rocksdb/db/log_test.cc
Siddhartha Roychowdhury 39b0d92153 Add record to set WAL compression type if enabled (#9556)
Summary:
When WAL compression is enabled, add a record (new record type) to store the compression type to indicate that all subsequent records are compressed. The log reader will store the compression type when this record is encountered and use the type to uncompress the subsequent records. Compress and uncompress to be implemented in subsequent diffs.
Enabled WAL compression in some WAL tests to check for regressions. Some tests that rely on offsets have been disabled.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9556

Reviewed By: anand1976

Differential Revision: D34308216

Pulled By: sidroyc

fbshipit-source-id: 7f10595e46f3277f1ea2d309fbf95e2e935a8705
2022-02-17 16:19:31 -08:00

928 lines
28 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/log_reader.h"
#include "db/log_writer.h"
#include "file/sequence_file_reader.h"
#include "file/writable_file_writer.h"
#include "rocksdb/env.h"
#include "test_util/testharness.h"
#include "test_util/testutil.h"
#include "util/coding.h"
#include "util/crc32c.h"
#include "util/random.h"
namespace ROCKSDB_NAMESPACE {
namespace log {
// Construct a string of the specified length made out of the supplied
// partial string.
static std::string BigString(const std::string& partial_string, size_t n) {
std::string result;
while (result.size() < n) {
result.append(partial_string);
}
result.resize(n);
return result;
}
// Construct a string from a number
static std::string NumberString(int n) {
char buf[50];
snprintf(buf, sizeof(buf), "%d.", n);
return std::string(buf);
}
// Return a skewed potentially long string
static std::string RandomSkewedString(int i, Random* rnd) {
return BigString(NumberString(i), rnd->Skewed(17));
}
// Param type is tuple<int, bool>
// get<0>(tuple): non-zero if recycling log, zero if regular log
// get<1>(tuple): true if allow retry after read EOF, false otherwise
class LogTest
: public ::testing::TestWithParam<std::tuple<int, bool, CompressionType>> {
private:
class StringSource : public FSSequentialFile {
public:
Slice& contents_;
bool force_error_;
size_t force_error_position_;
bool force_eof_;
size_t force_eof_position_;
bool returned_partial_;
bool fail_after_read_partial_;
explicit StringSource(Slice& contents, bool fail_after_read_partial)
: contents_(contents),
force_error_(false),
force_error_position_(0),
force_eof_(false),
force_eof_position_(0),
returned_partial_(false),
fail_after_read_partial_(fail_after_read_partial) {}
IOStatus Read(size_t n, const IOOptions& /*opts*/, Slice* result,
char* scratch, IODebugContext* /*dbg*/) override {
if (fail_after_read_partial_) {
EXPECT_TRUE(!returned_partial_) << "must not Read() after eof/error";
}
if (force_error_) {
if (force_error_position_ >= n) {
force_error_position_ -= n;
} else {
*result = Slice(contents_.data(), force_error_position_);
contents_.remove_prefix(force_error_position_);
force_error_ = false;
returned_partial_ = true;
return IOStatus::Corruption("read error");
}
}
if (contents_.size() < n) {
n = contents_.size();
returned_partial_ = true;
}
if (force_eof_) {
if (force_eof_position_ >= n) {
force_eof_position_ -= n;
} else {
force_eof_ = false;
n = force_eof_position_;
returned_partial_ = true;
}
}
// By using scratch we ensure that caller has control over the
// lifetime of result.data()
memcpy(scratch, contents_.data(), n);
*result = Slice(scratch, n);
contents_.remove_prefix(n);
return IOStatus::OK();
}
IOStatus Skip(uint64_t n) override {
if (n > contents_.size()) {
contents_.clear();
return IOStatus::NotFound("in-memory file skipepd past end");
}
contents_.remove_prefix(n);
return IOStatus::OK();
}
};
class ReportCollector : public Reader::Reporter {
public:
size_t dropped_bytes_;
std::string message_;
ReportCollector() : dropped_bytes_(0) { }
void Corruption(size_t bytes, const Status& status) override {
dropped_bytes_ += bytes;
message_.append(status.ToString());
}
};
std::string& dest_contents() { return sink_->contents_; }
const std::string& dest_contents() const { return sink_->contents_; }
void reset_source_contents() { source_->contents_ = dest_contents(); }
Slice reader_contents_;
test::StringSink* sink_;
StringSource* source_;
ReportCollector report_;
protected:
std::unique_ptr<Writer> writer_;
std::unique_ptr<Reader> reader_;
bool allow_retry_read_;
CompressionType compression_type_;
public:
LogTest()
: reader_contents_(),
sink_(new test::StringSink(&reader_contents_)),
source_(new StringSource(reader_contents_, !std::get<1>(GetParam()))),
allow_retry_read_(std::get<1>(GetParam())),
compression_type_(std::get<2>(GetParam())) {
std::unique_ptr<FSWritableFile> sink_holder(sink_);
std::unique_ptr<WritableFileWriter> file_writer(new WritableFileWriter(
std::move(sink_holder), "" /* don't care */, FileOptions()));
Writer* writer =
new Writer(std::move(file_writer), 123, std::get<0>(GetParam()), false,
compression_type_);
writer_.reset(writer);
std::unique_ptr<FSSequentialFile> source_holder(source_);
std::unique_ptr<SequentialFileReader> file_reader(
new SequentialFileReader(std::move(source_holder), "" /* file name */));
if (allow_retry_read_) {
reader_.reset(new FragmentBufferedReader(nullptr, std::move(file_reader),
&report_, true /* checksum */,
123 /* log_number */));
} else {
reader_.reset(new Reader(nullptr, std::move(file_reader), &report_,
true /* checksum */, 123 /* log_number */));
}
}
Slice* get_reader_contents() { return &reader_contents_; }
void Write(const std::string& msg) {
ASSERT_OK(writer_->AddRecord(Slice(msg)));
}
size_t WrittenBytes() const {
return dest_contents().size();
}
std::string Read(const WALRecoveryMode wal_recovery_mode =
WALRecoveryMode::kTolerateCorruptedTailRecords) {
std::string scratch;
Slice record;
bool ret = false;
ret = reader_->ReadRecord(&record, &scratch, wal_recovery_mode);
if (ret) {
return record.ToString();
} else {
return "EOF";
}
}
void IncrementByte(int offset, char delta) {
dest_contents()[offset] += delta;
}
void SetByte(int offset, char new_byte) {
dest_contents()[offset] = new_byte;
}
void ShrinkSize(int bytes) { sink_->Drop(bytes); }
void FixChecksum(int header_offset, int len, bool recyclable) {
// Compute crc of type/len/data
int header_size = recyclable ? kRecyclableHeaderSize : kHeaderSize;
uint32_t crc = crc32c::Value(&dest_contents()[header_offset + 6],
header_size - 6 + len);
crc = crc32c::Mask(crc);
EncodeFixed32(&dest_contents()[header_offset], crc);
}
void ForceError(size_t position = 0) {
source_->force_error_ = true;
source_->force_error_position_ = position;
}
size_t DroppedBytes() const {
return report_.dropped_bytes_;
}
std::string ReportMessage() const {
return report_.message_;
}
void ForceEOF(size_t position = 0) {
source_->force_eof_ = true;
source_->force_eof_position_ = position;
}
void UnmarkEOF() {
source_->returned_partial_ = false;
reader_->UnmarkEOF();
}
bool IsEOF() { return reader_->IsEOF(); }
// Returns OK iff recorded error message contains "msg"
std::string MatchError(const std::string& msg) const {
if (report_.message_.find(msg) == std::string::npos) {
return report_.message_;
} else {
return "OK";
}
}
};
TEST_P(LogTest, Empty) { ASSERT_EQ("EOF", Read()); }
TEST_P(LogTest, ReadWrite) {
Write("foo");
Write("bar");
Write("");
Write("xxxx");
ASSERT_EQ("foo", Read());
ASSERT_EQ("bar", Read());
ASSERT_EQ("", Read());
ASSERT_EQ("xxxx", Read());
ASSERT_EQ("EOF", Read());
ASSERT_EQ("EOF", Read()); // Make sure reads at eof work
}
TEST_P(LogTest, ManyBlocks) {
for (int i = 0; i < 100000; i++) {
Write(NumberString(i));
}
for (int i = 0; i < 100000; i++) {
ASSERT_EQ(NumberString(i), Read());
}
ASSERT_EQ("EOF", Read());
}
TEST_P(LogTest, Fragmentation) {
Write("small");
Write(BigString("medium", 50000));
Write(BigString("large", 100000));
ASSERT_EQ("small", Read());
ASSERT_EQ(BigString("medium", 50000), Read());
ASSERT_EQ(BigString("large", 100000), Read());
ASSERT_EQ("EOF", Read());
}
TEST_P(LogTest, MarginalTrailer) {
// Make a trailer that is exactly the same length as an empty record.
int header_size =
std::get<0>(GetParam()) ? kRecyclableHeaderSize : kHeaderSize;
const int n = kBlockSize - 2 * header_size;
Write(BigString("foo", n));
ASSERT_EQ((unsigned int)(kBlockSize - header_size), WrittenBytes());
Write("");
Write("bar");
ASSERT_EQ(BigString("foo", n), Read());
ASSERT_EQ("", Read());
ASSERT_EQ("bar", Read());
ASSERT_EQ("EOF", Read());
}
TEST_P(LogTest, MarginalTrailer2) {
// Make a trailer that is exactly the same length as an empty record.
int header_size =
std::get<0>(GetParam()) ? kRecyclableHeaderSize : kHeaderSize;
const int n = kBlockSize - 2 * header_size;
Write(BigString("foo", n));
ASSERT_EQ((unsigned int)(kBlockSize - header_size), WrittenBytes());
Write("bar");
ASSERT_EQ(BigString("foo", n), Read());
ASSERT_EQ("bar", Read());
ASSERT_EQ("EOF", Read());
ASSERT_EQ(0U, DroppedBytes());
ASSERT_EQ("", ReportMessage());
}
TEST_P(LogTest, ShortTrailer) {
int header_size =
std::get<0>(GetParam()) ? kRecyclableHeaderSize : kHeaderSize;
const int n = kBlockSize - 2 * header_size + 4;
Write(BigString("foo", n));
ASSERT_EQ((unsigned int)(kBlockSize - header_size + 4), WrittenBytes());
Write("");
Write("bar");
ASSERT_EQ(BigString("foo", n), Read());
ASSERT_EQ("", Read());
ASSERT_EQ("bar", Read());
ASSERT_EQ("EOF", Read());
}
TEST_P(LogTest, AlignedEof) {
int header_size =
std::get<0>(GetParam()) ? kRecyclableHeaderSize : kHeaderSize;
const int n = kBlockSize - 2 * header_size + 4;
Write(BigString("foo", n));
ASSERT_EQ((unsigned int)(kBlockSize - header_size + 4), WrittenBytes());
ASSERT_EQ(BigString("foo", n), Read());
ASSERT_EQ("EOF", Read());
}
TEST_P(LogTest, RandomRead) {
const int N = 500;
Random write_rnd(301);
for (int i = 0; i < N; i++) {
Write(RandomSkewedString(i, &write_rnd));
}
Random read_rnd(301);
for (int i = 0; i < N; i++) {
ASSERT_EQ(RandomSkewedString(i, &read_rnd), Read());
}
ASSERT_EQ("EOF", Read());
}
// Tests of all the error paths in log_reader.cc follow:
TEST_P(LogTest, ReadError) {
Write("foo");
ForceError();
ASSERT_EQ("EOF", Read());
ASSERT_EQ((unsigned int)kBlockSize, DroppedBytes());
ASSERT_EQ("OK", MatchError("read error"));
}
TEST_P(LogTest, BadRecordType) {
Write("foo");
// Type is stored in header[6]
IncrementByte(6, 100);
FixChecksum(0, 3, false);
ASSERT_EQ("EOF", Read());
ASSERT_EQ(3U, DroppedBytes());
ASSERT_EQ("OK", MatchError("unknown record type"));
}
TEST_P(LogTest, TruncatedTrailingRecordIsIgnored) {
Write("foo");
ShrinkSize(4); // Drop all payload as well as a header byte
ASSERT_EQ("EOF", Read());
// Truncated last record is ignored, not treated as an error
ASSERT_EQ(0U, DroppedBytes());
ASSERT_EQ("", ReportMessage());
}
TEST_P(LogTest, TruncatedTrailingRecordIsNotIgnored) {
if (allow_retry_read_) {
// If read retry is allowed, then truncated trailing record should not
// raise an error.
return;
}
Write("foo");
ShrinkSize(4); // Drop all payload as well as a header byte
ASSERT_EQ("EOF", Read(WALRecoveryMode::kAbsoluteConsistency));
// Truncated last record is ignored, not treated as an error
ASSERT_GT(DroppedBytes(), 0U);
ASSERT_EQ("OK", MatchError("Corruption: truncated header"));
}
TEST_P(LogTest, BadLength) {
if (allow_retry_read_) {
// If read retry is allowed, then we should not raise an error when the
// record length specified in header is longer than data currently
// available. It's possible that the body of the record is not written yet.
return;
}
bool recyclable_log = (std::get<0>(GetParam()) != 0);
int header_size = recyclable_log ? kRecyclableHeaderSize : kHeaderSize;
const int kPayloadSize = kBlockSize - header_size;
Write(BigString("bar", kPayloadSize));
Write("foo");
// Least significant size byte is stored in header[4].
IncrementByte(4, 1);
if (!recyclable_log) {
ASSERT_EQ("foo", Read());
ASSERT_EQ(kBlockSize, DroppedBytes());
ASSERT_EQ("OK", MatchError("bad record length"));
} else {
ASSERT_EQ("EOF", Read());
}
}
TEST_P(LogTest, BadLengthAtEndIsIgnored) {
if (allow_retry_read_) {
// If read retry is allowed, then we should not raise an error when the
// record length specified in header is longer than data currently
// available. It's possible that the body of the record is not written yet.
return;
}
Write("foo");
ShrinkSize(1);
ASSERT_EQ("EOF", Read());
ASSERT_EQ(0U, DroppedBytes());
ASSERT_EQ("", ReportMessage());
}
TEST_P(LogTest, BadLengthAtEndIsNotIgnored) {
if (allow_retry_read_) {
// If read retry is allowed, then we should not raise an error when the
// record length specified in header is longer than data currently
// available. It's possible that the body of the record is not written yet.
return;
}
Write("foo");
ShrinkSize(1);
ASSERT_EQ("EOF", Read(WALRecoveryMode::kAbsoluteConsistency));
ASSERT_GT(DroppedBytes(), 0U);
ASSERT_EQ("OK", MatchError("Corruption: truncated record body"));
}
TEST_P(LogTest, ChecksumMismatch) {
Write("foooooo");
IncrementByte(0, 14);
ASSERT_EQ("EOF", Read());
bool recyclable_log = (std::get<0>(GetParam()) != 0);
if (!recyclable_log) {
ASSERT_EQ(14U, DroppedBytes());
ASSERT_EQ("OK", MatchError("checksum mismatch"));
} else {
ASSERT_EQ(0U, DroppedBytes());
ASSERT_EQ("", ReportMessage());
}
}
TEST_P(LogTest, UnexpectedMiddleType) {
Write("foo");
bool recyclable_log = (std::get<0>(GetParam()) != 0);
SetByte(6, static_cast<char>(recyclable_log ? kRecyclableMiddleType
: kMiddleType));
FixChecksum(0, 3, !!recyclable_log);
ASSERT_EQ("EOF", Read());
ASSERT_EQ(3U, DroppedBytes());
ASSERT_EQ("OK", MatchError("missing start"));
}
TEST_P(LogTest, UnexpectedLastType) {
Write("foo");
bool recyclable_log = (std::get<0>(GetParam()) != 0);
SetByte(6,
static_cast<char>(recyclable_log ? kRecyclableLastType : kLastType));
FixChecksum(0, 3, !!recyclable_log);
ASSERT_EQ("EOF", Read());
ASSERT_EQ(3U, DroppedBytes());
ASSERT_EQ("OK", MatchError("missing start"));
}
TEST_P(LogTest, UnexpectedFullType) {
Write("foo");
Write("bar");
bool recyclable_log = (std::get<0>(GetParam()) != 0);
SetByte(
6, static_cast<char>(recyclable_log ? kRecyclableFirstType : kFirstType));
FixChecksum(0, 3, !!recyclable_log);
ASSERT_EQ("bar", Read());
ASSERT_EQ("EOF", Read());
ASSERT_EQ(3U, DroppedBytes());
ASSERT_EQ("OK", MatchError("partial record without end"));
}
TEST_P(LogTest, UnexpectedFirstType) {
Write("foo");
Write(BigString("bar", 100000));
bool recyclable_log = (std::get<0>(GetParam()) != 0);
SetByte(
6, static_cast<char>(recyclable_log ? kRecyclableFirstType : kFirstType));
FixChecksum(0, 3, !!recyclable_log);
ASSERT_EQ(BigString("bar", 100000), Read());
ASSERT_EQ("EOF", Read());
ASSERT_EQ(3U, DroppedBytes());
ASSERT_EQ("OK", MatchError("partial record without end"));
}
TEST_P(LogTest, MissingLastIsIgnored) {
Write(BigString("bar", kBlockSize));
// Remove the LAST block, including header.
ShrinkSize(14);
ASSERT_EQ("EOF", Read());
ASSERT_EQ("", ReportMessage());
ASSERT_EQ(0U, DroppedBytes());
}
TEST_P(LogTest, MissingLastIsNotIgnored) {
if (allow_retry_read_) {
// If read retry is allowed, then truncated trailing record should not
// raise an error.
return;
}
Write(BigString("bar", kBlockSize));
// Remove the LAST block, including header.
ShrinkSize(14);
ASSERT_EQ("EOF", Read(WALRecoveryMode::kAbsoluteConsistency));
ASSERT_GT(DroppedBytes(), 0U);
ASSERT_EQ("OK", MatchError("Corruption: error reading trailing data"));
}
TEST_P(LogTest, PartialLastIsIgnored) {
Write(BigString("bar", kBlockSize));
// Cause a bad record length in the LAST block.
ShrinkSize(1);
ASSERT_EQ("EOF", Read());
ASSERT_EQ("", ReportMessage());
ASSERT_EQ(0U, DroppedBytes());
}
TEST_P(LogTest, PartialLastIsNotIgnored) {
if (allow_retry_read_) {
// If read retry is allowed, then truncated trailing record should not
// raise an error.
return;
}
Write(BigString("bar", kBlockSize));
// Cause a bad record length in the LAST block.
ShrinkSize(1);
ASSERT_EQ("EOF", Read(WALRecoveryMode::kAbsoluteConsistency));
ASSERT_GT(DroppedBytes(), 0U);
ASSERT_EQ("OK", MatchError("Corruption: truncated record body"));
}
TEST_P(LogTest, ErrorJoinsRecords) {
// Consider two fragmented records:
// first(R1) last(R1) first(R2) last(R2)
// where the middle two fragments disappear. We do not want
// first(R1),last(R2) to get joined and returned as a valid record.
// Write records that span two blocks
Write(BigString("foo", kBlockSize));
Write(BigString("bar", kBlockSize));
Write("correct");
// Wipe the middle block
for (unsigned int offset = kBlockSize; offset < 2*kBlockSize; offset++) {
SetByte(offset, 'x');
}
bool recyclable_log = (std::get<0>(GetParam()) != 0);
if (!recyclable_log) {
ASSERT_EQ("correct", Read());
ASSERT_EQ("EOF", Read());
size_t dropped = DroppedBytes();
ASSERT_LE(dropped, 2 * kBlockSize + 100);
ASSERT_GE(dropped, 2 * kBlockSize);
} else {
ASSERT_EQ("EOF", Read());
}
}
TEST_P(LogTest, ClearEofSingleBlock) {
Write("foo");
Write("bar");
bool recyclable_log = (std::get<0>(GetParam()) != 0);
int header_size = recyclable_log ? kRecyclableHeaderSize : kHeaderSize;
ForceEOF(3 + header_size + 2);
ASSERT_EQ("foo", Read());
UnmarkEOF();
ASSERT_EQ("bar", Read());
ASSERT_TRUE(IsEOF());
ASSERT_EQ("EOF", Read());
Write("xxx");
UnmarkEOF();
ASSERT_EQ("xxx", Read());
ASSERT_TRUE(IsEOF());
}
TEST_P(LogTest, ClearEofMultiBlock) {
size_t num_full_blocks = 5;
bool recyclable_log = (std::get<0>(GetParam()) != 0);
int header_size = recyclable_log ? kRecyclableHeaderSize : kHeaderSize;
size_t n = (kBlockSize - header_size) * num_full_blocks + 25;
Write(BigString("foo", n));
Write(BigString("bar", n));
ForceEOF(n + num_full_blocks * header_size + header_size + 3);
ASSERT_EQ(BigString("foo", n), Read());
ASSERT_TRUE(IsEOF());
UnmarkEOF();
ASSERT_EQ(BigString("bar", n), Read());
ASSERT_TRUE(IsEOF());
Write(BigString("xxx", n));
UnmarkEOF();
ASSERT_EQ(BigString("xxx", n), Read());
ASSERT_TRUE(IsEOF());
}
TEST_P(LogTest, ClearEofError) {
// If an error occurs during Read() in UnmarkEOF(), the records contained
// in the buffer should be returned on subsequent calls of ReadRecord()
// until no more full records are left, whereafter ReadRecord() should return
// false to indicate that it cannot read any further.
Write("foo");
Write("bar");
UnmarkEOF();
ASSERT_EQ("foo", Read());
ASSERT_TRUE(IsEOF());
Write("xxx");
ForceError(0);
UnmarkEOF();
ASSERT_EQ("bar", Read());
ASSERT_EQ("EOF", Read());
}
TEST_P(LogTest, ClearEofError2) {
Write("foo");
Write("bar");
UnmarkEOF();
ASSERT_EQ("foo", Read());
Write("xxx");
ForceError(3);
UnmarkEOF();
ASSERT_EQ("bar", Read());
ASSERT_EQ("EOF", Read());
ASSERT_EQ(3U, DroppedBytes());
ASSERT_EQ("OK", MatchError("read error"));
}
TEST_P(LogTest, Recycle) {
bool recyclable_log = (std::get<0>(GetParam()) != 0);
if (!recyclable_log) {
return; // test is only valid for recycled logs
}
Write("foo");
Write("bar");
Write("baz");
Write("bif");
Write("blitz");
while (get_reader_contents()->size() < log::kBlockSize * 2) {
Write("xxxxxxxxxxxxxxxx");
}
std::unique_ptr<FSWritableFile> sink(
new test::OverwritingStringSink(get_reader_contents()));
std::unique_ptr<WritableFileWriter> dest_holder(new WritableFileWriter(
std::move(sink), "" /* don't care */, FileOptions()));
Writer recycle_writer(std::move(dest_holder), 123, true);
ASSERT_OK(recycle_writer.AddRecord(Slice("foooo")));
ASSERT_OK(recycle_writer.AddRecord(Slice("bar")));
ASSERT_GE(get_reader_contents()->size(), log::kBlockSize * 2);
ASSERT_EQ("foooo", Read());
ASSERT_EQ("bar", Read());
ASSERT_EQ("EOF", Read());
}
// Do NOT enable compression for this instantiation.
INSTANTIATE_TEST_CASE_P(
Log, LogTest,
::testing::Combine(::testing::Values(0, 1), ::testing::Bool(),
::testing::Values(CompressionType::kNoCompression)));
class RetriableLogTest : public ::testing::TestWithParam<int> {
private:
class ReportCollector : public Reader::Reporter {
public:
size_t dropped_bytes_;
std::string message_;
ReportCollector() : dropped_bytes_(0) {}
void Corruption(size_t bytes, const Status& status) override {
dropped_bytes_ += bytes;
message_.append(status.ToString());
}
};
Slice contents_;
test::StringSink* sink_;
std::unique_ptr<Writer> log_writer_;
Env* env_;
const std::string test_dir_;
const std::string log_file_;
std::unique_ptr<WritableFileWriter> writer_;
std::unique_ptr<SequentialFileReader> reader_;
ReportCollector report_;
std::unique_ptr<FragmentBufferedReader> log_reader_;
public:
RetriableLogTest()
: contents_(),
sink_(new test::StringSink(&contents_)),
log_writer_(nullptr),
env_(Env::Default()),
test_dir_(test::PerThreadDBPath("retriable_log_test")),
log_file_(test_dir_ + "/log"),
writer_(nullptr),
reader_(nullptr),
log_reader_(nullptr) {
std::unique_ptr<FSWritableFile> sink_holder(sink_);
std::unique_ptr<WritableFileWriter> wfw(new WritableFileWriter(
std::move(sink_holder), "" /* file name */, FileOptions()));
log_writer_.reset(new Writer(std::move(wfw), 123, GetParam()));
}
Status SetupTestEnv() {
Status s;
FileOptions fopts;
auto fs = env_->GetFileSystem();
s = fs->CreateDirIfMissing(test_dir_, IOOptions(), nullptr);
std::unique_ptr<FSWritableFile> writable_file;
if (s.ok()) {
s = fs->NewWritableFile(log_file_, fopts, &writable_file, nullptr);
}
if (s.ok()) {
writer_.reset(
new WritableFileWriter(std::move(writable_file), log_file_, fopts));
EXPECT_NE(writer_, nullptr);
}
std::unique_ptr<FSSequentialFile> seq_file;
if (s.ok()) {
s = fs->NewSequentialFile(log_file_, fopts, &seq_file, nullptr);
}
if (s.ok()) {
reader_.reset(new SequentialFileReader(std::move(seq_file), log_file_));
EXPECT_NE(reader_, nullptr);
log_reader_.reset(new FragmentBufferedReader(
nullptr, std::move(reader_), &report_, true /* checksum */,
123 /* log_number */));
EXPECT_NE(log_reader_, nullptr);
}
return s;
}
std::string contents() { return sink_->contents_; }
void Encode(const std::string& msg) {
ASSERT_OK(log_writer_->AddRecord(Slice(msg)));
}
void Write(const Slice& data) {
ASSERT_OK(writer_->Append(data));
ASSERT_OK(writer_->Sync(true));
}
bool TryRead(std::string* result) {
assert(result != nullptr);
result->clear();
std::string scratch;
Slice record;
bool r = log_reader_->ReadRecord(&record, &scratch);
if (r) {
result->assign(record.data(), record.size());
return true;
} else {
return false;
}
}
};
TEST_P(RetriableLogTest, TailLog_PartialHeader) {
ASSERT_OK(SetupTestEnv());
std::vector<int> remaining_bytes_in_last_record;
size_t header_size = GetParam() ? kRecyclableHeaderSize : kHeaderSize;
bool eof = false;
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency(
{{"RetriableLogTest::TailLog:AfterPart1",
"RetriableLogTest::TailLog:BeforeReadRecord"},
{"FragmentBufferedLogReader::TryReadMore:FirstEOF",
"RetriableLogTest::TailLog:BeforePart2"}});
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->SetCallBack(
"FragmentBufferedLogReader::TryReadMore:FirstEOF",
[&](void* /*arg*/) { eof = true; });
SyncPoint::GetInstance()->EnableProcessing();
size_t delta = header_size - 1;
port::Thread log_writer_thread([&]() {
size_t old_sz = contents().size();
Encode("foo");
size_t new_sz = contents().size();
std::string part1 = contents().substr(old_sz, delta);
std::string part2 =
contents().substr(old_sz + delta, new_sz - old_sz - delta);
Write(Slice(part1));
TEST_SYNC_POINT("RetriableLogTest::TailLog:AfterPart1");
TEST_SYNC_POINT("RetriableLogTest::TailLog:BeforePart2");
Write(Slice(part2));
});
std::string record;
port::Thread log_reader_thread([&]() {
TEST_SYNC_POINT("RetriableLogTest::TailLog:BeforeReadRecord");
while (!TryRead(&record)) {
}
});
log_reader_thread.join();
log_writer_thread.join();
ASSERT_EQ("foo", record);
ASSERT_TRUE(eof);
}
TEST_P(RetriableLogTest, TailLog_FullHeader) {
ASSERT_OK(SetupTestEnv());
std::vector<int> remaining_bytes_in_last_record;
size_t header_size = GetParam() ? kRecyclableHeaderSize : kHeaderSize;
bool eof = false;
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency(
{{"RetriableLogTest::TailLog:AfterPart1",
"RetriableLogTest::TailLog:BeforeReadRecord"},
{"FragmentBufferedLogReader::TryReadMore:FirstEOF",
"RetriableLogTest::TailLog:BeforePart2"}});
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->SetCallBack(
"FragmentBufferedLogReader::TryReadMore:FirstEOF",
[&](void* /*arg*/) { eof = true; });
SyncPoint::GetInstance()->EnableProcessing();
size_t delta = header_size + 1;
port::Thread log_writer_thread([&]() {
size_t old_sz = contents().size();
Encode("foo");
size_t new_sz = contents().size();
std::string part1 = contents().substr(old_sz, delta);
std::string part2 =
contents().substr(old_sz + delta, new_sz - old_sz - delta);
Write(Slice(part1));
TEST_SYNC_POINT("RetriableLogTest::TailLog:AfterPart1");
TEST_SYNC_POINT("RetriableLogTest::TailLog:BeforePart2");
Write(Slice(part2));
ASSERT_TRUE(eof);
});
std::string record;
port::Thread log_reader_thread([&]() {
TEST_SYNC_POINT("RetriableLogTest::TailLog:BeforeReadRecord");
while (!TryRead(&record)) {
}
});
log_reader_thread.join();
log_writer_thread.join();
ASSERT_EQ("foo", record);
}
TEST_P(RetriableLogTest, NonBlockingReadFullRecord) {
// Clear all sync point callbacks even if this test does not use sync point.
// It is necessary, otherwise the execute of this test may hit a sync point
// with which a callback is registered. The registered callback may access
// some dead variable, causing segfault.
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
ASSERT_OK(SetupTestEnv());
size_t header_size = GetParam() ? kRecyclableHeaderSize : kHeaderSize;
size_t delta = header_size - 1;
size_t old_sz = contents().size();
Encode("foo-bar");
size_t new_sz = contents().size();
std::string part1 = contents().substr(old_sz, delta);
std::string part2 =
contents().substr(old_sz + delta, new_sz - old_sz - delta);
Write(Slice(part1));
std::string record;
ASSERT_FALSE(TryRead(&record));
ASSERT_TRUE(record.empty());
Write(Slice(part2));
ASSERT_TRUE(TryRead(&record));
ASSERT_EQ("foo-bar", record);
}
INSTANTIATE_TEST_CASE_P(bool, RetriableLogTest, ::testing::Values(0, 2));
class CompressionLogTest : public LogTest {
public:
Status SetupTestEnv() { return writer_->AddCompressionTypeRecord(); }
};
TEST_P(CompressionLogTest, Empty) {
ASSERT_OK(SetupTestEnv());
const bool compression_enabled =
std::get<2>(GetParam()) == kNoCompression ? false : true;
// If WAL compression is enabled, a record is added for the compression type
const int compression_record_size = compression_enabled ? kHeaderSize + 4 : 0;
ASSERT_EQ(compression_record_size, WrittenBytes());
ASSERT_EQ("EOF", Read());
}
INSTANTIATE_TEST_CASE_P(
Compression, CompressionLogTest,
::testing::Combine(::testing::Values(0, 1), ::testing::Bool(),
::testing::Values(CompressionType::kNoCompression,
CompressionType::kZSTD)));
} // namespace log
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}