptr),
mapped_end_(nullptr),
dst_(nullptr),
last_sync_(nullptr),
file_offset_(0),
pending_sync_(false) {
// Allocation granularity must be obtained from GetSystemInfo() and must be
// a power of two.
assert(allocation_granularity > 0);
assert((allocation_granularity & (allocation_granularity - 1)) == 0);
assert(page_size > 0);
assert((page_size & (page_size - 1)) == 0);
// Only for memory mapped writes
assert(options.use_mmap_writes);
// View size must be both the multiple of allocation_granularity AND the
// page size and the granularity is usually a multiple of a page size.
const size_t viewSize = 32 * 1024; // 32Kb similar to the Windows File Cache in buffered mode
view_size_ = Roundup(viewSize, allocation_granularity_);
}
WinMmapFile::~WinMmapFile() {
if (hFile_) {
this->Close();
}
}
Status WinMmapFile::Append(const Slice& data) {
const char* src = data.data();
size_t left = data.size();
while (left > 0) {
assert(mapped_begin_ <= dst_);
size_t avail = mapped_end_ - dst_;
if (avail == 0) {
Status s = UnmapCurrentRegion();
if (s.ok()) {
s = MapNewRegion();
}
if (!s.ok()) {
return s;
}
} else {
size_t n = std::min(left, avail);
memcpy(dst_, src, n);
dst_ += n;
src += n;
left -= n;
pending_sync_ = true;
}
}
// Now make sure that the last partial page is padded with zeros if needed
size_t bytesToPad = Roundup(size_t(dst_), page_size_) - size_t(dst_);
if (bytesToPad > 0) {
memset(dst_, 0, bytesToPad);
}
return Status::OK();
}
// Means Close() will properly take care of truncate
// and it does not need any additional information
Status WinMmapFile::Truncate(uint64_t size) {
return Status::OK();
}
Status WinMmapFile::Close() {
Status s;
assert(NULL != hFile_);
// We truncate to the precise size so no
// uninitialized data at the end. SetEndOfFile
// which we use does not write zeros and it is good.
uint64_t targetSize = GetFileSize();
if (mapped_begin_ != nullptr) {
// Sync before unmapping to make sure everything
// is on disk and there is not a lazy writing
// so we are deterministic with the tests
Sync();
s = UnmapCurrentRegion();
}
if (NULL != hMap_) {
BOOL ret = ::CloseHandle(hMap_);
if (!ret && s.ok()) {
auto lastError = GetLastError();
s = IOErrorFromWindowsError(
"Failed to Close mapping for file: " + filename_, lastError);
}
hMap_ = NULL;
}
if (hFile_ != NULL) {
TruncateFile(targetSize);
BOOL ret = ::CloseHandle(hFile_);
hFile_ = NULL;
if (!ret && s.ok()) {
auto lastError = GetLastError();
s = IOErrorFromWindowsError(
"Failed to close file map handle: " + filename_, lastError);
}
}
return s;
}
Status WinMmapFile::Flush() { return Status::OK(); }
// Flush only data
Status WinMmapFile::Sync() {
Status s;
// Some writes occurred since last sync
if (dst_ > last_sync_) {
assert(mapped_begin_);
assert(dst_);
assert(dst_ > mapped_begin_);
assert(dst_ < mapped_end_);
size_t page_begin =
TruncateToPageBoundary(page_size_, last_sync_ - mapped_begin_);
size_t page_end =
TruncateToPageBoundary(page_size_, dst_ - mapped_begin_ - 1);
// Flush only the amount of that is a multiple of pages
if (!::FlushViewOfFile(mapped_begin_ + page_begin,
(page_end - page_begin) + page_size_)) {
s = IOErrorFromWindowsError("Failed to FlushViewOfFile: " + filename_,
GetLastError());
} else {
last_sync_ = dst_;
}
}
return s;
}
/**
* Flush data as well as metadata to stable storage.
*/
Status WinMmapFile::Fsync() {
Status s = Sync();
// Flush metadata
if (s.ok() && pending_sync_) {
if (!::FlushFileBuffers(hFile_)) {
s = IOErrorFromWindowsError("Failed to FlushFileBuffers: " + filename_,
GetLastError());
}
pending_sync_ = false;
}
return s;
}
/**
* Get the size of valid data in the file. This will not match the
* size that is returned from the filesystem because we use mmap
* to extend file by map_size every time.
*/
uint64_t WinMmapFile::GetFileSize() {
size_t used = dst_ - mapped_begin_;
return file_offset_ + used;
}
Status WinMmapFile::InvalidateCache(size_t offset, size_t length) {
return Status::OK();
}
Status WinMmapFile::Allocate(uint64_t offset, uint64_t len) {
Status status;
TEST_KILL_RANDOM("WinMmapFile::Allocate", rocksdb_kill_odds);
// Make sure that we reserve an aligned amount of space
// since the reservation block size is driven outside so we want
// to check if we are ok with reservation here
size_t spaceToReserve = Roundup(offset + len, view_size_);
// Nothing to do
if (spaceToReserve <= reserved_size_) {
return status;
}
IOSTATS_TIMER_GUARD(allocate_nanos);
status = PreallocateInternal(spaceToReserve);
if (status.ok()) {
reserved_size_ = spaceToReserve;
}
return status;
}
size_t WinMmapFile::GetUniqueId(char* id, size_t max_size) const {
return GetUniqueIdFromFile(hFile_, id, max_size);
}
//////////////////////////////////////////////////////////////////////////////////
// WinSequentialFile
WinSequentialFile::WinSequentialFile(const std::string& fname, HANDLE f,
const EnvOptions& options)
: WinFileData(fname, f, options.use_direct_reads) {}
WinSequentialFile::~WinSequentialFile() {
assert(hFile_ != INVALID_HANDLE_VALUE);
}
Status WinSequentialFile::Read(size_t n, Slice* result, char* scratch) {
Status s;
size_t r = 0;
// Windows ReadFile API accepts a DWORD.
// While it is possible to read in a loop if n is > UINT_MAX
// it is a highly unlikely case.
if (n > UINT_MAX) {
return IOErrorFromWindowsError(filename_, ERROR_INVALID_PARAMETER);
}
DWORD bytesToRead = static_cast<DWORD>(n); //cast is safe due to the check above
DWORD bytesRead = 0;
BOOL ret = ReadFile(hFile_, scratch, bytesToRead, &bytesRead, NULL);
if (ret == TRUE) {
r = bytesRead;
} else {
return IOErrorFromWindowsError(filename_, GetLastError());
}
*result = Slice(scratch, r);
return s;
}
Status WinSequentialFile::Skip(uint64_t n) {
// Can't handle more than signed max as SetFilePointerEx accepts a signed 64-bit
// integer. As such it is a highly unlikley case to have n so large.
if (n > _I64_MAX) {
return IOErrorFromWindowsError(filename_, ERROR_INVALID_PARAMETER);
}
LARGE_INTEGER li;
li.QuadPart = static_cast<int64_t>(n); //cast is safe due to the check above
BOOL ret = SetFilePointerEx(hFile_, li, NULL, FILE_CURRENT);
if (ret == FALSE) {
return IOErrorFromWindowsError(filename_, GetLastError());
}
return Status::OK();
}
Status WinSequentialFile::InvalidateCache(size_t offset, size_t length) {
return Status::OK();
}
//////////////////////////////////////////////////////////////////////////////////////////////////
/// WinRandomAccessBase
// Helper
void CalculateReadParameters(size_t alignment, uint64_t offset,
size_t bytes_requested,
size_t& actual_bytes_toread,
uint64_t& first_page_start) {
first_page_start = TruncateToPageBoundary(alignment, offset);
const uint64_t last_page_start =
TruncateToPageBoundary(alignment, offset + bytes_requested - 1);
actual_bytes_toread = (last_page_start - first_page_start) + alignment;
}
SSIZE_T WinRandomAccessImpl::ReadIntoBuffer(uint64_t user_offset,
uint64_t first_page_start,
size_t bytes_to_read, size_t& left,
AlignedBuffer& buffer, char* dest) const {
assert(buffer.CurrentSize() == 0);
assert(buffer.Capacity() >= bytes_to_read);
SSIZE_T read =
PositionedReadInternal(buffer.Destination(), bytes_to_read,
first_page_start);
if (read > 0) {
buffer.Size(read);
// Let's figure out how much we read from the users standpoint
if ((first_page_start + buffer.CurrentSize()) > user_offset) {
assert(first_page_start <= user_offset);
size_t buffer_offset = user_offset - first_page_start;
read = buffer.Read(dest, buffer_offset, left);
} else {
read = 0;
}
left -= read;
}
return read;
}
SSIZE_T WinRandomAccessImpl::ReadIntoOneShotBuffer(uint64_t user_offset,
uint64_t first_page_start,
size_t bytes_to_read, size_t& left,
char* dest) const {
AlignedBuffer bigBuffer;
bigBuffer.Alignment(buffer_.Alignment());
bigBuffer.AllocateNewBuffer(bytes_to_read);
return ReadIntoBuffer(user_offset, first_page_start, bytes_to_read, left,
bigBuffer, dest);
}
SSIZE_T WinRandomAccessImpl::ReadIntoInstanceBuffer(uint64_t user_offset,
uint64_t first_page_start,
size_t bytes_to_read, size_t& left,
char* dest) const {
SSIZE_T read = ReadIntoBuffer(user_offset, first_page_start, bytes_to_read,
left, buffer_, dest);
if (read > 0) {
buffered_start_ = first_page_start;
}
return read;
}
SSIZE_T WinRandomAccessImpl::PositionedReadInternal(char* src,
size_t numBytes,
uint64_t offset) const {
return pread(file_base_->GetFileHandle(), src, numBytes, offset);
}
inline
WinRandomAccessImpl::WinRandomAccessImpl(WinFileData* file_base,
size_t alignment,
const EnvOptions& options) :
file_base_(file_base),
read_ahead_(false),
compaction_readahead_size_(options.compaction_readahead_size),
random_access_max_buffer_size_(options.random_access_max_buffer_size),
buffer_(),
buffered_start_(0) {
assert(!options.use_mmap_reads);
// Direct access, use internal buffer for reads
if (file_base_->UseDirectIO()) {
// Do not allocate the buffer either until the first request or
// until there is a call to allocate a read-ahead buffer
buffer_.Alignment(alignment);
}
}
inline
Status WinRandomAccessImpl::ReadImpl(uint64_t offset, size_t n, Slice* result,
char* scratch) const {
Status s;
SSIZE_T r = -1;
size_t left = n;
char* dest = scratch;
if (n == 0) {
*result = Slice(scratch, 0);
return s;
}
// When in direct I/O mode we need to do the following changes:
// - use our own aligned buffer
// - always read at the offset of that is a multiple of alignment
if (file_base_->UseDirectIO()) {
uint64_t first_page_start = 0;
size_t actual_bytes_toread = 0;
size_t bytes_requested = left;
if (!read_ahead_ && random_access_max_buffer_size_ == 0) {
CalculateReadParameters(buffer_.Alignment(), offset, bytes_requested,
actual_bytes_toread,
first_page_start);
assert(actual_bytes_toread > 0);
r = ReadIntoOneShotBuffer(offset, first_page_start,
actual_bytes_toread, left, dest);
} else {
std::unique_lock<std::mutex> lock(buffer_mut_);
// Let's see if at least some of the requested data is already
// in the buffer
if (offset >= buffered_start_ &&
offset < (buffered_start_ + buffer_.CurrentSize())) {
size_t buffer_offset = offset - buffered_start_;
r = buffer_.Read(dest, buffer_offset, left);
assert(r >= 0);
left -= size_t(r);
offset += r;
dest += r;
}
// Still some left or none was buffered
if (left > 0) {
// Figure out the start/end offset for reading and amount to read
bytes_requested = left;
if (read_ahead_ && bytes_requested < compaction_readahead_size_) {
bytes_requested = compaction_readahead_size_;
}
CalculateReadParameters(buffer_.Alignment(), offset, bytes_requested,
actual_bytes_toread,
first_page_start);
assert(actual_bytes_toread > 0);
if (buffer_.Capacity() < actual_bytes_toread) {
// If we are in read-ahead mode or the requested size
// exceeds max buffer size then use one-shot
// big buffer otherwise reallocate main buffer
if (read_ahead_ ||
(actual_bytes_toread > random_access_max_buffer_size_)) {
// Unlock the mutex since we are not using instance buffer
lock.unlock();
r = ReadIntoOneShotBuffer(offset, first_page_start,
actual_bytes_toread, left, dest);
} else {
buffer_.AllocateNewBuffer(actual_bytes_toread);
r = ReadIntoInstanceBuffer(offset, first_page_start,
actual_bytes_toread, left, dest);
}
} else {
buffer_.Clear();
r = ReadIntoInstanceBuffer(offset, first_page_start,
actual_bytes_toread, left, dest);
}
}
}
} else {
r = PositionedReadInternal(scratch, left, offset);
if (r > 0) {
left -= r;
}
}
if (r < 0) {
auto lastError = GetLastError();
// Posix impl wants to treat reads from beyond
// of the file as OK.
if(lastError != ERROR_HANDLE_EOF) {
s = IOErrorFromWindowsError(file_base_->GetName(), lastError);
}
}
*result = Slice(scratch, (r < 0) ? 0 : n - left);
return s;
}
inline
void WinRandomAccessImpl::HintImpl(RandomAccessFile::AccessPattern pattern) {
if (pattern == RandomAccessFile::SEQUENTIAL && file_base_->UseDirectIO() &&
compaction_readahead_size_ > 0) {
std::lock_guard<std::mutex> lg(buffer_mut_);
if (!read_ahead_) {
read_ahead_ = true;
// This would allocate read-ahead size + 2 alignments
// - one for memory alignment which added implicitly by AlignedBuffer
// - We add one more alignment because we will read one alignment more
// from disk
buffer_.AllocateNewBuffer(compaction_readahead_size_ +
buffer_.Alignment());
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
/// WinRandomAccessFile
WinRandomAccessFile::WinRandomAccessFile(const std::string& fname, HANDLE hFile,
size_t alignment,
const EnvOptions& options)
: WinFileData(fname, hFile, options.use_direct_reads),
WinRandomAccessImpl(this, alignment, options) {}
WinRandomAccessFile::~WinRandomAccessFile() {
}
Status WinRandomAccessFile::Read(uint64_t offset, size_t n, Slice* result,
char* scratch) const {
return ReadImpl(offset, n, result, scratch);
}
void WinRandomAccessFile::EnableReadAhead() {
HintImpl(SEQUENTIAL);
}
bool WinRandomAccessFile::ShouldForwardRawRequest() const {
return true;
}
void WinRandomAccessFile::Hint(AccessPattern pattern) {
HintImpl(pattern);
}
Status WinRandomAccessFile::InvalidateCache(size_t offset, size_t length) {
return Status::OK();
}
size_t WinRandomAccessFile::GetUniqueId(char* id, size_t max_size) const {
return GetUniqueIdFromFile(GetFileHandle(), id, max_size);
}
/////////////////////////////////////////////////////////////////////////////
// WinWritableImpl
//
inline
Status WinWritableImpl::PreallocateInternal(uint64_t spaceToReserve) {
return fallocate(file_data_->GetName(), file_data_->GetFileHandle(), spaceToReserve);
}
WinWritableImpl::WinWritableImpl(WinFileData* file_data, size_t alignment)
: file_data_(file_data),
alignment_(alignment),
filesize_(0),
reservedsize_(0) {
}
Status WinWritableImpl::AppendImpl(const Slice& data) {
Status s;
assert(data.size() < std::numeric_limits<DWORD>::max());
uint64_t written = 0;
if (file_data_->UseDirectIO()) {
// With no offset specified we are appending
// to the end of the file
assert(IsSectorAligned(filesize_));
assert(IsSectorAligned(data.size()));
assert(IsAligned(GetAlignement(), data.data()));
SSIZE_T ret = pwrite(file_data_->GetFileHandle(), data.data(),
data.size(), filesize_);
if (ret < 0) {
auto lastError = GetLastError();
s = IOErrorFromWindowsError(
"Failed to pwrite for: " + file_data_->GetName(), lastError);
}
else {
written = ret;
}
} else {
DWORD bytesWritten = 0;
if (!WriteFile(file_data_->GetFileHandle(), data.data(),
static_cast<DWORD>(data.size()), &bytesWritten, NULL)) {
auto lastError = GetLastError();
s = IOErrorFromWindowsError(
"Failed to WriteFile: " + file_data_->GetName(),
lastError);
}
else {
written = bytesWritten;
}
}
if(s.ok()) {
assert(written == data.size());
filesize_ += data.size();
}
return s;
}
Status WinWritableImpl::PositionedAppendImpl(const Slice& data, uint64_t offset) {
if(file_data_->UseDirectIO()) {
assert(IsSectorAligned(offset));
assert(IsSectorAligned(data.size()));
assert(IsAligned(GetAlignement(), data.data()));
}
Status s;
SSIZE_T ret = pwrite(file_data_->GetFileHandle(), data.data(), data.size(), offset);
// Error break
if (ret < 0) {
auto lastError = GetLastError();
s = IOErrorFromWindowsError(
"Failed to pwrite for: " + file_data_->GetName(), lastError);
}
else {
assert(size_t(ret) == data.size());
// For sequential write this would be simple
// size extension by data.size()
uint64_t write_end = offset + data.size();
if (write_end >= filesize_) {
filesize_ = write_end;
}
}
return s;
}
// Need to implement this so the file is truncated correctly
// when buffered and unbuffered mode
inline
Status WinWritableImpl::TruncateImpl(uint64_t size) {
Status s = ftruncate(file_data_->GetName(), file_data_->GetFileHandle(),
size);
if (s.ok()) {
filesize_ = size;
}
return s;
}
Status WinWritableImpl::CloseImpl() {
Status s;
auto hFile = file_data_->GetFileHandle();
assert(INVALID_HANDLE_VALUE != hFile);
if (fsync(hFile) < 0) {
auto lastError = GetLastError();
s = IOErrorFromWindowsError("fsync failed at Close() for: " +
file_data_->GetName(),
lastError);
}
if(!file_data_->CloseFile()) {
auto lastError = GetLastError();
s = IOErrorFromWindowsError("CloseHandle failed for: " + file_data_->GetName(),
lastError);
}
return s;
}
Status WinWritableImpl::SyncImpl() {
Status s;
// Calls flush buffers
if (fsync(file_data_->GetFileHandle()) < 0) {
auto lastError = GetLastError();
s = IOErrorFromWindowsError(
"fsync failed at Sync() for: " + file_data_->GetName(), lastError);
}
return s;
}
Status WinWritableImpl::AllocateImpl(uint64_t offset, uint64_t len) {
Status status;
TEST_KILL_RANDOM("WinWritableFile::Allocate", rocksdb_kill_odds);
// Make sure that we reserve an aligned amount of space
// since the reservation block size is driven outside so we want
// to check if we are ok with reservation here
size_t spaceToReserve = Roundup(offset + len, alignment_);
// Nothing to do
if (spaceToReserve <= reservedsize_) {
return status;
}
IOSTATS_TIMER_GUARD(allocate_nanos);
status = PreallocateInternal(spaceToReserve);
if (status.ok()) {
reservedsize_ = spaceToReserve;
}
return status;
}
////////////////////////////////////////////////////////////////////////////////
/// WinWritableFile
WinWritableFile::WinWritableFile(const std::string& fname, HANDLE hFile,
size_t alignment, size_t /* capacity */,
const EnvOptions& options)
: WinFileData(fname, hFile, options.use_direct_writes),
WinWritableImpl(this, alignment) {
assert(!options.use_mmap_writes);
}
WinWritableFile::~WinWritableFile() {
}
// Indicates if the class makes use of direct I/O
bool WinWritableFile::UseDirectIO() const { return WinFileData::UseDirectIO(); }
size_t WinWritableFile::GetRequiredBufferAlignment() const {
return GetAlignement();
}
Status WinWritableFile::Append(const Slice& data) {
return AppendImpl(data);
}
Status WinWritableFile::PositionedAppend(const Slice& data, uint64_t offset) {
return PositionedAppendImpl(data, offset);
}
// Need to implement this so the file is truncated correctly
// when buffered and unbuffered mode
Status WinWritableFile::Truncate(uint64_t size) {
return TruncateImpl(size);
}
Status WinWritableFile::Close() {
return CloseImpl();
}
// write out the cached data to the OS cache
// This is now taken care of the WritableFileWriter
Status WinWritableFile::Flush() {
return Status::OK();
}
Status WinWritableFile::Sync() {
return SyncImpl();
}
Status WinWritableFile::Fsync() { return SyncImpl(); }
uint64_t WinWritableFile::GetFileSize() {
return GetFileSizeImpl();
}
Status WinWritableFile::Allocate(uint64_t offset, uint64_t len) {
return AllocateImpl(offset, len);
}
size_t WinWritableFile::GetUniqueId(char* id, size_t max_size) const {
return GetUniqueIdFromFile(GetFileHandle(), id, max_size);
}
/////////////////////////////////////////////////////////////////////////
/// WinRandomRWFile
WinRandomRWFile::WinRandomRWFile(const std::string& fname, HANDLE hFile,
size_t alignment, const EnvOptions& options)
: WinFileData(fname, hFile,
options.use_direct_reads && options.use_direct_writes),
WinRandomAccessImpl(this, alignment, options),
WinWritableImpl(this, alignment) {}
bool WinRandomRWFile::UseDirectIO() const { return WinFileData::UseDirectIO(); }
size_t WinRandomRWFile::GetRequiredBufferAlignment() const {
return GetAlignement();
}
bool WinRandomRWFile::ShouldForwardRawRequest() const {
return true;
}
void WinRandomRWFile::EnableReadAhead() {
HintImpl(RandomAccessFile::SEQUENTIAL);
}
Status WinRandomRWFile::Write(uint64_t offset, const Slice & data) {
return PositionedAppendImpl(data, offset);
}
Status WinRandomRWFile::Read(uint64_t offset, size_t n, Slice* result,
char* scratch) const {
return ReadImpl(offset, n, result, scratch);
}
Status WinRandomRWFile::Flush() {
return Status::OK();
}
Status WinRandomRWFile::Sync() {
return SyncImpl();
}
Status WinRandomRWFile::Close() {
return CloseImpl();
}
//////////////////////////////////////////////////////////////////////////
/// WinDirectory
Status WinDirectory::Fsync() { return Status::OK(); }
//////////////////////////////////////////////////////////////////////////
/// WinFileLock
WinFileLock::~WinFileLock() {
BOOL ret = ::CloseHandle(hFile_);
assert(ret);
}
}
}