8aa99fc71e
Summary: With many millions of keys, the old Bloom filter implementation for the block-based table (format_version <= 4) would have excessive FP rate due to the limitations of feeding the Bloom filter with a 32-bit hash. This change computes an estimated inflated FP rate due to this effect and warns in the log whenever an SST filter is constructed (almost certainly a "full" not "partitioned" filter) that exceeds 1.5x FP rate due to this effect. The detailed condition is only checked if 3 million keys or more have been added to a filter, as this should be a lower bound for common bits/key settings (< 20). Recommended remedies include smaller SST file size, using format_version >= 5 (for new Bloom filter), or using partitioned filters. This does not change behavior other than generating warnings for some constructed filters using the old implementation. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6317 Test Plan: Example with warning, 15M keys @ 15 bits / key: (working_mem_size_mb is just to stop after building one filter if it's large) $ ./filter_bench -quick -impl=0 -working_mem_size_mb=1 -bits_per_key=15 -average_keys_per_filter=15000000 2>&1 | grep 'FP rate' [WARN] [/block_based/filter_policy.cc:292] Using legacy SST/BBT Bloom filter with excessive key count (15.0M @ 15bpk), causing estimated 1.8x higher filter FP rate. Consider using new Bloom with format_version>=5, smaller SST file size, or partitioned filters. Predicted FP rate %: 0.766702 Average FP rate %: 0.66846 Example without warning (150K keys): $ ./filter_bench -quick -impl=0 -working_mem_size_mb=1 -bits_per_key=15 -average_keys_per_filter=150000 2>&1 | grep 'FP rate' Predicted FP rate %: 0.422857 Average FP rate %: 0.379301 $ With more samples at 15 bits/key: 150K keys -> no warning; actual: 0.379% FP rate (baseline) 1M keys -> no warning; actual: 0.396% FP rate, 1.045x 9M keys -> no warning; actual: 0.563% FP rate, 1.485x 10M keys -> warning (1.5x); actual: 0.564% FP rate, 1.488x 15M keys -> warning (1.8x); actual: 0.668% FP rate, 1.76x 25M keys -> warning (2.4x); actual: 0.880% FP rate, 2.32x At 10 bits/key: 150K keys -> no warning; actual: 1.17% FP rate (baseline) 1M keys -> no warning; actual: 1.16% FP rate 10M keys -> no warning; actual: 1.32% FP rate, 1.13x 25M keys -> no warning; actual: 1.63% FP rate, 1.39x 35M keys -> warning (1.6x); actual: 1.81% FP rate, 1.55x At 5 bits/key: 150K keys -> no warning; actual: 9.32% FP rate (baseline) 25M keys -> no warning; actual: 9.62% FP rate, 1.03x 200M keys -> no warning; actual: 12.2% FP rate, 1.31x 250M keys -> warning (1.5x); actual: 12.8% FP rate, 1.37x 300M keys -> warning (1.6x); actual: 13.4% FP rate, 1.43x The reason for the modest inaccuracy at low bits/key is that the assumption of independence between a collision between 32-hash values feeding the filter and an FP in the filter is not quite true for implementations using "simple" logic to compute indices from the stock hash result. There's math on this in my dissertation, but I don't think it's worth the effort just for these extreme cases (> 100 million keys and low-ish bits/key). Differential Revision: D19471715 Pulled By: pdillinger fbshipit-source-id: f80c96893a09bf1152630ff0b964e5cdd7e35c68
709 lines
25 KiB
C++
709 lines
25 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
|
|
#if !defined(GFLAGS) || defined(ROCKSDB_LITE)
|
|
#include <cstdio>
|
|
int main() {
|
|
fprintf(stderr, "filter_bench requires gflags and !ROCKSDB_LITE\n");
|
|
return 1;
|
|
}
|
|
#else
|
|
|
|
#include <cinttypes>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <vector>
|
|
|
|
#include "memory/arena.h"
|
|
#include "port/port.h"
|
|
#include "port/stack_trace.h"
|
|
#include "table/block_based/filter_policy_internal.h"
|
|
#include "table/block_based/full_filter_block.h"
|
|
#include "table/block_based/mock_block_based_table.h"
|
|
#include "table/plain/plain_table_bloom.h"
|
|
#include "util/gflags_compat.h"
|
|
#include "util/hash.h"
|
|
#include "util/random.h"
|
|
#include "util/stderr_logger.h"
|
|
#include "util/stop_watch.h"
|
|
|
|
using GFLAGS_NAMESPACE::ParseCommandLineFlags;
|
|
using GFLAGS_NAMESPACE::RegisterFlagValidator;
|
|
using GFLAGS_NAMESPACE::SetUsageMessage;
|
|
|
|
DEFINE_uint32(seed, 0, "Seed for random number generators");
|
|
|
|
DEFINE_double(working_mem_size_mb, 200,
|
|
"MB of memory to get up to among all filters");
|
|
|
|
DEFINE_uint32(average_keys_per_filter, 10000,
|
|
"Average number of keys per filter");
|
|
|
|
DEFINE_uint32(key_size, 24, "Average number of bytes for each key");
|
|
|
|
DEFINE_bool(vary_key_alignment, true,
|
|
"Whether to vary key alignment (default: at least 32-bit "
|
|
"alignment)");
|
|
|
|
DEFINE_uint32(vary_key_size_log2_interval, 5,
|
|
"Use same key size 2^n times, then change. Key size varies from "
|
|
"-2 to +2 bytes vs. average, unless n>=30 to fix key size.");
|
|
|
|
DEFINE_uint32(batch_size, 8, "Number of keys to group in each batch");
|
|
|
|
DEFINE_double(bits_per_key, 10.0, "Bits per key setting for filters");
|
|
|
|
DEFINE_double(m_queries, 200, "Millions of queries for each test mode");
|
|
|
|
DEFINE_bool(use_full_block_reader, false,
|
|
"Use FullFilterBlockReader interface rather than FilterBitsReader");
|
|
|
|
DEFINE_bool(use_plain_table_bloom, false,
|
|
"Use PlainTableBloom structure and interface rather than "
|
|
"FilterBitsReader/FullFilterBlockReader");
|
|
|
|
DEFINE_bool(new_builder, false,
|
|
"Whether to create a new builder for each new filter");
|
|
|
|
DEFINE_uint32(impl, 0,
|
|
"Select filter implementation. Without -use_plain_table_bloom:"
|
|
"0 = full filter, 1 = block-based filter. With "
|
|
"-use_plain_table_bloom: 0 = no locality, 1 = locality.");
|
|
|
|
DEFINE_bool(net_includes_hashing, false,
|
|
"Whether query net ns/op times should include hashing. "
|
|
"(if not, dry run will include hashing) "
|
|
"(build times always include hashing)");
|
|
|
|
DEFINE_bool(quick, false, "Run more limited set of tests, fewer queries");
|
|
|
|
DEFINE_bool(best_case, false, "Run limited tests only for best-case");
|
|
|
|
DEFINE_bool(allow_bad_fp_rate, false, "Continue even if FP rate is bad");
|
|
|
|
DEFINE_bool(legend, false,
|
|
"Print more information about interpreting results instead of "
|
|
"running tests");
|
|
|
|
void _always_assert_fail(int line, const char *file, const char *expr) {
|
|
fprintf(stderr, "%s: %d: Assertion %s failed\n", file, line, expr);
|
|
abort();
|
|
}
|
|
|
|
#define ALWAYS_ASSERT(cond) \
|
|
((cond) ? (void)0 : ::_always_assert_fail(__LINE__, __FILE__, #cond))
|
|
|
|
#ifndef NDEBUG
|
|
// This could affect build times enough that we should not include it for
|
|
// accurate speed tests
|
|
#define PREDICT_FP_RATE
|
|
#endif
|
|
|
|
using rocksdb::Arena;
|
|
using rocksdb::BlockContents;
|
|
using rocksdb::BloomFilterPolicy;
|
|
using rocksdb::BloomHash;
|
|
using rocksdb::BuiltinFilterBitsBuilder;
|
|
using rocksdb::CachableEntry;
|
|
using rocksdb::EncodeFixed32;
|
|
using rocksdb::fastrange32;
|
|
using rocksdb::FilterBitsReader;
|
|
using rocksdb::FilterBuildingContext;
|
|
using rocksdb::FullFilterBlockReader;
|
|
using rocksdb::GetSliceHash;
|
|
using rocksdb::GetSliceHash64;
|
|
using rocksdb::Lower32of64;
|
|
using rocksdb::ParsedFullFilterBlock;
|
|
using rocksdb::PlainTableBloomV1;
|
|
using rocksdb::Random32;
|
|
using rocksdb::Slice;
|
|
using rocksdb::StderrLogger;
|
|
using rocksdb::mock::MockBlockBasedTableTester;
|
|
|
|
struct KeyMaker {
|
|
KeyMaker(size_t avg_size)
|
|
: smallest_size_(avg_size -
|
|
(FLAGS_vary_key_size_log2_interval >= 30 ? 2 : 0)),
|
|
buf_size_(avg_size + 11), // pad to vary key size and alignment
|
|
buf_(new char[buf_size_]) {
|
|
memset(buf_.get(), 0, buf_size_);
|
|
assert(smallest_size_ > 8);
|
|
}
|
|
size_t smallest_size_;
|
|
size_t buf_size_;
|
|
std::unique_ptr<char[]> buf_;
|
|
|
|
// Returns a unique(-ish) key based on the given parameter values. Each
|
|
// call returns a Slice from the same buffer so previously returned
|
|
// Slices should be considered invalidated.
|
|
Slice Get(uint32_t filter_num, uint32_t val_num) {
|
|
size_t start = FLAGS_vary_key_alignment ? val_num % 4 : 0;
|
|
size_t len = smallest_size_;
|
|
if (FLAGS_vary_key_size_log2_interval < 30) {
|
|
// To get range [avg_size - 2, avg_size + 2]
|
|
// use range [smallest_size, smallest_size + 4]
|
|
len += fastrange32(
|
|
(val_num >> FLAGS_vary_key_size_log2_interval) * 1234567891, 5);
|
|
}
|
|
char * data = buf_.get() + start;
|
|
// Populate key data such that all data makes it into a key of at
|
|
// least 8 bytes. We also don't want all the within-filter key
|
|
// variance confined to a contiguous 32 bits, because then a 32 bit
|
|
// hash function can "cheat" the false positive rate by
|
|
// approximating a perfect hash.
|
|
EncodeFixed32(data, val_num);
|
|
EncodeFixed32(data + 4, filter_num + val_num);
|
|
// ensure clearing leftovers from different alignment
|
|
EncodeFixed32(data + 8, 0);
|
|
return Slice(data, len);
|
|
}
|
|
};
|
|
|
|
void PrintWarnings() {
|
|
#if defined(__GNUC__) && !defined(__OPTIMIZE__)
|
|
fprintf(stdout,
|
|
"WARNING: Optimization is disabled: benchmarks unnecessarily slow\n");
|
|
#endif
|
|
#ifndef NDEBUG
|
|
fprintf(stdout,
|
|
"WARNING: Assertions are enabled; benchmarks unnecessarily slow\n");
|
|
#endif
|
|
}
|
|
|
|
struct FilterInfo {
|
|
uint32_t filter_id_ = 0;
|
|
std::unique_ptr<const char[]> owner_;
|
|
Slice filter_;
|
|
uint32_t keys_added_ = 0;
|
|
std::unique_ptr<FilterBitsReader> reader_;
|
|
std::unique_ptr<FullFilterBlockReader> full_block_reader_;
|
|
std::unique_ptr<PlainTableBloomV1> plain_table_bloom_;
|
|
uint64_t outside_queries_ = 0;
|
|
uint64_t false_positives_ = 0;
|
|
};
|
|
|
|
enum TestMode {
|
|
kSingleFilter,
|
|
kBatchPrepared,
|
|
kBatchUnprepared,
|
|
kFiftyOneFilter,
|
|
kEightyTwentyFilter,
|
|
kRandomFilter,
|
|
};
|
|
|
|
static const std::vector<TestMode> allTestModes = {
|
|
kSingleFilter, kBatchPrepared, kBatchUnprepared,
|
|
kFiftyOneFilter, kEightyTwentyFilter, kRandomFilter,
|
|
};
|
|
|
|
static const std::vector<TestMode> quickTestModes = {
|
|
kSingleFilter,
|
|
kRandomFilter,
|
|
};
|
|
|
|
static const std::vector<TestMode> bestCaseTestModes = {
|
|
kSingleFilter,
|
|
};
|
|
|
|
const char *TestModeToString(TestMode tm) {
|
|
switch (tm) {
|
|
case kSingleFilter:
|
|
return "Single filter";
|
|
case kBatchPrepared:
|
|
return "Batched, prepared";
|
|
case kBatchUnprepared:
|
|
return "Batched, unprepared";
|
|
case kFiftyOneFilter:
|
|
return "Skewed 50% in 1%";
|
|
case kEightyTwentyFilter:
|
|
return "Skewed 80% in 20%";
|
|
case kRandomFilter:
|
|
return "Random filter";
|
|
}
|
|
return "Bad TestMode";
|
|
}
|
|
|
|
// Do just enough to keep some data dependence for the
|
|
// compiler / CPU
|
|
static uint32_t DryRunNoHash(Slice &s) {
|
|
uint32_t sz = static_cast<uint32_t>(s.size());
|
|
if (sz >= 4) {
|
|
return sz + s.data()[3];
|
|
} else {
|
|
return sz;
|
|
}
|
|
}
|
|
|
|
static uint32_t DryRunHash32(Slice &s) {
|
|
// Same perf characteristics as GetSliceHash()
|
|
return BloomHash(s);
|
|
}
|
|
|
|
static uint32_t DryRunHash64(Slice &s) {
|
|
return Lower32of64(GetSliceHash64(s));
|
|
}
|
|
|
|
struct FilterBench : public MockBlockBasedTableTester {
|
|
std::vector<KeyMaker> kms_;
|
|
std::vector<FilterInfo> infos_;
|
|
Random32 random_;
|
|
std::ostringstream fp_rate_report_;
|
|
Arena arena_;
|
|
StderrLogger stderr_logger_;
|
|
|
|
FilterBench()
|
|
: MockBlockBasedTableTester(new BloomFilterPolicy(
|
|
FLAGS_bits_per_key,
|
|
static_cast<BloomFilterPolicy::Mode>(FLAGS_impl))),
|
|
random_(FLAGS_seed) {
|
|
for (uint32_t i = 0; i < FLAGS_batch_size; ++i) {
|
|
kms_.emplace_back(FLAGS_key_size < 8 ? 8 : FLAGS_key_size);
|
|
}
|
|
ioptions_.info_log = &stderr_logger_;
|
|
}
|
|
|
|
void Go();
|
|
|
|
double RandomQueryTest(uint32_t inside_threshold, bool dry_run,
|
|
TestMode mode);
|
|
};
|
|
|
|
void FilterBench::Go() {
|
|
if (FLAGS_use_plain_table_bloom && FLAGS_use_full_block_reader) {
|
|
throw std::runtime_error(
|
|
"Can't combine -use_plain_table_bloom and -use_full_block_reader");
|
|
}
|
|
if (FLAGS_use_plain_table_bloom) {
|
|
if (FLAGS_impl > 1) {
|
|
throw std::runtime_error(
|
|
"-impl must currently be >= 0 and <= 1 for Plain table");
|
|
}
|
|
} else {
|
|
if (FLAGS_impl == 1) {
|
|
throw std::runtime_error(
|
|
"Block-based filter not currently supported by filter_bench");
|
|
}
|
|
if (FLAGS_impl > 2) {
|
|
throw std::runtime_error(
|
|
"-impl must currently be 0 or 2 for Block-based table");
|
|
}
|
|
}
|
|
|
|
uint32_t variance_mask = 1;
|
|
while (variance_mask * variance_mask * 4 < FLAGS_average_keys_per_filter) {
|
|
variance_mask = variance_mask * 2 + 1;
|
|
}
|
|
|
|
const std::vector<TestMode> &testModes =
|
|
FLAGS_best_case ? bestCaseTestModes
|
|
: FLAGS_quick ? quickTestModes : allTestModes;
|
|
if (FLAGS_quick) {
|
|
FLAGS_m_queries /= 7.0;
|
|
} else if (FLAGS_best_case) {
|
|
FLAGS_m_queries /= 3.0;
|
|
FLAGS_working_mem_size_mb /= 10.0;
|
|
}
|
|
|
|
std::cout << "Building..." << std::endl;
|
|
|
|
std::unique_ptr<BuiltinFilterBitsBuilder> builder;
|
|
|
|
size_t total_memory_used = 0;
|
|
size_t total_keys_added = 0;
|
|
#ifdef PREDICT_FP_RATE
|
|
double weighted_predicted_fp_rate = 0.0;
|
|
#endif
|
|
|
|
rocksdb::StopWatchNano timer(rocksdb::Env::Default(), true);
|
|
|
|
while (total_memory_used < 1024 * 1024 * FLAGS_working_mem_size_mb) {
|
|
uint32_t filter_id = random_.Next();
|
|
uint32_t keys_to_add = FLAGS_average_keys_per_filter +
|
|
(random_.Next() & variance_mask) -
|
|
(variance_mask / 2);
|
|
infos_.emplace_back();
|
|
FilterInfo &info = infos_.back();
|
|
info.filter_id_ = filter_id;
|
|
info.keys_added_ = keys_to_add;
|
|
if (FLAGS_use_plain_table_bloom) {
|
|
info.plain_table_bloom_.reset(new PlainTableBloomV1());
|
|
info.plain_table_bloom_->SetTotalBits(
|
|
&arena_, keys_to_add * FLAGS_bits_per_key, FLAGS_impl,
|
|
0 /*huge_page*/, nullptr /*logger*/);
|
|
for (uint32_t i = 0; i < keys_to_add; ++i) {
|
|
uint32_t hash = GetSliceHash(kms_[0].Get(filter_id, i));
|
|
info.plain_table_bloom_->AddHash(hash);
|
|
}
|
|
info.filter_ = info.plain_table_bloom_->GetRawData();
|
|
} else {
|
|
if (!builder) {
|
|
builder.reset(&dynamic_cast<BuiltinFilterBitsBuilder &>(*GetBuilder()));
|
|
}
|
|
for (uint32_t i = 0; i < keys_to_add; ++i) {
|
|
builder->AddKey(kms_[0].Get(filter_id, i));
|
|
}
|
|
info.filter_ = builder->Finish(&info.owner_);
|
|
#ifdef PREDICT_FP_RATE
|
|
weighted_predicted_fp_rate +=
|
|
keys_to_add *
|
|
builder->EstimatedFpRate(keys_to_add, info.filter_.size());
|
|
#endif
|
|
if (FLAGS_new_builder) {
|
|
builder.reset();
|
|
}
|
|
info.reader_.reset(
|
|
table_options_.filter_policy->GetFilterBitsReader(info.filter_));
|
|
CachableEntry<ParsedFullFilterBlock> block(
|
|
new ParsedFullFilterBlock(table_options_.filter_policy.get(),
|
|
BlockContents(info.filter_)),
|
|
nullptr /* cache */, nullptr /* cache_handle */,
|
|
true /* own_value */);
|
|
info.full_block_reader_.reset(
|
|
new FullFilterBlockReader(table_.get(), std::move(block)));
|
|
}
|
|
total_memory_used += info.filter_.size();
|
|
total_keys_added += keys_to_add;
|
|
}
|
|
|
|
uint64_t elapsed_nanos = timer.ElapsedNanos();
|
|
double ns = double(elapsed_nanos) / total_keys_added;
|
|
std::cout << "Build avg ns/key: " << ns << std::endl;
|
|
std::cout << "Number of filters: " << infos_.size() << std::endl;
|
|
std::cout << "Total memory (MB): " << total_memory_used / 1024.0 / 1024.0
|
|
<< std::endl;
|
|
|
|
double bpk = total_memory_used * 8.0 / total_keys_added;
|
|
std::cout << "Bits/key actual: " << bpk << std::endl;
|
|
#ifdef PREDICT_FP_RATE
|
|
std::cout << "Predicted FP rate %: "
|
|
<< 100.0 * (weighted_predicted_fp_rate / total_keys_added)
|
|
<< std::endl;
|
|
#endif
|
|
if (!FLAGS_quick && !FLAGS_best_case) {
|
|
double tolerable_rate = std::pow(2.0, -(bpk - 1.0) / (1.4 + bpk / 50.0));
|
|
std::cout << "Best possible FP rate %: " << 100.0 * std::pow(2.0, -bpk)
|
|
<< std::endl;
|
|
std::cout << "Tolerable FP rate %: " << 100.0 * tolerable_rate << std::endl;
|
|
|
|
std::cout << "----------------------------" << std::endl;
|
|
std::cout << "Verifying..." << std::endl;
|
|
|
|
uint32_t outside_q_per_f =
|
|
static_cast<uint32_t>(FLAGS_m_queries * 1000000 / infos_.size());
|
|
uint64_t fps = 0;
|
|
for (uint32_t i = 0; i < infos_.size(); ++i) {
|
|
FilterInfo &info = infos_[i];
|
|
for (uint32_t j = 0; j < info.keys_added_; ++j) {
|
|
if (FLAGS_use_plain_table_bloom) {
|
|
uint32_t hash = GetSliceHash(kms_[0].Get(info.filter_id_, j));
|
|
ALWAYS_ASSERT(info.plain_table_bloom_->MayContainHash(hash));
|
|
} else {
|
|
ALWAYS_ASSERT(
|
|
info.reader_->MayMatch(kms_[0].Get(info.filter_id_, j)));
|
|
}
|
|
}
|
|
for (uint32_t j = 0; j < outside_q_per_f; ++j) {
|
|
if (FLAGS_use_plain_table_bloom) {
|
|
uint32_t hash =
|
|
GetSliceHash(kms_[0].Get(info.filter_id_, j | 0x80000000));
|
|
fps += info.plain_table_bloom_->MayContainHash(hash);
|
|
} else {
|
|
fps += info.reader_->MayMatch(
|
|
kms_[0].Get(info.filter_id_, j | 0x80000000));
|
|
}
|
|
}
|
|
}
|
|
std::cout << " No FNs :)" << std::endl;
|
|
double prelim_rate = double(fps) / outside_q_per_f / infos_.size();
|
|
std::cout << " Prelim FP rate %: " << (100.0 * prelim_rate) << std::endl;
|
|
|
|
if (!FLAGS_allow_bad_fp_rate) {
|
|
ALWAYS_ASSERT(prelim_rate < tolerable_rate);
|
|
}
|
|
}
|
|
|
|
std::cout << "----------------------------" << std::endl;
|
|
std::cout << "Mixed inside/outside queries..." << std::endl;
|
|
// 50% each inside and outside
|
|
uint32_t inside_threshold = UINT32_MAX / 2;
|
|
for (TestMode tm : testModes) {
|
|
random_.Seed(FLAGS_seed + 1);
|
|
double f = RandomQueryTest(inside_threshold, /*dry_run*/ false, tm);
|
|
random_.Seed(FLAGS_seed + 1);
|
|
double d = RandomQueryTest(inside_threshold, /*dry_run*/ true, tm);
|
|
std::cout << " " << TestModeToString(tm) << " net ns/op: " << (f - d)
|
|
<< std::endl;
|
|
}
|
|
|
|
if (!FLAGS_quick) {
|
|
std::cout << "----------------------------" << std::endl;
|
|
std::cout << "Inside queries (mostly)..." << std::endl;
|
|
// Do about 95% inside queries rather than 100% so that branch predictor
|
|
// can't give itself an artifically crazy advantage.
|
|
inside_threshold = UINT32_MAX / 20 * 19;
|
|
for (TestMode tm : testModes) {
|
|
random_.Seed(FLAGS_seed + 1);
|
|
double f = RandomQueryTest(inside_threshold, /*dry_run*/ false, tm);
|
|
random_.Seed(FLAGS_seed + 1);
|
|
double d = RandomQueryTest(inside_threshold, /*dry_run*/ true, tm);
|
|
std::cout << " " << TestModeToString(tm) << " net ns/op: " << (f - d)
|
|
<< std::endl;
|
|
}
|
|
|
|
std::cout << "----------------------------" << std::endl;
|
|
std::cout << "Outside queries (mostly)..." << std::endl;
|
|
// Do about 95% outside queries rather than 100% so that branch predictor
|
|
// can't give itself an artifically crazy advantage.
|
|
inside_threshold = UINT32_MAX / 20;
|
|
for (TestMode tm : testModes) {
|
|
random_.Seed(FLAGS_seed + 2);
|
|
double f = RandomQueryTest(inside_threshold, /*dry_run*/ false, tm);
|
|
random_.Seed(FLAGS_seed + 2);
|
|
double d = RandomQueryTest(inside_threshold, /*dry_run*/ true, tm);
|
|
std::cout << " " << TestModeToString(tm) << " net ns/op: " << (f - d)
|
|
<< std::endl;
|
|
}
|
|
}
|
|
std::cout << fp_rate_report_.str();
|
|
|
|
std::cout << "----------------------------" << std::endl;
|
|
std::cout << "Done. (For more info, run with -legend or -help.)" << std::endl;
|
|
}
|
|
|
|
double FilterBench::RandomQueryTest(uint32_t inside_threshold, bool dry_run,
|
|
TestMode mode) {
|
|
for (auto &info : infos_) {
|
|
info.outside_queries_ = 0;
|
|
info.false_positives_ = 0;
|
|
}
|
|
|
|
auto dry_run_hash_fn = DryRunNoHash;
|
|
if (!FLAGS_net_includes_hashing) {
|
|
if (FLAGS_impl < 2 || FLAGS_use_plain_table_bloom) {
|
|
dry_run_hash_fn = DryRunHash32;
|
|
} else {
|
|
dry_run_hash_fn = DryRunHash64;
|
|
}
|
|
}
|
|
|
|
uint32_t num_infos = static_cast<uint32_t>(infos_.size());
|
|
uint32_t dry_run_hash = 0;
|
|
uint64_t max_queries =
|
|
static_cast<uint64_t>(FLAGS_m_queries * 1000000 + 0.50);
|
|
// Some filters may be considered secondary in order to implement skewed
|
|
// queries. num_primary_filters is the number that are to be treated as
|
|
// equal, and any remainder will be treated as secondary.
|
|
uint32_t num_primary_filters = num_infos;
|
|
// The proportion (when divided by 2^32 - 1) of filter queries going to
|
|
// the primary filters (default = all). The remainder of queries are
|
|
// against secondary filters.
|
|
uint32_t primary_filter_threshold = 0xffffffff;
|
|
if (mode == kSingleFilter) {
|
|
// 100% of queries to 1 filter
|
|
num_primary_filters = 1;
|
|
} else if (mode == kFiftyOneFilter) {
|
|
// 50% of queries
|
|
primary_filter_threshold /= 2;
|
|
// to 1% of filters
|
|
num_primary_filters = (num_primary_filters + 99) / 100;
|
|
} else if (mode == kEightyTwentyFilter) {
|
|
// 80% of queries
|
|
primary_filter_threshold = primary_filter_threshold / 5 * 4;
|
|
// to 20% of filters
|
|
num_primary_filters = (num_primary_filters + 4) / 5;
|
|
}
|
|
uint32_t batch_size = 1;
|
|
std::unique_ptr<Slice[]> batch_slices;
|
|
std::unique_ptr<Slice *[]> batch_slice_ptrs;
|
|
std::unique_ptr<bool[]> batch_results;
|
|
if (mode == kBatchPrepared || mode == kBatchUnprepared) {
|
|
batch_size = static_cast<uint32_t>(kms_.size());
|
|
}
|
|
|
|
batch_slices.reset(new Slice[batch_size]);
|
|
batch_slice_ptrs.reset(new Slice *[batch_size]);
|
|
batch_results.reset(new bool[batch_size]);
|
|
for (uint32_t i = 0; i < batch_size; ++i) {
|
|
batch_results[i] = false;
|
|
batch_slice_ptrs[i] = &batch_slices[i];
|
|
}
|
|
|
|
rocksdb::StopWatchNano timer(rocksdb::Env::Default(), true);
|
|
|
|
for (uint64_t q = 0; q < max_queries; q += batch_size) {
|
|
bool inside_this_time = random_.Next() <= inside_threshold;
|
|
|
|
uint32_t filter_index;
|
|
if (random_.Next() <= primary_filter_threshold) {
|
|
filter_index = random_.Uniformish(num_primary_filters);
|
|
} else {
|
|
// secondary
|
|
filter_index = num_primary_filters +
|
|
random_.Uniformish(num_infos - num_primary_filters);
|
|
}
|
|
FilterInfo &info = infos_[filter_index];
|
|
for (uint32_t i = 0; i < batch_size; ++i) {
|
|
if (inside_this_time) {
|
|
batch_slices[i] =
|
|
kms_[i].Get(info.filter_id_, random_.Uniformish(info.keys_added_));
|
|
} else {
|
|
batch_slices[i] =
|
|
kms_[i].Get(info.filter_id_, random_.Uniformish(info.keys_added_) |
|
|
uint32_t{0x80000000});
|
|
info.outside_queries_++;
|
|
}
|
|
}
|
|
// TODO: implement batched interface to full block reader
|
|
// TODO: implement batched interface to plain table bloom
|
|
if (mode == kBatchPrepared && !FLAGS_use_full_block_reader &&
|
|
!FLAGS_use_plain_table_bloom) {
|
|
for (uint32_t i = 0; i < batch_size; ++i) {
|
|
batch_results[i] = false;
|
|
}
|
|
if (dry_run) {
|
|
for (uint32_t i = 0; i < batch_size; ++i) {
|
|
batch_results[i] = true;
|
|
dry_run_hash += dry_run_hash_fn(batch_slices[i]);
|
|
}
|
|
} else {
|
|
info.reader_->MayMatch(batch_size, batch_slice_ptrs.get(),
|
|
batch_results.get());
|
|
}
|
|
for (uint32_t i = 0; i < batch_size; ++i) {
|
|
if (inside_this_time) {
|
|
ALWAYS_ASSERT(batch_results[i]);
|
|
} else {
|
|
info.false_positives_ += batch_results[i];
|
|
}
|
|
}
|
|
} else {
|
|
for (uint32_t i = 0; i < batch_size; ++i) {
|
|
bool may_match;
|
|
if (FLAGS_use_plain_table_bloom) {
|
|
if (dry_run) {
|
|
dry_run_hash += dry_run_hash_fn(batch_slices[i]);
|
|
may_match = true;
|
|
} else {
|
|
uint32_t hash = GetSliceHash(batch_slices[i]);
|
|
may_match = info.plain_table_bloom_->MayContainHash(hash);
|
|
}
|
|
} else if (FLAGS_use_full_block_reader) {
|
|
if (dry_run) {
|
|
dry_run_hash += dry_run_hash_fn(batch_slices[i]);
|
|
may_match = true;
|
|
} else {
|
|
may_match = info.full_block_reader_->KeyMayMatch(
|
|
batch_slices[i],
|
|
/*prefix_extractor=*/nullptr,
|
|
/*block_offset=*/rocksdb::kNotValid,
|
|
/*no_io=*/false, /*const_ikey_ptr=*/nullptr,
|
|
/*get_context=*/nullptr,
|
|
/*lookup_context=*/nullptr);
|
|
}
|
|
} else {
|
|
if (dry_run) {
|
|
dry_run_hash += dry_run_hash_fn(batch_slices[i]);
|
|
may_match = true;
|
|
} else {
|
|
may_match = info.reader_->MayMatch(batch_slices[i]);
|
|
}
|
|
}
|
|
if (inside_this_time) {
|
|
ALWAYS_ASSERT(may_match);
|
|
} else {
|
|
info.false_positives_ += may_match;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
uint64_t elapsed_nanos = timer.ElapsedNanos();
|
|
double ns = double(elapsed_nanos) / max_queries;
|
|
|
|
if (!FLAGS_quick) {
|
|
if (dry_run) {
|
|
// Printing part of hash prevents dry run components from being optimized
|
|
// away by compiler
|
|
std::cout << " Dry run (" << std::hex << (dry_run_hash & 0xfffff)
|
|
<< std::dec << ") ";
|
|
} else {
|
|
std::cout << " Gross filter ";
|
|
}
|
|
std::cout << "ns/op: " << ns << std::endl;
|
|
}
|
|
|
|
if (!dry_run) {
|
|
fp_rate_report_.str("");
|
|
uint64_t q = 0;
|
|
uint64_t fp = 0;
|
|
double worst_fp_rate = 0.0;
|
|
double best_fp_rate = 1.0;
|
|
for (auto &info : infos_) {
|
|
q += info.outside_queries_;
|
|
fp += info.false_positives_;
|
|
if (info.outside_queries_ > 0) {
|
|
double fp_rate = double(info.false_positives_) / info.outside_queries_;
|
|
worst_fp_rate = std::max(worst_fp_rate, fp_rate);
|
|
best_fp_rate = std::min(best_fp_rate, fp_rate);
|
|
}
|
|
}
|
|
fp_rate_report_ << " Average FP rate %: " << 100.0 * fp / q << std::endl;
|
|
if (!FLAGS_quick && !FLAGS_best_case) {
|
|
fp_rate_report_ << " Worst FP rate %: " << 100.0 * worst_fp_rate
|
|
<< std::endl;
|
|
fp_rate_report_ << " Best FP rate %: " << 100.0 * best_fp_rate
|
|
<< std::endl;
|
|
fp_rate_report_ << " Best possible bits/key: "
|
|
<< -std::log(double(fp) / q) / std::log(2.0) << std::endl;
|
|
}
|
|
}
|
|
return ns;
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
rocksdb::port::InstallStackTraceHandler();
|
|
SetUsageMessage(std::string("\nUSAGE:\n") + std::string(argv[0]) +
|
|
" [-quick] [OTHER OPTIONS]...");
|
|
ParseCommandLineFlags(&argc, &argv, true);
|
|
|
|
PrintWarnings();
|
|
|
|
if (FLAGS_legend) {
|
|
std::cout
|
|
<< "Legend:" << std::endl
|
|
<< " \"Inside\" - key that was added to filter" << std::endl
|
|
<< " \"Outside\" - key that was not added to filter" << std::endl
|
|
<< " \"FN\" - false negative query (must not happen)" << std::endl
|
|
<< " \"FP\" - false positive query (OK at low rate)" << std::endl
|
|
<< " \"Dry run\" - cost of testing and hashing overhead." << std::endl
|
|
<< " \"Gross filter\" - cost of filter queries including testing "
|
|
<< "\n and hashing overhead." << std::endl
|
|
<< " \"net\" - best estimate of time in filter operation, without "
|
|
<< "\n testing and hashing overhead (gross filter - dry run)"
|
|
<< std::endl
|
|
<< " \"ns/op\" - nanoseconds per operation (key query or add)"
|
|
<< std::endl
|
|
<< " \"Single filter\" - essentially minimum cost, assuming filter"
|
|
<< "\n fits easily in L1 CPU cache." << std::endl
|
|
<< " \"Batched, prepared\" - several queries at once against a"
|
|
<< "\n randomly chosen filter, using multi-query interface."
|
|
<< std::endl
|
|
<< " \"Batched, unprepared\" - similar, but using serial calls"
|
|
<< "\n to single query interface." << std::endl
|
|
<< " \"Random filter\" - a filter is chosen at random as target"
|
|
<< "\n of each query." << std::endl
|
|
<< " \"Skewed X% in Y%\" - like \"Random filter\" except Y% of"
|
|
<< "\n the filters are designated as \"hot\" and receive X%"
|
|
<< "\n of queries." << std::endl;
|
|
} else {
|
|
FilterBench b;
|
|
b.Go();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif // !defined(GFLAGS) || defined(ROCKSDB_LITE)
|