rocksdb/util/autovector.h
Simon Liu a2de8e52bb optimized the performance of autovector::emplace_back. (#4606)
Summary:
It called the autovector::push_back simply in autovector::emplace_back.
This was not efficient, and then optimazed this function through the
perfect forwarding.

This was the src and result of the benchmark(using the google'benchmark library, the type of elem in
autovector was std::string, and call emplace_back with the "char *" type):

https://gist.github.com/monadbobo/93448b89a42737b08cbada81de75c5cd

PS: The benchmark's result of  previous PR was not accurate, and so I update the test case and result.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4606

Differential Revision: D13046813

Pulled By: sagar0

fbshipit-source-id: 19cde1bcadafe899aa454b703acb35737a1cc02d
2018-11-13 14:39:03 -08:00

344 lines
8.8 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#pragma once
#include <algorithm>
#include <cassert>
#include <initializer_list>
#include <iterator>
#include <stdexcept>
#include <vector>
namespace rocksdb {
#ifdef ROCKSDB_LITE
template <class T, size_t kSize = 8>
class autovector : public std::vector<T> {
using std::vector<T>::vector;
};
#else
// A vector that leverages pre-allocated stack-based array to achieve better
// performance for array with small amount of items.
//
// The interface resembles that of vector, but with less features since we aim
// to solve the problem that we have in hand, rather than implementing a
// full-fledged generic container.
//
// Currently we don't support:
// * reserve()/shrink_to_fit()
// If used correctly, in most cases, people should not touch the
// underlying vector at all.
// * random insert()/erase(), please only use push_back()/pop_back().
// * No move/swap operations. Each autovector instance has a
// stack-allocated array and if we want support move/swap operations, we
// need to copy the arrays other than just swapping the pointers. In this
// case we'll just explicitly forbid these operations since they may
// lead users to make false assumption by thinking they are inexpensive
// operations.
//
// Naming style of public methods almost follows that of the STL's.
template <class T, size_t kSize = 8>
class autovector {
public:
// General STL-style container member types.
typedef T value_type;
typedef typename std::vector<T>::difference_type difference_type;
typedef typename std::vector<T>::size_type size_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* pointer;
typedef const value_type* const_pointer;
// This class is the base for regular/const iterator
template <class TAutoVector, class TValueType>
class iterator_impl {
public:
// -- iterator traits
typedef iterator_impl<TAutoVector, TValueType> self_type;
typedef TValueType value_type;
typedef TValueType& reference;
typedef TValueType* pointer;
typedef typename TAutoVector::difference_type difference_type;
typedef std::random_access_iterator_tag iterator_category;
iterator_impl(TAutoVector* vect, size_t index)
: vect_(vect), index_(index) {};
iterator_impl(const iterator_impl&) = default;
~iterator_impl() {}
iterator_impl& operator=(const iterator_impl&) = default;
// -- Advancement
// ++iterator
self_type& operator++() {
++index_;
return *this;
}
// iterator++
self_type operator++(int) {
auto old = *this;
++index_;
return old;
}
// --iterator
self_type& operator--() {
--index_;
return *this;
}
// iterator--
self_type operator--(int) {
auto old = *this;
--index_;
return old;
}
self_type operator-(difference_type len) const {
return self_type(vect_, index_ - len);
}
difference_type operator-(const self_type& other) const {
assert(vect_ == other.vect_);
return index_ - other.index_;
}
self_type operator+(difference_type len) const {
return self_type(vect_, index_ + len);
}
self_type& operator+=(difference_type len) {
index_ += len;
return *this;
}
self_type& operator-=(difference_type len) {
index_ -= len;
return *this;
}
// -- Reference
reference operator*() {
assert(vect_->size() >= index_);
return (*vect_)[index_];
}
const_reference operator*() const {
assert(vect_->size() >= index_);
return (*vect_)[index_];
}
pointer operator->() {
assert(vect_->size() >= index_);
return &(*vect_)[index_];
}
const_pointer operator->() const {
assert(vect_->size() >= index_);
return &(*vect_)[index_];
}
// -- Logical Operators
bool operator==(const self_type& other) const {
assert(vect_ == other.vect_);
return index_ == other.index_;
}
bool operator!=(const self_type& other) const { return !(*this == other); }
bool operator>(const self_type& other) const {
assert(vect_ == other.vect_);
return index_ > other.index_;
}
bool operator<(const self_type& other) const {
assert(vect_ == other.vect_);
return index_ < other.index_;
}
bool operator>=(const self_type& other) const {
assert(vect_ == other.vect_);
return index_ >= other.index_;
}
bool operator<=(const self_type& other) const {
assert(vect_ == other.vect_);
return index_ <= other.index_;
}
private:
TAutoVector* vect_ = nullptr;
size_t index_ = 0;
};
typedef iterator_impl<autovector, value_type> iterator;
typedef iterator_impl<const autovector, const value_type> const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
autovector() = default;
autovector(std::initializer_list<T> init_list) {
for (const T& item : init_list) {
push_back(item);
}
}
~autovector() = default;
// -- Immutable operations
// Indicate if all data resides in in-stack data structure.
bool only_in_stack() const {
// If no element was inserted at all, the vector's capacity will be `0`.
return vect_.capacity() == 0;
}
size_type size() const { return num_stack_items_ + vect_.size(); }
// resize does not guarantee anything about the contents of the newly
// available elements
void resize(size_type n) {
if (n > kSize) {
vect_.resize(n - kSize);
num_stack_items_ = kSize;
} else {
vect_.clear();
num_stack_items_ = n;
}
}
bool empty() const { return size() == 0; }
const_reference operator[](size_type n) const {
assert(n < size());
return n < kSize ? values_[n] : vect_[n - kSize];
}
reference operator[](size_type n) {
assert(n < size());
return n < kSize ? values_[n] : vect_[n - kSize];
}
const_reference at(size_type n) const {
assert(n < size());
return (*this)[n];
}
reference at(size_type n) {
assert(n < size());
return (*this)[n];
}
reference front() {
assert(!empty());
return *begin();
}
const_reference front() const {
assert(!empty());
return *begin();
}
reference back() {
assert(!empty());
return *(end() - 1);
}
const_reference back() const {
assert(!empty());
return *(end() - 1);
}
// -- Mutable Operations
void push_back(T&& item) {
if (num_stack_items_ < kSize) {
values_[num_stack_items_++] = std::move(item);
} else {
vect_.push_back(item);
}
}
void push_back(const T& item) {
if (num_stack_items_ < kSize) {
values_[num_stack_items_++] = item;
} else {
vect_.push_back(item);
}
}
template <class... Args>
void emplace_back(Args&&... args) {
if (num_stack_items_ < kSize) {
values_[num_stack_items_++] =
std::move(value_type(std::forward<Args>(args)...));
} else {
vect_.emplace_back(std::forward<Args>(args)...);
}
}
void pop_back() {
assert(!empty());
if (!vect_.empty()) {
vect_.pop_back();
} else {
--num_stack_items_;
}
}
void clear() {
num_stack_items_ = 0;
vect_.clear();
}
// -- Copy and Assignment
autovector& assign(const autovector& other);
autovector(const autovector& other) { assign(other); }
autovector& operator=(const autovector& other) { return assign(other); }
// -- Iterator Operations
iterator begin() { return iterator(this, 0); }
const_iterator begin() const { return const_iterator(this, 0); }
iterator end() { return iterator(this, this->size()); }
const_iterator end() const { return const_iterator(this, this->size()); }
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
private:
size_type num_stack_items_ = 0; // current number of items
value_type values_[kSize]; // the first `kSize` items
// used only if there are more than `kSize` items.
std::vector<T> vect_;
};
template <class T, size_t kSize>
autovector<T, kSize>& autovector<T, kSize>::assign(const autovector& other) {
// copy the internal vector
vect_.assign(other.vect_.begin(), other.vect_.end());
// copy array
num_stack_items_ = other.num_stack_items_;
std::copy(other.values_, other.values_ + num_stack_items_, values_);
return *this;
}
#endif // ROCKSDB_LITE
} // namespace rocksdb