rocksdb/util/file_reader_writer.cc
sdong e1a5ff857b Allow users to disable some kill points in db_stress
Summary:
Give a name for every kill point, and allow users to disable some kill points based on prefixes. The kill points can be passed by db_stress through a command line paramter. This provides a way for users to boost the chance of triggering low frequency kill points
This allow follow up changes in crash test scripts to improve crash test coverage.

Test Plan:
Manually run db_stress with variable values of --kill_random_test and --kill_prefix_blacklist. Like this:
 --kill_random_test=2 --kill_prefix_blacklist=Posix,WritableFileWriter::Append,WritableFileWriter::WriteBuffered,WritableFileWriter::Sync

Reviewers: igor, kradhakrishnan, rven, IslamAbdelRahman, yhchiang

Reviewed By: yhchiang

Subscribers: leveldb, dhruba

Differential Revision: https://reviews.facebook.net/D48735
2015-10-15 14:33:13 -07:00

474 lines
14 KiB
C++

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "util/file_reader_writer.h"
#include <algorithm>
#include <mutex>
#include "port/port.h"
#include "util/histogram.h"
#include "util/iostats_context_imp.h"
#include "util/random.h"
#include "util/rate_limiter.h"
#include "util/sync_point.h"
namespace rocksdb {
namespace {
const size_t c_OneMb = (1 << 20);
}
Status SequentialFileReader::Read(size_t n, Slice* result, char* scratch) {
Status s = file_->Read(n, result, scratch);
IOSTATS_ADD(bytes_read, result->size());
return s;
}
Status SequentialFileReader::Skip(uint64_t n) { return file_->Skip(n); }
Status RandomAccessFileReader::Read(uint64_t offset, size_t n, Slice* result,
char* scratch) const {
Status s;
uint64_t elapsed = 0;
{
StopWatch sw(env_, stats_, hist_type_,
(stats_ != nullptr) ? &elapsed : nullptr);
IOSTATS_TIMER_GUARD(read_nanos);
s = file_->Read(offset, n, result, scratch);
IOSTATS_ADD_IF_POSITIVE(bytes_read, result->size());
}
if (stats_ != nullptr && file_read_hist_ != nullptr) {
file_read_hist_->Add(elapsed);
}
return s;
}
Status WritableFileWriter::Append(const Slice& data) {
const char* src = data.data();
size_t left = data.size();
Status s;
pending_sync_ = true;
pending_fsync_ = true;
TEST_KILL_RANDOM("WritableFileWriter::Append:0",
rocksdb_kill_odds * REDUCE_ODDS2);
{
IOSTATS_TIMER_GUARD(prepare_write_nanos);
TEST_SYNC_POINT("WritableFileWriter::Append:BeforePrepareWrite");
writable_file_->PrepareWrite(static_cast<size_t>(GetFileSize()), left);
}
// Flush only when I/O is buffered
if (use_os_buffer_ &&
(buf_.Capacity() - buf_.CurrentSize()) < left) {
if (buf_.CurrentSize() > 0) {
s = Flush();
if (!s.ok()) {
return s;
}
}
if (buf_.Capacity() < c_OneMb) {
size_t desiredCapacity = buf_.Capacity() * 2;
desiredCapacity = std::min(desiredCapacity, c_OneMb);
buf_.AllocateNewBuffer(desiredCapacity);
}
assert(buf_.CurrentSize() == 0);
}
// We never write directly to disk with unbuffered I/O on.
// or we simply use it for its original purpose to accumulate many small
// chunks
if (!use_os_buffer_ || (buf_.Capacity() >= left)) {
while (left > 0) {
size_t appended = buf_.Append(src, left);
left -= appended;
src += appended;
if (left > 0) {
s = Flush();
if (!s.ok()) {
break;
}
// We double the buffer here because
// Flush calls do not keep up with the incoming bytes
// This is the only place when buffer is changed with unbuffered I/O
if (buf_.Capacity() < (1 << 20)) {
size_t desiredCapacity = buf_.Capacity() * 2;
desiredCapacity = std::min(desiredCapacity, c_OneMb);
buf_.AllocateNewBuffer(desiredCapacity);
}
}
}
} else {
// Writing directly to file bypassing the buffer
assert(buf_.CurrentSize() == 0);
s = WriteBuffered(src, left);
}
TEST_KILL_RANDOM("WritableFileWriter::Append:1", rocksdb_kill_odds);
filesize_ += data.size();
return Status::OK();
}
Status WritableFileWriter::Close() {
// Do not quit immediately on failure the file MUST be closed
Status s;
// Possible to close it twice now as we MUST close
// in __dtor, simply flushing is not enough
// Windows when pre-allocating does not fill with zeros
// also with unbuffered access we also set the end of data.
if (!writable_file_) {
return s;
}
s = Flush(); // flush cache to OS
// In unbuffered mode we write whole pages so
// we need to let the file know where data ends.
Status interim = writable_file_->Truncate(filesize_);
if (!interim.ok() && s.ok()) {
s = interim;
}
TEST_KILL_RANDOM("WritableFileWriter::Close:0", rocksdb_kill_odds);
interim = writable_file_->Close();
if (!interim.ok() && s.ok()) {
s = interim;
}
writable_file_.reset();
return s;
}
// write out the cached data to the OS cache
Status WritableFileWriter::Flush() {
Status s;
TEST_KILL_RANDOM("WritableFileWriter::Flush:0",
rocksdb_kill_odds * REDUCE_ODDS2);
if (buf_.CurrentSize() > 0) {
if (use_os_buffer_) {
s = WriteBuffered(buf_.BufferStart(), buf_.CurrentSize());
} else {
s = WriteUnbuffered();
}
if (!s.ok()) {
return s;
}
}
s = writable_file_->Flush();
if (!s.ok()) {
return s;
}
// sync OS cache to disk for every bytes_per_sync_
// TODO: give log file and sst file different options (log
// files could be potentially cached in OS for their whole
// life time, thus we might not want to flush at all).
// We try to avoid sync to the last 1MB of data. For two reasons:
// (1) avoid rewrite the same page that is modified later.
// (2) for older version of OS, write can block while writing out
// the page.
// Xfs does neighbor page flushing outside of the specified ranges. We
// need to make sure sync range is far from the write offset.
if (!direct_io_ && bytes_per_sync_) {
const uint64_t kBytesNotSyncRange = 1024 * 1024; // recent 1MB is not synced.
const uint64_t kBytesAlignWhenSync = 4 * 1024; // Align 4KB.
if (filesize_ > kBytesNotSyncRange) {
uint64_t offset_sync_to = filesize_ - kBytesNotSyncRange;
offset_sync_to -= offset_sync_to % kBytesAlignWhenSync;
assert(offset_sync_to >= last_sync_size_);
if (offset_sync_to > 0 &&
offset_sync_to - last_sync_size_ >= bytes_per_sync_) {
s = RangeSync(last_sync_size_, offset_sync_to - last_sync_size_);
last_sync_size_ = offset_sync_to;
}
}
}
return s;
}
Status WritableFileWriter::Sync(bool use_fsync) {
Status s = Flush();
if (!s.ok()) {
return s;
}
TEST_KILL_RANDOM("WritableFileWriter::Sync:0", rocksdb_kill_odds);
if (!direct_io_ && pending_sync_) {
s = SyncInternal(use_fsync);
if (!s.ok()) {
return s;
}
}
TEST_KILL_RANDOM("WritableFileWriter::Sync:1", rocksdb_kill_odds);
pending_sync_ = false;
if (use_fsync) {
pending_fsync_ = false;
}
return Status::OK();
}
Status WritableFileWriter::SyncWithoutFlush(bool use_fsync) {
if (!writable_file_->IsSyncThreadSafe()) {
return Status::NotSupported(
"Can't WritableFileWriter::SyncWithoutFlush() because "
"WritableFile::IsSyncThreadSafe() is false");
}
TEST_SYNC_POINT("WritableFileWriter::SyncWithoutFlush:1");
Status s = SyncInternal(use_fsync);
TEST_SYNC_POINT("WritableFileWriter::SyncWithoutFlush:2");
return s;
}
Status WritableFileWriter::SyncInternal(bool use_fsync) {
Status s;
IOSTATS_TIMER_GUARD(fsync_nanos);
TEST_SYNC_POINT("WritableFileWriter::SyncInternal:0");
if (use_fsync) {
s = writable_file_->Fsync();
} else {
s = writable_file_->Sync();
}
return s;
}
Status WritableFileWriter::RangeSync(off_t offset, off_t nbytes) {
IOSTATS_TIMER_GUARD(range_sync_nanos);
TEST_SYNC_POINT("WritableFileWriter::RangeSync:0");
return writable_file_->RangeSync(offset, nbytes);
}
size_t WritableFileWriter::RequestToken(size_t bytes, bool align) {
Env::IOPriority io_priority;
if (rate_limiter_ && (io_priority = writable_file_->GetIOPriority()) <
Env::IO_TOTAL) {
bytes = std::min(
bytes, static_cast<size_t>(rate_limiter_->GetSingleBurstBytes()));
if (align) {
// Here we may actually require more than burst and block
// but we can not write less than one page at a time on unbuffered
// thus we may want not to use ratelimiter s
size_t alignment = buf_.Alignment();
bytes = std::max(alignment, TruncateToPageBoundary(alignment, bytes));
}
rate_limiter_->Request(bytes, io_priority);
}
return bytes;
}
// This method writes to disk the specified data and makes use of the rate
// limiter if available
Status WritableFileWriter::WriteBuffered(const char* data, size_t size) {
Status s;
assert(use_os_buffer_);
const char* src = data;
size_t left = size;
while (left > 0) {
size_t allowed = RequestToken(left, false);
{
IOSTATS_TIMER_GUARD(write_nanos);
TEST_SYNC_POINT("WritableFileWriter::Flush:BeforeAppend");
s = writable_file_->Append(Slice(src, allowed));
if (!s.ok()) {
return s;
}
}
IOSTATS_ADD(bytes_written, allowed);
TEST_KILL_RANDOM("WritableFileWriter::WriteBuffered:0", rocksdb_kill_odds);
left -= allowed;
src += allowed;
}
buf_.Size(0);
return s;
}
// This flushes the accumulated data in the buffer. We pad data with zeros if
// necessary to the whole page.
// However, during automatic flushes padding would not be necessary.
// We always use RateLimiter if available. We move (Refit) any buffer bytes
// that are left over the
// whole number of pages to be written again on the next flush because we can
// only write on aligned
// offsets.
Status WritableFileWriter::WriteUnbuffered() {
Status s;
assert(!use_os_buffer_);
const size_t alignment = buf_.Alignment();
assert((next_write_offset_ % alignment) == 0);
// Calculate whole page final file advance if all writes succeed
size_t file_advance =
TruncateToPageBoundary(alignment, buf_.CurrentSize());
// Calculate the leftover tail, we write it here padded with zeros BUT we
// will write
// it again in the future either on Close() OR when the current whole page
// fills out
size_t leftover_tail = buf_.CurrentSize() - file_advance;
// Round up and pad
buf_.PadToAlignmentWith(0);
const char* src = buf_.BufferStart();
uint64_t write_offset = next_write_offset_;
size_t left = buf_.CurrentSize();
while (left > 0) {
// Check how much is allowed
size_t size = RequestToken(left, true);
{
IOSTATS_TIMER_GUARD(write_nanos);
TEST_SYNC_POINT("WritableFileWriter::Flush:BeforeAppend");
// Unbuffered writes must be positional
s = writable_file_->PositionedAppend(Slice(src, size), write_offset);
if (!s.ok()) {
buf_.Size(file_advance + leftover_tail);
return s;
}
}
IOSTATS_ADD(bytes_written, size);
left -= size;
src += size;
write_offset += size;
assert((next_write_offset_ % alignment) == 0);
}
if (s.ok()) {
// Move the tail to the beginning of the buffer
// This never happens during normal Append but rather during
// explicit call to Flush()/Sync() or Close()
buf_.RefitTail(file_advance, leftover_tail);
// This is where we start writing next time which may or not be
// the actual file size on disk. They match if the buffer size
// is a multiple of whole pages otherwise filesize_ is leftover_tail
// behind
next_write_offset_ += file_advance;
}
return s;
}
namespace {
class ReadaheadRandomAccessFile : public RandomAccessFile {
public:
ReadaheadRandomAccessFile(std::unique_ptr<RandomAccessFile>&& file,
size_t readahead_size)
: file_(std::move(file)),
readahead_size_(readahead_size),
forward_calls_(file_->ShouldForwardRawRequest()),
buffer_(new char[readahead_size_]),
buffer_offset_(0),
buffer_len_(0) {}
ReadaheadRandomAccessFile(const ReadaheadRandomAccessFile&) = delete;
ReadaheadRandomAccessFile& operator=(const ReadaheadRandomAccessFile&) = delete;
virtual Status Read(uint64_t offset, size_t n, Slice* result,
char* scratch) const override {
if (n >= readahead_size_) {
return file_->Read(offset, n, result, scratch);
}
// On Windows in unbuffered mode this will lead to double buffering
// and double locking so we avoid that.
// In normal mode Windows caches so much data from disk that we do
// not need readahead.
if (forward_calls_) {
return file_->Read(offset, n, result, scratch);
}
std::unique_lock<std::mutex> lk(lock_);
size_t copied = 0;
// if offset between [buffer_offset_, buffer_offset_ + buffer_len>
if (offset >= buffer_offset_ && offset < buffer_len_ + buffer_offset_) {
uint64_t offset_in_buffer = offset - buffer_offset_;
copied = std::min(static_cast<uint64_t>(buffer_len_) - offset_in_buffer,
static_cast<uint64_t>(n));
memcpy(scratch, buffer_.get() + offset_in_buffer, copied);
if (copied == n) {
// fully cached
*result = Slice(scratch, n);
return Status::OK();
}
}
Slice readahead_result;
Status s = file_->Read(offset + copied, readahead_size_, &readahead_result,
buffer_.get());
if (!s.ok()) {
return s;
}
auto left_to_copy = std::min(readahead_result.size(), n - copied);
memcpy(scratch + copied, readahead_result.data(), left_to_copy);
*result = Slice(scratch, copied + left_to_copy);
if (readahead_result.data() == buffer_.get()) {
buffer_offset_ = offset + copied;
buffer_len_ = readahead_result.size();
} else {
buffer_len_ = 0;
}
return Status::OK();
}
virtual size_t GetUniqueId(char* id, size_t max_size) const override {
return file_->GetUniqueId(id, max_size);
}
virtual void Hint(AccessPattern pattern) override { file_->Hint(pattern); }
virtual Status InvalidateCache(size_t offset, size_t length) override {
return file_->InvalidateCache(offset, length);
}
private:
std::unique_ptr<RandomAccessFile> file_;
size_t readahead_size_;
const bool forward_calls_;
mutable std::mutex lock_;
mutable std::unique_ptr<char[]> buffer_;
mutable uint64_t buffer_offset_;
mutable size_t buffer_len_;
};
} // namespace
std::unique_ptr<RandomAccessFile> NewReadaheadRandomAccessFile(
std::unique_ptr<RandomAccessFile>&& file, size_t readahead_size) {
std::unique_ptr<RandomAccessFile> result(
new ReadaheadRandomAccessFile(std::move(file), readahead_size));
return result;
}
} // namespace rocksdb