rocksdb/db/db_bench.cc
2014-02-08 14:15:51 -08:00

2724 lines
92 KiB
C++

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <cstddef>
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include <gflags/gflags.h>
#include "db/db_impl.h"
#include "db/version_set.h"
#include "rocksdb/statistics.h"
#include "rocksdb/options.h"
#include "rocksdb/cache.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/write_batch.h"
#include "rocksdb/slice.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/statistics.h"
#include "rocksdb/perf_context.h"
#include "port/port.h"
#include "util/bit_set.h"
#include "util/crc32c.h"
#include "util/histogram.h"
#include "util/mutexlock.h"
#include "util/random.h"
#include "util/stack_trace.h"
#include "util/string_util.h"
#include "util/statistics.h"
#include "util/testutil.h"
#include "hdfs/env_hdfs.h"
#include "utilities/merge_operators.h"
DEFINE_string(benchmarks,
"fillseq,"
"fillsync,"
"fillrandom,"
"overwrite,"
"readrandom,"
"readrandom,"
"readseq,"
"readreverse,"
"compact,"
"readrandom,"
"readseq,"
"readtocache,"
"readreverse,"
"readwhilewriting,"
"readrandomwriterandom,"
"updaterandom,"
"randomwithverify,"
"fill100K,"
"crc32c,"
"compress,"
"uncompress,"
"acquireload,"
"fillfromstdin,",
"Comma-separated list of operations to run in the specified order"
"Actual benchmarks:\n"
"\tfillseq -- write N values in sequential key"
" order in async mode\n"
"\tfillrandom -- write N values in random key order in async"
" mode\n"
"\toverwrite -- overwrite N values in random key order in"
" async mode\n"
"\tfillsync -- write N/100 values in random key order in "
"sync mode\n"
"\tfill100K -- write N/1000 100K values in random order in"
" async mode\n"
"\tdeleteseq -- delete N keys in sequential order\n"
"\tdeleterandom -- delete N keys in random order\n"
"\treadseq -- read N times sequentially\n"
"\treadtocache -- 1 thread reading database sequentially\n"
"\treadreverse -- read N times in reverse order\n"
"\treadrandom -- read N times in random order\n"
"\treadmissing -- read N missing keys in random order\n"
"\treadhot -- read N times in random order from 1% section "
"of DB\n"
"\treadwhilewriting -- 1 writer, N threads doing random "
"reads\n"
"\treadrandomwriterandom -- N threads doing random-read, "
"random-write\n"
"\tprefixscanrandom -- prefix scan N times in random order\n"
"\tupdaterandom -- N threads doing read-modify-write for random "
"keys\n"
"\tappendrandom -- N threads doing read-modify-write with "
"growing values\n"
"\tmergerandom -- same as updaterandom/appendrandom using merge"
" operator. "
"Must be used with merge_operator\n"
"\treadrandommergerandom -- perform N random read-or-merge "
"operations. Must be used with merge_operator\n"
"\tnewiterator -- repeated iterator creation\n"
"\tseekrandom -- N random seeks\n"
"\tcrc32c -- repeated crc32c of 4K of data\n"
"\tacquireload -- load N*1000 times\n"
"Meta operations:\n"
"\tcompact -- Compact the entire DB\n"
"\tstats -- Print DB stats\n"
"\tlevelstats -- Print the number of files and bytes per level\n"
"\tsstables -- Print sstable info\n"
"\theapprofile -- Dump a heap profile (if supported by this"
" port)\n");
DEFINE_int64(num, 1000000, "Number of key/values to place in database");
DEFINE_int64(numdistinct, 1000,
"Number of distinct keys to use. Used in RandomWithVerify to "
"read/write on fewer keys so that gets are more likely to find the"
" key and puts are more likely to update the same key");
DEFINE_int64(merge_keys, -1,
"Number of distinct keys to use for MergeRandom and "
"ReadRandomMergeRandom. "
"If negative, there will be FLAGS_num keys.");
DEFINE_int64(reads, -1, "Number of read operations to do. "
"If negative, do FLAGS_num reads.");
DEFINE_int64(read_range, 1, "When ==1 reads use ::Get, when >1 reads use"
" an iterator");
DEFINE_bool(use_prefix_blooms, false, "Whether to place prefixes in blooms");
DEFINE_bool(use_prefix_api, false, "Whether to set ReadOptions.prefix for"
" prefixscanrandom. If true, use_prefix_blooms must also be true.");
DEFINE_int64(seed, 0, "Seed base for random number generators. "
"When 0 it is deterministic.");
DEFINE_int32(threads, 1, "Number of concurrent threads to run.");
DEFINE_int32(duration, 0, "Time in seconds for the random-ops tests to run."
" When 0 then num & reads determine the test duration");
DEFINE_int32(value_size, 100, "Size of each value");
// the maximum size of key in bytes
static const int kMaxKeySize = 128;
static bool ValidateKeySize(const char* flagname, int32_t value) {
if (value > kMaxKeySize) {
fprintf(stderr, "Invalid value for --%s: %d, must be < %d\n",
flagname, value, kMaxKeySize);
return false;
}
return true;
}
DEFINE_int32(key_size, 16, "size of each key");
DEFINE_double(compression_ratio, 0.5, "Arrange to generate values that shrink"
" to this fraction of their original size after compression");
DEFINE_bool(histogram, false, "Print histogram of operation timings");
DEFINE_int64(write_buffer_size, rocksdb::Options().write_buffer_size,
"Number of bytes to buffer in memtable before compacting");
DEFINE_int32(max_write_buffer_number,
rocksdb::Options().max_write_buffer_number,
"The number of in-memory memtables. Each memtable is of size"
"write_buffer_size.");
DEFINE_int32(min_write_buffer_number_to_merge,
rocksdb::Options().min_write_buffer_number_to_merge,
"The minimum number of write buffers that will be merged together"
"before writing to storage. This is cheap because it is an"
"in-memory merge. If this feature is not enabled, then all these"
"write buffers are flushed to L0 as separate files and this "
"increases read amplification because a get request has to check"
" in all of these files. Also, an in-memory merge may result in"
" writing less data to storage if there are duplicate records "
" in each of these individual write buffers.");
DEFINE_int32(max_background_compactions,
rocksdb::Options().max_background_compactions,
"The maximum number of concurrent background compactions"
" that can occur in parallel.");
static rocksdb::CompactionStyle FLAGS_compaction_style_e;
DEFINE_int32(compaction_style, (int32_t) rocksdb::Options().compaction_style,
"style of compaction: level-based vs universal");
DEFINE_int32(universal_size_ratio, 0,
"Percentage flexibility while comparing file size"
" (for universal compaction only).");
DEFINE_int32(universal_min_merge_width, 0, "The minimum number of files in a"
" single compaction run (for universal compaction only).");
DEFINE_int32(universal_max_merge_width, 0, "The max number of files to compact"
" in universal style compaction");
DEFINE_int32(universal_max_size_amplification_percent, 0,
"The max size amplification for universal style compaction");
DEFINE_int32(universal_compression_size_percent, -1,
"The percentage of the database to compress for universal "
"compaction. -1 means compress everything.");
DEFINE_int64(cache_size, -1, "Number of bytes to use as a cache of uncompressed"
"data. Negative means use default settings.");
DEFINE_int32(block_size, rocksdb::Options().block_size,
"Number of bytes in a block.");
DEFINE_int64(compressed_cache_size, -1,
"Number of bytes to use as a cache of compressed data.");
DEFINE_int32(open_files, rocksdb::Options().max_open_files,
"Maximum number of files to keep open at the same time"
" (use default if == 0)");
DEFINE_int32(bloom_bits, -1, "Bloom filter bits per key. Negative means"
" use default settings.");
DEFINE_bool(use_existing_db, false, "If true, do not destroy the existing"
" database. If you set this flag and also specify a benchmark that"
" wants a fresh database, that benchmark will fail.");
DEFINE_string(db, "", "Use the db with the following name.");
static bool ValidateCacheNumshardbits(const char* flagname, int32_t value) {
if (value >= 20) {
fprintf(stderr, "Invalid value for --%s: %d, must be < 20\n",
flagname, value);
return false;
}
return true;
}
DEFINE_int32(cache_numshardbits, -1, "Number of shards for the block cache"
" is 2 ** cache_numshardbits. Negative means use default settings."
" This is applied only if FLAGS_cache_size is non-negative.");
DEFINE_int32(cache_remove_scan_count_limit, 32, "");
DEFINE_bool(verify_checksum, false, "Verify checksum for every block read"
" from storage");
DEFINE_bool(statistics, false, "Database statistics");
static class std::shared_ptr<rocksdb::Statistics> dbstats;
DEFINE_int64(writes, -1, "Number of write operations to do. If negative, do"
" --num reads.");
DEFINE_int32(writes_per_second, 0, "Per-thread rate limit on writes per second."
" No limit when <= 0. Only for the readwhilewriting test.");
DEFINE_bool(sync, false, "Sync all writes to disk");
DEFINE_bool(disable_data_sync, false, "If true, do not wait until data is"
" synced to disk.");
DEFINE_bool(use_fsync, false, "If true, issue fsync instead of fdatasync");
DEFINE_bool(disable_wal, false, "If true, do not write WAL for write.");
DEFINE_bool(use_snapshot, false, "If true, create a snapshot per query when"
" randomread benchmark is used");
DEFINE_bool(get_approx, false, "If true, call GetApproximateSizes per query"
" when read_range is > 1 and randomread benchmark is used");
DEFINE_int32(num_levels, 7, "The total number of levels");
DEFINE_int32(target_file_size_base, 2 * 1048576, "Target file size at level-1");
DEFINE_int32(target_file_size_multiplier, 1,
"A multiplier to compute target level-N file size (N >= 2)");
DEFINE_uint64(max_bytes_for_level_base, 10 * 1048576, "Max bytes for level-1");
DEFINE_int32(max_bytes_for_level_multiplier, 10,
"A multiplier to compute max bytes for level-N (N >= 2)");
static std::vector<int> FLAGS_max_bytes_for_level_multiplier_additional_v;
DEFINE_string(max_bytes_for_level_multiplier_additional, "",
"A vector that specifies additional fanout per level");
DEFINE_int32(level0_stop_writes_trigger, 12, "Number of files in level-0"
" that will trigger put stop.");
DEFINE_int32(level0_slowdown_writes_trigger, 8, "Number of files in level-0"
" that will slow down writes.");
DEFINE_int32(level0_file_num_compaction_trigger, 4, "Number of files in level-0"
" when compactions start");
static bool ValidateInt32Percent(const char* flagname, int32_t value) {
if (value <= 0 || value>=100) {
fprintf(stderr, "Invalid value for --%s: %d, 0< pct <100 \n",
flagname, value);
return false;
}
return true;
}
DEFINE_int32(readwritepercent, 90, "Ratio of reads to reads/writes (expressed"
" as percentage) for the ReadRandomWriteRandom workload. The "
"default value 90 means 90% operations out of all reads and writes"
" operations are reads. In other words, 9 gets for every 1 put.");
DEFINE_int32(mergereadpercent, 70, "Ratio of merges to merges&reads (expressed"
" as percentage) for the ReadRandomMergeRandom workload. The"
" default value 70 means 70% out of all read and merge operations"
" are merges. In other words, 7 merges for every 3 gets.");
DEFINE_int32(deletepercent, 2, "Percentage of deletes out of reads/writes/"
"deletes (used in RandomWithVerify only). RandomWithVerify "
"calculates writepercent as (100 - FLAGS_readwritepercent - "
"deletepercent), so deletepercent must be smaller than (100 - "
"FLAGS_readwritepercent)");
DEFINE_int32(disable_seek_compaction, false, "Option to disable compaction"
" triggered by read.");
DEFINE_uint64(delete_obsolete_files_period_micros, 0, "Option to delete "
"obsolete files periodically. 0 means that obsolete files are"
" deleted after every compaction run.");
enum rocksdb::CompressionType StringToCompressionType(const char* ctype) {
assert(ctype);
if (!strcasecmp(ctype, "none"))
return rocksdb::kNoCompression;
else if (!strcasecmp(ctype, "snappy"))
return rocksdb::kSnappyCompression;
else if (!strcasecmp(ctype, "zlib"))
return rocksdb::kZlibCompression;
else if (!strcasecmp(ctype, "bzip2"))
return rocksdb::kBZip2Compression;
else if (!strcasecmp(ctype, "lz4"))
return rocksdb::kLZ4Compression;
else if (!strcasecmp(ctype, "lz4hc"))
return rocksdb::kLZ4HCCompression;
fprintf(stdout, "Cannot parse compression type '%s'\n", ctype);
return rocksdb::kSnappyCompression; //default value
}
DEFINE_string(compression_type, "snappy",
"Algorithm to use to compress the database");
static enum rocksdb::CompressionType FLAGS_compression_type_e =
rocksdb::kSnappyCompression;
DEFINE_int32(compression_level, -1,
"Compression level. For zlib this should be -1 for the "
"default level, or between 0 and 9.");
static bool ValidateCompressionLevel(const char* flagname, int32_t value) {
if (value < -1 || value > 9) {
fprintf(stderr, "Invalid value for --%s: %d, must be between -1 and 9\n",
flagname, value);
return false;
}
return true;
}
static const bool FLAGS_compression_level_dummy __attribute__((unused)) =
google::RegisterFlagValidator(&FLAGS_compression_level,
&ValidateCompressionLevel);
DEFINE_int32(min_level_to_compress, -1, "If non-negative, compression starts"
" from this level. Levels with number < min_level_to_compress are"
" not compressed. Otherwise, apply compression_type to "
"all levels.");
static bool ValidateTableCacheNumshardbits(const char* flagname,
int32_t value) {
if (0 >= value || value > 20) {
fprintf(stderr, "Invalid value for --%s: %d, must be 0 < val <= 20\n",
flagname, value);
return false;
}
return true;
}
DEFINE_int32(table_cache_numshardbits, 4, "");
DEFINE_string(hdfs, "", "Name of hdfs environment");
// posix or hdfs environment
static rocksdb::Env* FLAGS_env = rocksdb::Env::Default();
DEFINE_int64(stats_interval, 0, "Stats are reported every N operations when "
"this is greater than zero. When 0 the interval grows over time.");
DEFINE_int32(stats_per_interval, 0, "Reports additional stats per interval when"
" this is greater than 0.");
DEFINE_int32(perf_level, 0, "Level of perf collection");
static bool ValidateRateLimit(const char* flagname, double value) {
static constexpr double EPSILON = 1e-10;
if ( value < -EPSILON ) {
fprintf(stderr, "Invalid value for --%s: %12.6f, must be >= 0.0\n",
flagname, value);
return false;
}
return true;
}
DEFINE_double(soft_rate_limit, 0.0, "");
DEFINE_double(hard_rate_limit, 0.0, "When not equal to 0 this make threads "
"sleep at each stats reporting interval until the compaction"
" score for all levels is less than or equal to this value.");
DEFINE_int32(rate_limit_delay_max_milliseconds, 1000,
"When hard_rate_limit is set then this is the max time a put will"
" be stalled.");
DEFINE_int32(max_grandparent_overlap_factor, 10, "Control maximum bytes of "
"overlaps in grandparent (i.e., level+2) before we stop building a"
" single file in a level->level+1 compaction.");
DEFINE_bool(readonly, false, "Run read only benchmarks.");
DEFINE_bool(disable_auto_compactions, false, "Do not auto trigger compactions");
DEFINE_int32(source_compaction_factor, 1, "Cap the size of data in level-K for"
" a compaction run that compacts Level-K with Level-(K+1) (for"
" K >= 1)");
DEFINE_uint64(wal_ttl_seconds, 0, "Set the TTL for the WAL Files in seconds.");
DEFINE_uint64(wal_size_limit_MB, 0, "Set the size limit for the WAL Files"
" in MB.");
DEFINE_bool(bufferedio, rocksdb::EnvOptions().use_os_buffer,
"Allow buffered io using OS buffers");
DEFINE_bool(mmap_read, rocksdb::EnvOptions().use_mmap_reads,
"Allow reads to occur via mmap-ing files");
DEFINE_bool(mmap_write, rocksdb::EnvOptions().use_mmap_writes,
"Allow writes to occur via mmap-ing files");
DEFINE_bool(advise_random_on_open, rocksdb::Options().advise_random_on_open,
"Advise random access on table file open");
DEFINE_string(compaction_fadvice, "NORMAL",
"Access pattern advice when a file is compacted");
static auto FLAGS_compaction_fadvice_e =
rocksdb::Options().access_hint_on_compaction_start;
DEFINE_bool(use_multiget, false,
"Use multiget to access a series of keys instead of get");
DEFINE_bool(use_tailing_iterator, false,
"Use tailing iterator to access a series of keys instead of get");
DEFINE_int64(keys_per_multiget, 90, "If use_multiget is true, determines number"
" of keys to group per call Arbitrary default is good because it"
" agrees with readwritepercent");
// TODO: Apply this flag to generic Get calls too. Currently only with Multiget
DEFINE_bool(warn_missing_keys, true, "Print a message to user when a key is"
" missing in a Get/MultiGet call");
DEFINE_bool(use_adaptive_mutex, rocksdb::Options().use_adaptive_mutex,
"Use adaptive mutex");
DEFINE_uint64(bytes_per_sync, rocksdb::Options().bytes_per_sync,
"Allows OS to incrementally sync files to disk while they are"
" being written, in the background. Issue one request for every"
" bytes_per_sync written. 0 turns it off.");
DEFINE_bool(filter_deletes, false, " On true, deletes use bloom-filter and drop"
" the delete if key not present");
DEFINE_int32(max_successive_merges, 0, "Maximum number of successive merge"
" operations on a key in the memtable");
static bool ValidatePrefixSize(const char* flagname, int32_t value) {
if (value < 0 || value>=2000000000) {
fprintf(stderr, "Invalid value for --%s: %d. 0<= PrefixSize <=2000000000\n",
flagname, value);
return false;
}
return true;
}
DEFINE_int32(prefix_size, 0, "Control the prefix size for HashSkipList");
enum RepFactory {
kSkipList,
kPrefixHash,
kVectorRep
};
enum RepFactory StringToRepFactory(const char* ctype) {
assert(ctype);
if (!strcasecmp(ctype, "skip_list"))
return kSkipList;
else if (!strcasecmp(ctype, "prefix_hash"))
return kPrefixHash;
else if (!strcasecmp(ctype, "vector"))
return kVectorRep;
fprintf(stdout, "Cannot parse memreptable %s\n", ctype);
return kSkipList;
}
static enum RepFactory FLAGS_rep_factory;
DEFINE_string(memtablerep, "skip_list", "");
DEFINE_string(merge_operator, "", "The merge operator to use with the database."
"If a new merge operator is specified, be sure to use fresh"
" database The possible merge operators are defined in"
" utilities/merge_operators.h");
static const bool FLAGS_soft_rate_limit_dummy __attribute__((unused)) =
google::RegisterFlagValidator(&FLAGS_soft_rate_limit,
&ValidateRateLimit);
static const bool FLAGS_hard_rate_limit_dummy __attribute__((unused)) =
google::RegisterFlagValidator(&FLAGS_hard_rate_limit, &ValidateRateLimit);
static const bool FLAGS_prefix_size_dummy __attribute__((unused)) =
google::RegisterFlagValidator(&FLAGS_prefix_size, &ValidatePrefixSize);
static const bool FLAGS_key_size_dummy __attribute__((unused)) =
google::RegisterFlagValidator(&FLAGS_key_size, &ValidateKeySize);
static const bool FLAGS_cache_numshardbits_dummy __attribute__((unused)) =
google::RegisterFlagValidator(&FLAGS_cache_numshardbits,
&ValidateCacheNumshardbits);
static const bool FLAGS_readwritepercent_dummy __attribute__((unused)) =
google::RegisterFlagValidator(&FLAGS_readwritepercent,
&ValidateInt32Percent);
static const bool FLAGS_deletepercent_dummy __attribute__((unused)) =
google::RegisterFlagValidator(&FLAGS_deletepercent,
&ValidateInt32Percent);
static const bool
FLAGS_table_cache_numshardbits_dummy __attribute__((unused)) =
google::RegisterFlagValidator(&FLAGS_table_cache_numshardbits,
&ValidateTableCacheNumshardbits);
namespace rocksdb {
// Helper for quickly generating random data.
class RandomGenerator {
private:
std::string data_;
unsigned int pos_;
public:
RandomGenerator() {
// We use a limited amount of data over and over again and ensure
// that it is larger than the compression window (32KB), and also
// large enough to serve all typical value sizes we want to write.
Random rnd(301);
std::string piece;
while (data_.size() < (unsigned)std::max(1048576, FLAGS_value_size)) {
// Add a short fragment that is as compressible as specified
// by FLAGS_compression_ratio.
test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece);
data_.append(piece);
}
pos_ = 0;
}
Slice Generate(unsigned int len) {
if (pos_ + len > data_.size()) {
pos_ = 0;
assert(len < data_.size());
}
pos_ += len;
return Slice(data_.data() + pos_ - len, len);
}
};
static void AppendWithSpace(std::string* str, Slice msg) {
if (msg.empty()) return;
if (!str->empty()) {
str->push_back(' ');
}
str->append(msg.data(), msg.size());
}
class Stats {
private:
int id_;
double start_;
double finish_;
double seconds_;
long long done_;
long long last_report_done_;
long long next_report_;
int64_t bytes_;
double last_op_finish_;
double last_report_finish_;
HistogramImpl hist_;
std::string message_;
bool exclude_from_merge_;
public:
Stats() { Start(-1); }
void Start(int id) {
id_ = id;
next_report_ = FLAGS_stats_interval ? FLAGS_stats_interval : 100;
last_op_finish_ = start_;
hist_.Clear();
done_ = 0;
last_report_done_ = 0;
bytes_ = 0;
seconds_ = 0;
start_ = FLAGS_env->NowMicros();
finish_ = start_;
last_report_finish_ = start_;
message_.clear();
// When set, stats from this thread won't be merged with others.
exclude_from_merge_ = false;
}
void Merge(const Stats& other) {
if (other.exclude_from_merge_)
return;
hist_.Merge(other.hist_);
done_ += other.done_;
bytes_ += other.bytes_;
seconds_ += other.seconds_;
if (other.start_ < start_) start_ = other.start_;
if (other.finish_ > finish_) finish_ = other.finish_;
// Just keep the messages from one thread
if (message_.empty()) message_ = other.message_;
}
void Stop() {
finish_ = FLAGS_env->NowMicros();
seconds_ = (finish_ - start_) * 1e-6;
}
void AddMessage(Slice msg) {
AppendWithSpace(&message_, msg);
}
void SetId(int id) { id_ = id; }
void SetExcludeFromMerge() { exclude_from_merge_ = true; }
void FinishedSingleOp(DB* db) {
if (FLAGS_histogram) {
double now = FLAGS_env->NowMicros();
double micros = now - last_op_finish_;
hist_.Add(micros);
if (micros > 20000 && !FLAGS_stats_interval) {
fprintf(stderr, "long op: %.1f micros%30s\r", micros, "");
fflush(stderr);
}
last_op_finish_ = now;
}
done_++;
if (done_ >= next_report_) {
if (!FLAGS_stats_interval) {
if (next_report_ < 1000) next_report_ += 100;
else if (next_report_ < 5000) next_report_ += 500;
else if (next_report_ < 10000) next_report_ += 1000;
else if (next_report_ < 50000) next_report_ += 5000;
else if (next_report_ < 100000) next_report_ += 10000;
else if (next_report_ < 500000) next_report_ += 50000;
else next_report_ += 100000;
fprintf(stderr, "... finished %lld ops%30s\r", done_, "");
fflush(stderr);
} else {
double now = FLAGS_env->NowMicros();
fprintf(stderr,
"%s ... thread %d: (%lld,%lld) ops and "
"(%.1f,%.1f) ops/second in (%.6f,%.6f) seconds\n",
FLAGS_env->TimeToString((uint64_t) now/1000000).c_str(),
id_,
done_ - last_report_done_, done_,
(done_ - last_report_done_) /
((now - last_report_finish_) / 1000000.0),
done_ / ((now - start_) / 1000000.0),
(now - last_report_finish_) / 1000000.0,
(now - start_) / 1000000.0);
if (FLAGS_stats_per_interval) {
std::string stats;
if (db && db->GetProperty("rocksdb.stats", &stats))
fprintf(stderr, "%s\n", stats.c_str());
}
fflush(stderr);
next_report_ += FLAGS_stats_interval;
last_report_finish_ = now;
last_report_done_ = done_;
}
}
}
void AddBytes(int64_t n) {
bytes_ += n;
}
void Report(const Slice& name) {
// Pretend at least one op was done in case we are running a benchmark
// that does not call FinishedSingleOp().
if (done_ < 1) done_ = 1;
std::string extra;
if (bytes_ > 0) {
// Rate is computed on actual elapsed time, not the sum of per-thread
// elapsed times.
double elapsed = (finish_ - start_) * 1e-6;
char rate[100];
snprintf(rate, sizeof(rate), "%6.1f MB/s",
(bytes_ / 1048576.0) / elapsed);
extra = rate;
}
AppendWithSpace(&extra, message_);
double elapsed = (finish_ - start_) * 1e-6;
double throughput = (double)done_/elapsed;
fprintf(stdout, "%-12s : %11.3f micros/op %ld ops/sec;%s%s\n",
name.ToString().c_str(),
elapsed * 1e6 / done_,
(long)throughput,
(extra.empty() ? "" : " "),
extra.c_str());
if (FLAGS_histogram) {
fprintf(stdout, "Microseconds per op:\n%s\n", hist_.ToString().c_str());
}
fflush(stdout);
}
};
// State shared by all concurrent executions of the same benchmark.
struct SharedState {
port::Mutex mu;
port::CondVar cv;
int total;
int perf_level;
// Each thread goes through the following states:
// (1) initializing
// (2) waiting for others to be initialized
// (3) running
// (4) done
long num_initialized;
long num_done;
bool start;
SharedState() : cv(&mu), perf_level(FLAGS_perf_level) { }
};
// Per-thread state for concurrent executions of the same benchmark.
struct ThreadState {
int tid; // 0..n-1 when running in n threads
Random64 rand; // Has different seeds for different threads
Stats stats;
SharedState* shared;
/* implicit */ ThreadState(int index)
: tid(index),
rand((FLAGS_seed ? FLAGS_seed : 1000) + index) {
}
};
class Duration {
public:
Duration(int max_seconds, long long max_ops) {
max_seconds_ = max_seconds;
max_ops_= max_ops;
ops_ = 0;
start_at_ = FLAGS_env->NowMicros();
}
bool Done(int increment) {
if (increment <= 0) increment = 1; // avoid Done(0) and infinite loops
ops_ += increment;
if (max_seconds_) {
// Recheck every appx 1000 ops (exact iff increment is factor of 1000)
if ((ops_/1000) != ((ops_-increment)/1000)) {
double now = FLAGS_env->NowMicros();
return ((now - start_at_) / 1000000.0) >= max_seconds_;
} else {
return false;
}
} else {
return ops_ > max_ops_;
}
}
private:
int max_seconds_;
long long max_ops_;
long long ops_;
double start_at_;
};
class Benchmark {
private:
shared_ptr<Cache> cache_;
shared_ptr<Cache> compressed_cache_;
const FilterPolicy* filter_policy_;
const SliceTransform* prefix_extractor_;
DB* db_;
long long num_;
int value_size_;
int key_size_;
int entries_per_batch_;
WriteOptions write_options_;
long long reads_;
long long writes_;
long long readwrites_;
long long merge_keys_;
int heap_counter_;
char keyFormat_[100]; // will contain the format of key. e.g "%016d"
void PrintHeader() {
PrintEnvironment();
fprintf(stdout, "Keys: %d bytes each\n", FLAGS_key_size);
fprintf(stdout, "Values: %d bytes each (%d bytes after compression)\n",
FLAGS_value_size,
static_cast<int>(FLAGS_value_size * FLAGS_compression_ratio + 0.5));
fprintf(stdout, "Entries: %lld\n", num_);
fprintf(stdout, "RawSize: %.1f MB (estimated)\n",
((static_cast<int64_t>(FLAGS_key_size + FLAGS_value_size) * num_)
/ 1048576.0));
fprintf(stdout, "FileSize: %.1f MB (estimated)\n",
(((FLAGS_key_size + FLAGS_value_size * FLAGS_compression_ratio)
* num_)
/ 1048576.0));
fprintf(stdout, "Write rate limit: %d\n", FLAGS_writes_per_second);
switch (FLAGS_compression_type_e) {
case rocksdb::kNoCompression:
fprintf(stdout, "Compression: none\n");
break;
case rocksdb::kSnappyCompression:
fprintf(stdout, "Compression: snappy\n");
break;
case rocksdb::kZlibCompression:
fprintf(stdout, "Compression: zlib\n");
break;
case rocksdb::kBZip2Compression:
fprintf(stdout, "Compression: bzip2\n");
break;
case rocksdb::kLZ4Compression:
fprintf(stdout, "Compression: lz4\n");
break;
case rocksdb::kLZ4HCCompression:
fprintf(stdout, "Compression: lz4hc\n");
break;
}
switch (FLAGS_rep_factory) {
case kPrefixHash:
fprintf(stdout, "Memtablerep: prefix_hash\n");
break;
case kSkipList:
fprintf(stdout, "Memtablerep: skip_list\n");
break;
case kVectorRep:
fprintf(stdout, "Memtablerep: vector\n");
break;
}
fprintf(stdout, "Perf Level: %d\n", FLAGS_perf_level);
PrintWarnings();
fprintf(stdout, "------------------------------------------------\n");
}
void PrintWarnings() {
#if defined(__GNUC__) && !defined(__OPTIMIZE__)
fprintf(stdout,
"WARNING: Optimization is disabled: benchmarks unnecessarily slow\n"
);
#endif
#ifndef NDEBUG
fprintf(stdout,
"WARNING: Assertions are enabled; benchmarks unnecessarily slow\n");
#endif
if (FLAGS_compression_type_e != rocksdb::kNoCompression) {
// The test string should not be too small.
const int len = FLAGS_block_size;
char* text = (char*) malloc(len+1);
bool result = true;
const char* name = nullptr;
std::string compressed;
memset(text, (int) 'y', len);
text[len] = '\0';
switch (FLAGS_compression_type_e) {
case kSnappyCompression:
result = port::Snappy_Compress(Options().compression_opts, text,
strlen(text), &compressed);
name = "Snappy";
break;
case kZlibCompression:
result = port::Zlib_Compress(Options().compression_opts, text,
strlen(text), &compressed);
name = "Zlib";
break;
case kBZip2Compression:
result = port::BZip2_Compress(Options().compression_opts, text,
strlen(text), &compressed);
name = "BZip2";
break;
case kLZ4Compression:
result = port::LZ4_Compress(Options().compression_opts, text,
strlen(text), &compressed);
name = "LZ4";
break;
case kLZ4HCCompression:
result = port::LZ4HC_Compress(Options().compression_opts, text,
strlen(text), &compressed);
name = "LZ4HC";
break;
case kNoCompression:
assert(false); // cannot happen
break;
}
if (!result) {
fprintf(stdout, "WARNING: %s compression is not enabled\n", name);
} else if (name && compressed.size() >= strlen(text)) {
fprintf(stdout, "WARNING: %s compression is not effective\n", name);
}
free(text);
}
}
// Current the following isn't equivalent to OS_LINUX.
#if defined(__linux)
static Slice TrimSpace(Slice s) {
unsigned int start = 0;
while (start < s.size() && isspace(s[start])) {
start++;
}
unsigned int limit = s.size();
while (limit > start && isspace(s[limit-1])) {
limit--;
}
return Slice(s.data() + start, limit - start);
}
#endif
void PrintEnvironment() {
fprintf(stderr, "LevelDB: version %d.%d\n",
kMajorVersion, kMinorVersion);
#if defined(__linux)
time_t now = time(nullptr);
fprintf(stderr, "Date: %s", ctime(&now)); // ctime() adds newline
FILE* cpuinfo = fopen("/proc/cpuinfo", "r");
if (cpuinfo != nullptr) {
char line[1000];
int num_cpus = 0;
std::string cpu_type;
std::string cache_size;
while (fgets(line, sizeof(line), cpuinfo) != nullptr) {
const char* sep = strchr(line, ':');
if (sep == nullptr) {
continue;
}
Slice key = TrimSpace(Slice(line, sep - 1 - line));
Slice val = TrimSpace(Slice(sep + 1));
if (key == "model name") {
++num_cpus;
cpu_type = val.ToString();
} else if (key == "cache size") {
cache_size = val.ToString();
}
}
fclose(cpuinfo);
fprintf(stderr, "CPU: %d * %s\n", num_cpus, cpu_type.c_str());
fprintf(stderr, "CPUCache: %s\n", cache_size.c_str());
}
#endif
}
public:
Benchmark()
: cache_(FLAGS_cache_size >= 0 ?
(FLAGS_cache_numshardbits >= 1 ?
NewLRUCache(FLAGS_cache_size, FLAGS_cache_numshardbits,
FLAGS_cache_remove_scan_count_limit) :
NewLRUCache(FLAGS_cache_size)) : nullptr),
compressed_cache_(FLAGS_compressed_cache_size >= 0 ?
(FLAGS_cache_numshardbits >= 1 ?
NewLRUCache(FLAGS_compressed_cache_size, FLAGS_cache_numshardbits) :
NewLRUCache(FLAGS_compressed_cache_size)) : nullptr),
filter_policy_(FLAGS_bloom_bits >= 0
? NewBloomFilterPolicy(FLAGS_bloom_bits)
: nullptr),
prefix_extractor_(NewFixedPrefixTransform(FLAGS_key_size-1)),
db_(nullptr),
num_(FLAGS_num),
value_size_(FLAGS_value_size),
key_size_(FLAGS_key_size),
entries_per_batch_(1),
reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads),
writes_(FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes),
readwrites_((FLAGS_writes < 0 && FLAGS_reads < 0)? FLAGS_num :
((FLAGS_writes > FLAGS_reads) ? FLAGS_writes : FLAGS_reads)
),
merge_keys_(FLAGS_merge_keys < 0 ? FLAGS_num : FLAGS_merge_keys),
heap_counter_(0) {
std::vector<std::string> files;
FLAGS_env->GetChildren(FLAGS_db, &files);
for (unsigned int i = 0; i < files.size(); i++) {
if (Slice(files[i]).starts_with("heap-")) {
FLAGS_env->DeleteFile(FLAGS_db + "/" + files[i]);
}
}
if (!FLAGS_use_existing_db) {
DestroyDB(FLAGS_db, Options());
}
}
~Benchmark() {
delete db_;
delete filter_policy_;
delete prefix_extractor_;
}
//this function will construct string format for key. e.g "%016lld"
void ConstructStrFormatForKey(char* str, int keySize) {
str[0] = '%';
str[1] = '0';
sprintf(str+2, "%dlld%s", keySize, "%s");
}
unique_ptr<char []> GenerateKeyFromInt(long long v, const char* suffix = "") {
unique_ptr<char []> keyInStr(new char[kMaxKeySize + 1]);
snprintf(keyInStr.get(), kMaxKeySize + 1, keyFormat_, v, suffix);
return keyInStr;
}
void Run() {
PrintHeader();
Open();
const char* benchmarks = FLAGS_benchmarks.c_str();
while (benchmarks != nullptr) {
const char* sep = strchr(benchmarks, ',');
Slice name;
if (sep == nullptr) {
name = benchmarks;
benchmarks = nullptr;
} else {
name = Slice(benchmarks, sep - benchmarks);
benchmarks = sep + 1;
}
// Sanitize parameters
num_ = FLAGS_num;
reads_ = (FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads);
writes_ = (FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes);
value_size_ = FLAGS_value_size;
key_size_ = FLAGS_key_size;
ConstructStrFormatForKey(keyFormat_, key_size_);
entries_per_batch_ = 1;
write_options_ = WriteOptions();
if (FLAGS_sync) {
write_options_.sync = true;
}
write_options_.disableWAL = FLAGS_disable_wal;
void (Benchmark::*method)(ThreadState*) = nullptr;
bool fresh_db = false;
int num_threads = FLAGS_threads;
if (name == Slice("fillseq")) {
fresh_db = true;
method = &Benchmark::WriteSeq;
} else if (name == Slice("fillbatch")) {
fresh_db = true;
entries_per_batch_ = 1000;
method = &Benchmark::WriteSeq;
} else if (name == Slice("fillrandom")) {
fresh_db = true;
method = &Benchmark::WriteRandom;
} else if (name == Slice("fillfromstdin")) {
fresh_db = true;
method = &Benchmark::WriteFromStdin;
} else if (name == Slice("filluniquerandom")) {
fresh_db = true;
if (num_threads > 1) {
fprintf(stderr, "filluniquerandom multithreaded not supported"
" set --threads=1");
exit(1);
}
method = &Benchmark::WriteUniqueRandom;
} else if (name == Slice("overwrite")) {
fresh_db = false;
method = &Benchmark::WriteRandom;
} else if (name == Slice("fillsync")) {
fresh_db = true;
num_ /= 1000;
write_options_.sync = true;
method = &Benchmark::WriteRandom;
} else if (name == Slice("fill100K")) {
fresh_db = true;
num_ /= 1000;
value_size_ = 100 * 1000;
method = &Benchmark::WriteRandom;
} else if (name == Slice("readseq")) {
method = &Benchmark::ReadSequential;
} else if (name == Slice("readtocache")) {
method = &Benchmark::ReadSequential;
num_threads = 1;
reads_ = num_;
} else if (name == Slice("readreverse")) {
method = &Benchmark::ReadReverse;
} else if (name == Slice("readrandom")) {
method = &Benchmark::ReadRandom;
} else if (name == Slice("readmissing")) {
method = &Benchmark::ReadMissing;
} else if (name == Slice("newiterator")) {
method = &Benchmark::IteratorCreation;
} else if (name == Slice("seekrandom")) {
method = &Benchmark::SeekRandom;
} else if (name == Slice("readhot")) {
method = &Benchmark::ReadHot;
} else if (name == Slice("readrandomsmall")) {
reads_ /= 1000;
method = &Benchmark::ReadRandom;
} else if (name == Slice("prefixscanrandom")) {
method = &Benchmark::PrefixScanRandom;
} else if (name == Slice("deleteseq")) {
method = &Benchmark::DeleteSeq;
} else if (name == Slice("deleterandom")) {
method = &Benchmark::DeleteRandom;
} else if (name == Slice("readwhilewriting")) {
num_threads++; // Add extra thread for writing
method = &Benchmark::ReadWhileWriting;
} else if (name == Slice("readrandomwriterandom")) {
method = &Benchmark::ReadRandomWriteRandom;
} else if (name == Slice("readrandommergerandom")) {
if (FLAGS_merge_operator.empty()) {
fprintf(stdout, "%-12s : skipped (--merge_operator is unknown)\n",
name.ToString().c_str());
method = nullptr;
} else {
method = &Benchmark::ReadRandomMergeRandom;
}
} else if (name == Slice("updaterandom")) {
method = &Benchmark::UpdateRandom;
} else if (name == Slice("appendrandom")) {
method = &Benchmark::AppendRandom;
} else if (name == Slice("mergerandom")) {
if (FLAGS_merge_operator.empty()) {
fprintf(stdout, "%-12s : skipped (--merge_operator is unknown)\n",
name.ToString().c_str());
method = nullptr;
} else {
method = &Benchmark::MergeRandom;
}
} else if (name == Slice("randomwithverify")) {
method = &Benchmark::RandomWithVerify;
} else if (name == Slice("compact")) {
method = &Benchmark::Compact;
} else if (name == Slice("crc32c")) {
method = &Benchmark::Crc32c;
} else if (name == Slice("acquireload")) {
method = &Benchmark::AcquireLoad;
} else if (name == Slice("compress")) {
method = &Benchmark::Compress;
} else if (name == Slice("uncompress")) {
method = &Benchmark::Uncompress;
} else if (name == Slice("heapprofile")) {
HeapProfile();
} else if (name == Slice("stats")) {
PrintStats("rocksdb.stats");
} else if (name == Slice("levelstats")) {
PrintStats("rocksdb.levelstats");
} else if (name == Slice("sstables")) {
PrintStats("rocksdb.sstables");
} else {
if (name != Slice()) { // No error message for empty name
fprintf(stderr, "unknown benchmark '%s'\n", name.ToString().c_str());
}
}
if (fresh_db) {
if (FLAGS_use_existing_db) {
fprintf(stdout, "%-12s : skipped (--use_existing_db is true)\n",
name.ToString().c_str());
method = nullptr;
} else {
delete db_;
db_ = nullptr;
DestroyDB(FLAGS_db, Options());
Open();
}
}
if (method != nullptr) {
fprintf(stdout, "DB path: [%s]\n", FLAGS_db.c_str());
RunBenchmark(num_threads, name, method);
}
}
if (FLAGS_statistics) {
fprintf(stdout, "STATISTICS:\n%s\n", dbstats->ToString().c_str());
}
}
private:
struct ThreadArg {
Benchmark* bm;
SharedState* shared;
ThreadState* thread;
void (Benchmark::*method)(ThreadState*);
};
static void ThreadBody(void* v) {
ThreadArg* arg = reinterpret_cast<ThreadArg*>(v);
SharedState* shared = arg->shared;
ThreadState* thread = arg->thread;
{
MutexLock l(&shared->mu);
shared->num_initialized++;
if (shared->num_initialized >= shared->total) {
shared->cv.SignalAll();
}
while (!shared->start) {
shared->cv.Wait();
}
}
SetPerfLevel(static_cast<PerfLevel> (shared->perf_level));
thread->stats.Start(thread->tid);
(arg->bm->*(arg->method))(thread);
thread->stats.Stop();
{
MutexLock l(&shared->mu);
shared->num_done++;
if (shared->num_done >= shared->total) {
shared->cv.SignalAll();
}
}
}
void RunBenchmark(int n, Slice name,
void (Benchmark::*method)(ThreadState*)) {
SharedState shared;
shared.total = n;
shared.num_initialized = 0;
shared.num_done = 0;
shared.start = false;
ThreadArg* arg = new ThreadArg[n];
for (int i = 0; i < n; i++) {
arg[i].bm = this;
arg[i].method = method;
arg[i].shared = &shared;
arg[i].thread = new ThreadState(i);
arg[i].thread->shared = &shared;
FLAGS_env->StartThread(ThreadBody, &arg[i]);
}
shared.mu.Lock();
while (shared.num_initialized < n) {
shared.cv.Wait();
}
shared.start = true;
shared.cv.SignalAll();
while (shared.num_done < n) {
shared.cv.Wait();
}
shared.mu.Unlock();
// Stats for some threads can be excluded.
Stats merge_stats;
for (int i = 0; i < n; i++) {
merge_stats.Merge(arg[i].thread->stats);
}
merge_stats.Report(name);
for (int i = 0; i < n; i++) {
delete arg[i].thread;
}
delete[] arg;
}
void Crc32c(ThreadState* thread) {
// Checksum about 500MB of data total
const int size = 4096;
const char* label = "(4K per op)";
std::string data(size, 'x');
int64_t bytes = 0;
uint32_t crc = 0;
while (bytes < 500 * 1048576) {
crc = crc32c::Value(data.data(), size);
thread->stats.FinishedSingleOp(nullptr);
bytes += size;
}
// Print so result is not dead
fprintf(stderr, "... crc=0x%x\r", static_cast<unsigned int>(crc));
thread->stats.AddBytes(bytes);
thread->stats.AddMessage(label);
}
void AcquireLoad(ThreadState* thread) {
int dummy;
port::AtomicPointer ap(&dummy);
int count = 0;
void *ptr = nullptr;
thread->stats.AddMessage("(each op is 1000 loads)");
while (count < 100000) {
for (int i = 0; i < 1000; i++) {
ptr = ap.Acquire_Load();
}
count++;
thread->stats.FinishedSingleOp(nullptr);
}
if (ptr == nullptr) exit(1); // Disable unused variable warning.
}
void Compress(ThreadState *thread) {
RandomGenerator gen;
Slice input = gen.Generate(Options().block_size);
int64_t bytes = 0;
int64_t produced = 0;
bool ok = true;
std::string compressed;
// Compress 1G
while (ok && bytes < int64_t(1) << 30) {
switch (FLAGS_compression_type_e) {
case rocksdb::kSnappyCompression:
ok = port::Snappy_Compress(Options().compression_opts, input.data(),
input.size(), &compressed);
break;
case rocksdb::kZlibCompression:
ok = port::Zlib_Compress(Options().compression_opts, input.data(),
input.size(), &compressed);
break;
case rocksdb::kBZip2Compression:
ok = port::BZip2_Compress(Options().compression_opts, input.data(),
input.size(), &compressed);
break;
case rocksdb::kLZ4Compression:
ok = port::LZ4_Compress(Options().compression_opts, input.data(),
input.size(), &compressed);
break;
case rocksdb::kLZ4HCCompression:
ok = port::LZ4HC_Compress(Options().compression_opts, input.data(),
input.size(), &compressed);
break;
default:
ok = false;
}
produced += compressed.size();
bytes += input.size();
thread->stats.FinishedSingleOp(nullptr);
}
if (!ok) {
thread->stats.AddMessage("(compression failure)");
} else {
char buf[100];
snprintf(buf, sizeof(buf), "(output: %.1f%%)",
(produced * 100.0) / bytes);
thread->stats.AddMessage(buf);
thread->stats.AddBytes(bytes);
}
}
void Uncompress(ThreadState *thread) {
RandomGenerator gen;
Slice input = gen.Generate(Options().block_size);
std::string compressed;
bool ok;
switch (FLAGS_compression_type_e) {
case rocksdb::kSnappyCompression:
ok = port::Snappy_Compress(Options().compression_opts, input.data(),
input.size(), &compressed);
break;
case rocksdb::kZlibCompression:
ok = port::Zlib_Compress(Options().compression_opts, input.data(),
input.size(), &compressed);
break;
case rocksdb::kBZip2Compression:
ok = port::BZip2_Compress(Options().compression_opts, input.data(),
input.size(), &compressed);
break;
case rocksdb::kLZ4Compression:
ok = port::LZ4_Compress(Options().compression_opts, input.data(),
input.size(), &compressed);
break;
case rocksdb::kLZ4HCCompression:
ok = port::LZ4HC_Compress(Options().compression_opts, input.data(),
input.size(), &compressed);
break;
default:
ok = false;
}
int64_t bytes = 0;
int decompress_size;
while (ok && bytes < 1024 * 1048576) {
char *uncompressed = nullptr;
switch (FLAGS_compression_type_e) {
case rocksdb::kSnappyCompression:
// allocate here to make comparison fair
uncompressed = new char[input.size()];
ok = port::Snappy_Uncompress(compressed.data(), compressed.size(),
uncompressed);
break;
case rocksdb::kZlibCompression:
uncompressed = port::Zlib_Uncompress(
compressed.data(), compressed.size(), &decompress_size);
ok = uncompressed != nullptr;
break;
case rocksdb::kBZip2Compression:
uncompressed = port::BZip2_Uncompress(
compressed.data(), compressed.size(), &decompress_size);
ok = uncompressed != nullptr;
break;
case rocksdb::kLZ4Compression:
uncompressed = port::LZ4_Uncompress(
compressed.data(), compressed.size(), &decompress_size);
ok = uncompressed != nullptr;
break;
case rocksdb::kLZ4HCCompression:
uncompressed = port::LZ4_Uncompress(
compressed.data(), compressed.size(), &decompress_size);
ok = uncompressed != nullptr;
break;
default:
ok = false;
}
delete[] uncompressed;
bytes += input.size();
thread->stats.FinishedSingleOp(nullptr);
}
if (!ok) {
thread->stats.AddMessage("(compression failure)");
} else {
thread->stats.AddBytes(bytes);
}
}
void Open() {
assert(db_ == nullptr);
Options options;
options.create_if_missing = !FLAGS_use_existing_db;
options.block_cache = cache_;
options.block_cache_compressed = compressed_cache_;
if (cache_ == nullptr) {
options.no_block_cache = true;
}
options.write_buffer_size = FLAGS_write_buffer_size;
options.max_write_buffer_number = FLAGS_max_write_buffer_number;
options.min_write_buffer_number_to_merge =
FLAGS_min_write_buffer_number_to_merge;
options.max_background_compactions = FLAGS_max_background_compactions;
options.compaction_style = FLAGS_compaction_style_e;
options.block_size = FLAGS_block_size;
options.filter_policy = filter_policy_;
options.prefix_extractor = FLAGS_use_prefix_blooms ? prefix_extractor_
: nullptr;
options.max_open_files = FLAGS_open_files;
options.statistics = dbstats;
options.env = FLAGS_env;
options.disableDataSync = FLAGS_disable_data_sync;
options.use_fsync = FLAGS_use_fsync;
options.num_levels = FLAGS_num_levels;
options.target_file_size_base = FLAGS_target_file_size_base;
options.target_file_size_multiplier = FLAGS_target_file_size_multiplier;
options.max_bytes_for_level_base = FLAGS_max_bytes_for_level_base;
options.max_bytes_for_level_multiplier =
FLAGS_max_bytes_for_level_multiplier;
options.filter_deletes = FLAGS_filter_deletes;
if ((FLAGS_prefix_size == 0) == (FLAGS_rep_factory == kPrefixHash)) {
fprintf(stderr,
"prefix_size should be non-zero iff memtablerep == prefix_hash\n");
exit(1);
}
switch (FLAGS_rep_factory) {
case kPrefixHash:
options.memtable_factory.reset(NewHashSkipListRepFactory(
NewFixedPrefixTransform(FLAGS_prefix_size)));
break;
case kSkipList:
// no need to do anything
break;
case kVectorRep:
options.memtable_factory.reset(
new VectorRepFactory
);
break;
}
if (FLAGS_max_bytes_for_level_multiplier_additional_v.size() > 0) {
if (FLAGS_max_bytes_for_level_multiplier_additional_v.size() !=
(unsigned int)FLAGS_num_levels) {
fprintf(stderr, "Insufficient number of fanouts specified %d\n",
(int)FLAGS_max_bytes_for_level_multiplier_additional_v.size());
exit(1);
}
options.max_bytes_for_level_multiplier_additional =
FLAGS_max_bytes_for_level_multiplier_additional_v;
}
options.level0_stop_writes_trigger = FLAGS_level0_stop_writes_trigger;
options.level0_file_num_compaction_trigger =
FLAGS_level0_file_num_compaction_trigger;
options.level0_slowdown_writes_trigger =
FLAGS_level0_slowdown_writes_trigger;
options.compression = FLAGS_compression_type_e;
options.compression_opts.level = FLAGS_compression_level;
options.WAL_ttl_seconds = FLAGS_wal_ttl_seconds;
options.WAL_size_limit_MB = FLAGS_wal_size_limit_MB;
if (FLAGS_min_level_to_compress >= 0) {
assert(FLAGS_min_level_to_compress <= FLAGS_num_levels);
options.compression_per_level.resize(FLAGS_num_levels);
for (int i = 0; i < FLAGS_min_level_to_compress; i++) {
options.compression_per_level[i] = kNoCompression;
}
for (int i = FLAGS_min_level_to_compress;
i < FLAGS_num_levels; i++) {
options.compression_per_level[i] = FLAGS_compression_type_e;
}
}
options.disable_seek_compaction = FLAGS_disable_seek_compaction;
options.delete_obsolete_files_period_micros =
FLAGS_delete_obsolete_files_period_micros;
options.soft_rate_limit = FLAGS_soft_rate_limit;
options.hard_rate_limit = FLAGS_hard_rate_limit;
options.rate_limit_delay_max_milliseconds =
FLAGS_rate_limit_delay_max_milliseconds;
options.table_cache_numshardbits = FLAGS_table_cache_numshardbits;
options.max_grandparent_overlap_factor =
FLAGS_max_grandparent_overlap_factor;
options.disable_auto_compactions = FLAGS_disable_auto_compactions;
options.source_compaction_factor = FLAGS_source_compaction_factor;
// fill storage options
options.allow_os_buffer = FLAGS_bufferedio;
options.allow_mmap_reads = FLAGS_mmap_read;
options.allow_mmap_writes = FLAGS_mmap_write;
options.advise_random_on_open = FLAGS_advise_random_on_open;
options.access_hint_on_compaction_start = FLAGS_compaction_fadvice_e;
options.use_adaptive_mutex = FLAGS_use_adaptive_mutex;
options.bytes_per_sync = FLAGS_bytes_per_sync;
// merge operator options
options.merge_operator = MergeOperators::CreateFromStringId(
FLAGS_merge_operator);
if (options.merge_operator == nullptr && !FLAGS_merge_operator.empty()) {
fprintf(stderr, "invalid merge operator: %s\n",
FLAGS_merge_operator.c_str());
exit(1);
}
options.max_successive_merges = FLAGS_max_successive_merges;
// set universal style compaction configurations, if applicable
if (FLAGS_universal_size_ratio != 0) {
options.compaction_options_universal.size_ratio =
FLAGS_universal_size_ratio;
}
if (FLAGS_universal_min_merge_width != 0) {
options.compaction_options_universal.min_merge_width =
FLAGS_universal_min_merge_width;
}
if (FLAGS_universal_max_merge_width != 0) {
options.compaction_options_universal.max_merge_width =
FLAGS_universal_max_merge_width;
}
if (FLAGS_universal_max_size_amplification_percent != 0) {
options.compaction_options_universal.max_size_amplification_percent =
FLAGS_universal_max_size_amplification_percent;
}
if (FLAGS_universal_compression_size_percent != -1) {
options.compaction_options_universal.compression_size_percent =
FLAGS_universal_compression_size_percent;
}
Status s;
if(FLAGS_readonly) {
s = DB::OpenForReadOnly(options, FLAGS_db, &db_);
} else {
s = DB::Open(options, FLAGS_db, &db_);
}
if (!s.ok()) {
fprintf(stderr, "open error: %s\n", s.ToString().c_str());
exit(1);
}
if (FLAGS_min_level_to_compress >= 0) {
options.compression_per_level.clear();
}
}
enum WriteMode {
RANDOM, SEQUENTIAL, UNIQUE_RANDOM
};
void WriteSeq(ThreadState* thread) {
DoWrite(thread, SEQUENTIAL);
}
void WriteRandom(ThreadState* thread) {
DoWrite(thread, RANDOM);
}
void WriteUniqueRandom(ThreadState* thread) {
DoWrite(thread, UNIQUE_RANDOM);
}
void writeOrFail(WriteBatch& batch) {
Status s = db_->Write(write_options_, &batch);
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
exit(1);
}
}
void WriteFromStdin(ThreadState* thread) {
size_t count = 0;
WriteBatch batch;
const size_t bufferLen = 32 << 20;
unique_ptr<char[]> line = unique_ptr<char[]>(new char[bufferLen]);
char* linep = line.get();
const int batchSize = 100 << 10;
const char columnSeparator = '\t';
const char lineSeparator = '\n';
while (fgets(linep, bufferLen, stdin) != nullptr) {
++count;
char* tab = std::find(linep, linep + bufferLen, columnSeparator);
if (tab == linep + bufferLen) {
fprintf(stderr, "[Error] No Key delimiter TAB at line %zu\n", count);
continue;
}
Slice key(linep, tab - linep);
tab++;
char* endLine = std::find(tab, linep + bufferLen, lineSeparator);
if (endLine == linep + bufferLen) {
fprintf(stderr, "[Error] No ENTER at end of line # %zu\n", count);
continue;
}
Slice value(tab, endLine - tab);
thread->stats.FinishedSingleOp(db_);
thread->stats.AddBytes(endLine - linep - 1);
if (batch.Count() < batchSize) {
batch.Put(key, value);
continue;
}
writeOrFail(batch);
batch.Clear();
}
if (batch.Count() > 0) {
writeOrFail(batch);
}
}
void DoWrite(ThreadState* thread, WriteMode write_mode) {
const int test_duration = write_mode == RANDOM ? FLAGS_duration : 0;
const int num_ops = writes_ == 0 ? num_ : writes_ ;
Duration duration(test_duration, num_ops);
unique_ptr<BitSet> bit_set;
if (write_mode == UNIQUE_RANDOM) {
bit_set.reset(new BitSet(num_ops));
}
if (num_ != FLAGS_num) {
char msg[100];
snprintf(msg, sizeof(msg), "(%lld ops)", num_);
thread->stats.AddMessage(msg);
}
RandomGenerator gen;
WriteBatch batch;
Status s;
int64_t bytes = 0;
int i = 0;
while (!duration.Done(entries_per_batch_)) {
batch.Clear();
for (int j = 0; j < entries_per_batch_; j++) {
long long k = 0;
switch(write_mode) {
case SEQUENTIAL:
k = i +j;
break;
case RANDOM:
k = thread->rand.Next() % FLAGS_num;
break;
case UNIQUE_RANDOM:
{
const long long t = thread->rand.Next() % FLAGS_num;
if (!bit_set->test(t)) {
// best case
k = t;
} else {
bool found = false;
// look forward
for (size_t i = t + 1; i < bit_set->size(); ++i) {
if (!bit_set->test(i)) {
found = true;
k = i;
break;
}
}
if (!found) {
for (size_t i = t; i-- > 0;) {
if (!bit_set->test(i)) {
found = true;
k = i;
break;
}
}
}
}
bit_set->set(k);
break;
}
};
unique_ptr<char []> key = GenerateKeyFromInt(k);
batch.Put(key.get(), gen.Generate(value_size_));
bytes += value_size_ + strlen(key.get());
thread->stats.FinishedSingleOp(db_);
}
s = db_->Write(write_options_, &batch);
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
exit(1);
}
i += entries_per_batch_;
}
thread->stats.AddBytes(bytes);
}
void ReadSequential(ThreadState* thread) {
Iterator* iter = db_->NewIterator(ReadOptions(FLAGS_verify_checksum, true));
long long i = 0;
int64_t bytes = 0;
for (iter->SeekToFirst(); i < reads_ && iter->Valid(); iter->Next()) {
bytes += iter->key().size() + iter->value().size();
thread->stats.FinishedSingleOp(db_);
++i;
}
delete iter;
thread->stats.AddBytes(bytes);
}
void ReadReverse(ThreadState* thread) {
Iterator* iter = db_->NewIterator(ReadOptions(FLAGS_verify_checksum, true));
long long i = 0;
int64_t bytes = 0;
for (iter->SeekToLast(); i < reads_ && iter->Valid(); iter->Prev()) {
bytes += iter->key().size() + iter->value().size();
thread->stats.FinishedSingleOp(db_);
++i;
}
delete iter;
thread->stats.AddBytes(bytes);
}
// Calls MultiGet over a list of keys from a random distribution.
// Returns the total number of keys found.
long MultiGetRandom(ReadOptions& options, int num_keys,
Random64& rand, long long range, const char* suffix) {
assert(num_keys > 0);
std::vector<Slice> keys(num_keys);
std::vector<std::string> values(num_keys);
std::vector<unique_ptr<char []> > gen_keys(num_keys);
int i;
long long k;
// Fill the keys vector
for(i=0; i<num_keys; ++i) {
k = rand.Next() % range;
gen_keys[i] = GenerateKeyFromInt(k,suffix);
keys[i] = gen_keys[i].get();
}
if (FLAGS_use_snapshot) {
options.snapshot = db_->GetSnapshot();
}
// Apply the operation
std::vector<Status> statuses = db_->MultiGet(options, keys, &values);
assert((long)statuses.size() == num_keys);
assert((long)keys.size() == num_keys); // Should always be the case.
assert((long)values.size() == num_keys);
if (FLAGS_use_snapshot) {
db_->ReleaseSnapshot(options.snapshot);
options.snapshot = nullptr;
}
// Count number found
long found = 0;
for(i=0; i<num_keys; ++i) {
if (statuses[i].ok()){
++found;
} else if (FLAGS_warn_missing_keys == true) {
// Key not found, or error.
fprintf(stderr, "get error: %s\n", statuses[i].ToString().c_str());
}
}
return found;
}
void ReadRandom(ThreadState* thread) {
ReadOptions options(FLAGS_verify_checksum, true);
Duration duration(FLAGS_duration, reads_);
long long found = 0;
if (FLAGS_use_multiget) { // MultiGet
const long& kpg = FLAGS_keys_per_multiget; // keys per multiget group
long keys_left = reads_;
// Recalculate number of keys per group, and call MultiGet until done
long num_keys;
while(num_keys = std::min(keys_left, kpg), !duration.Done(num_keys)) {
found += MultiGetRandom(options, num_keys, thread->rand, FLAGS_num, "");
thread->stats.FinishedSingleOp(db_);
keys_left -= num_keys;
}
} else if (FLAGS_use_tailing_iterator) { // use tailing iterator for gets
options.tailing = true;
Iterator* iter = db_->NewIterator(options);
while (!duration.Done(1)) {
const long long k = thread->rand.Next() % FLAGS_num;
unique_ptr<char[]> key = GenerateKeyFromInt(k);
iter->Seek(key.get());
if (iter->Valid() && iter->key().compare(Slice(key.get())) == 0) {
++found;
}
thread->stats.FinishedSingleOp(db_);
}
delete iter;
} else { // Regular case. Do one "get" at a time Get
Iterator* iter = db_->NewIterator(options);
std::string value;
while (!duration.Done(1)) {
const long long k = thread->rand.Next() % FLAGS_num;
unique_ptr<char []> key = GenerateKeyFromInt(k);
if (FLAGS_use_snapshot) {
options.snapshot = db_->GetSnapshot();
}
if (FLAGS_read_range < 2) {
if (db_->Get(options, key.get(), &value).ok()) {
found++;
}
} else {
Slice skey(key.get());
int count = 1;
if (FLAGS_get_approx) {
unique_ptr<char []> key2 =
GenerateKeyFromInt(k + (int) FLAGS_read_range);
Slice skey2(key2.get());
Range range(skey, skey2);
uint64_t sizes;
db_->GetApproximateSizes(&range, 1, &sizes);
}
for (iter->Seek(skey);
iter->Valid() && count <= FLAGS_read_range;
++count, iter->Next()) {
found++;
}
}
if (FLAGS_use_snapshot) {
db_->ReleaseSnapshot(options.snapshot);
options.snapshot = nullptr;
}
thread->stats.FinishedSingleOp(db_);
}
delete iter;
}
char msg[100];
snprintf(msg, sizeof(msg), "(%lld of %lld found)", found, reads_);
thread->stats.AddMessage(msg);
}
void PrefixScanRandom(ThreadState* thread) {
if (FLAGS_use_prefix_api) {
assert(FLAGS_use_prefix_blooms);
assert(FLAGS_bloom_bits >= 1);
}
ReadOptions options(FLAGS_verify_checksum, true);
Duration duration(FLAGS_duration, reads_);
long long found = 0;
while (!duration.Done(1)) {
std::string value;
const int k = thread->rand.Next() % FLAGS_num;
unique_ptr<char []> key = GenerateKeyFromInt(k);
Slice skey(key.get());
Slice prefix = prefix_extractor_->Transform(skey);
options.prefix = FLAGS_use_prefix_api ? &prefix : nullptr;
Iterator* iter = db_->NewIterator(options);
for (iter->Seek(skey);
iter->Valid() && iter->key().starts_with(prefix);
iter->Next()) {
found++;
}
delete iter;
thread->stats.FinishedSingleOp(db_);
}
char msg[100];
snprintf(msg, sizeof(msg), "(%lld of %lld found)", found, reads_);
thread->stats.AddMessage(msg);
}
void ReadMissing(ThreadState* thread) {
FLAGS_warn_missing_keys = false; // Never warn about missing keys
Duration duration(FLAGS_duration, reads_);
ReadOptions options(FLAGS_verify_checksum, true);
if (FLAGS_use_multiget) {
const long& kpg = FLAGS_keys_per_multiget; // keys per multiget group
long keys_left = reads_;
// Recalculate number of keys per group, and call MultiGet until done
long num_keys;
long found;
while(num_keys = std::min(keys_left, kpg), !duration.Done(num_keys)) {
found = MultiGetRandom(options, num_keys, thread->rand, FLAGS_num, ".");
// We should not find any key since the key we try to get has a
// different suffix
if (found) {
assert(false);
}
thread->stats.FinishedSingleOp(db_);
keys_left -= num_keys;
}
} else { // Regular case (not MultiGet)
std::string value;
Status s;
while (!duration.Done(1)) {
const long long k = thread->rand.Next() % FLAGS_num;
unique_ptr<char []> key = GenerateKeyFromInt(k, ".");
s = db_->Get(options, key.get(), &value);
assert(!s.ok() && s.IsNotFound());
thread->stats.FinishedSingleOp(db_);
}
}
}
void ReadHot(ThreadState* thread) {
Duration duration(FLAGS_duration, reads_);
ReadOptions options(FLAGS_verify_checksum, true);
const long long range = (FLAGS_num + 99) / 100;
long long found = 0;
if (FLAGS_use_multiget) {
const long long kpg = FLAGS_keys_per_multiget; // keys per multiget group
long long keys_left = reads_;
// Recalculate number of keys per group, and call MultiGet until done
long num_keys;
while(num_keys = std::min(keys_left, kpg), !duration.Done(num_keys)) {
found += MultiGetRandom(options, num_keys, thread->rand, range, "");
thread->stats.FinishedSingleOp(db_);
keys_left -= num_keys;
}
} else {
std::string value;
while (!duration.Done(1)) {
const long long k = thread->rand.Next() % range;
unique_ptr<char []> key = GenerateKeyFromInt(k);
if (db_->Get(options, key.get(), &value).ok()){
++found;
}
thread->stats.FinishedSingleOp(db_);
}
}
char msg[100];
snprintf(msg, sizeof(msg), "(%lld of %lld found)", found, reads_);
thread->stats.AddMessage(msg);
}
void IteratorCreation(ThreadState* thread) {
Duration duration(FLAGS_duration, reads_);
ReadOptions options(FLAGS_verify_checksum, true);
while (!duration.Done(1)) {
Iterator* iter = db_->NewIterator(options);
delete iter;
thread->stats.FinishedSingleOp(db_);
}
}
void SeekRandom(ThreadState* thread) {
Duration duration(FLAGS_duration, reads_);
ReadOptions options(FLAGS_verify_checksum, true);
std::string value;
long long found = 0;
while (!duration.Done(1)) {
Iterator* iter = db_->NewIterator(options);
const long long k = thread->rand.Next() % FLAGS_num;
unique_ptr<char []> key = GenerateKeyFromInt(k);
iter->Seek(key.get());
if (iter->Valid() && iter->key() == key.get()) found++;
delete iter;
thread->stats.FinishedSingleOp(db_);
}
char msg[100];
snprintf(msg, sizeof(msg), "(%lld of %lld found)", found, num_);
thread->stats.AddMessage(msg);
}
void DoDelete(ThreadState* thread, bool seq) {
WriteBatch batch;
Status s;
Duration duration(seq ? 0 : FLAGS_duration, num_);
long i = 0;
while (!duration.Done(entries_per_batch_)) {
batch.Clear();
for (int j = 0; j < entries_per_batch_; j++) {
const long long k = seq ? i+j : (thread->rand.Next() % FLAGS_num);
unique_ptr<char []> key = GenerateKeyFromInt(k);
batch.Delete(key.get());
thread->stats.FinishedSingleOp(db_);
}
s = db_->Write(write_options_, &batch);
if (!s.ok()) {
fprintf(stderr, "del error: %s\n", s.ToString().c_str());
exit(1);
}
++i;
}
}
void DeleteSeq(ThreadState* thread) {
DoDelete(thread, true);
}
void DeleteRandom(ThreadState* thread) {
DoDelete(thread, false);
}
void ReadWhileWriting(ThreadState* thread) {
if (thread->tid > 0) {
ReadRandom(thread);
} else {
// Special thread that keeps writing until other threads are done.
RandomGenerator gen;
double last = FLAGS_env->NowMicros();
int writes_per_second_by_10 = 0;
int num_writes = 0;
// --writes_per_second rate limit is enforced per 100 milliseconds
// intervals to avoid a burst of writes at the start of each second.
if (FLAGS_writes_per_second > 0)
writes_per_second_by_10 = FLAGS_writes_per_second / 10;
// Don't merge stats from this thread with the readers.
thread->stats.SetExcludeFromMerge();
while (true) {
{
MutexLock l(&thread->shared->mu);
if (thread->shared->num_done + 1 >= thread->shared->num_initialized) {
// Other threads have finished
break;
}
}
const long long k = thread->rand.Next() % FLAGS_num;
unique_ptr<char []> key = GenerateKeyFromInt(k);
Status s = db_->Put(write_options_, key.get(),
gen.Generate(value_size_));
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
exit(1);
}
thread->stats.FinishedSingleOp(db_);
++num_writes;
if (writes_per_second_by_10 && num_writes >= writes_per_second_by_10) {
double now = FLAGS_env->NowMicros();
double usecs_since_last = now - last;
num_writes = 0;
last = now;
if (usecs_since_last < 100000.0) {
FLAGS_env->SleepForMicroseconds(100000.0 - usecs_since_last);
last = FLAGS_env->NowMicros();
}
}
}
}
}
// Given a key K and value V, this puts (K+"0", V), (K+"1", V), (K+"2", V)
// in DB atomically i.e in a single batch. Also refer GetMany.
Status PutMany(const WriteOptions& writeoptions,
const Slice& key, const Slice& value) {
std::string suffixes[3] = {"2", "1", "0"};
std::string keys[3];
WriteBatch batch;
Status s;
for (int i = 0; i < 3; i++) {
keys[i] = key.ToString() + suffixes[i];
batch.Put(keys[i], value);
}
s = db_->Write(writeoptions, &batch);
return s;
}
// Given a key K, this deletes (K+"0", V), (K+"1", V), (K+"2", V)
// in DB atomically i.e in a single batch. Also refer GetMany.
Status DeleteMany(const WriteOptions& writeoptions,
const Slice& key) {
std::string suffixes[3] = {"1", "2", "0"};
std::string keys[3];
WriteBatch batch;
Status s;
for (int i = 0; i < 3; i++) {
keys[i] = key.ToString() + suffixes[i];
batch.Delete(keys[i]);
}
s = db_->Write(writeoptions, &batch);
return s;
}
// Given a key K and value V, this gets values for K+"0", K+"1" and K+"2"
// in the same snapshot, and verifies that all the values are identical.
// ASSUMES that PutMany was used to put (K, V) into the DB.
Status GetMany(const ReadOptions& readoptions,
const Slice& key, std::string* value) {
std::string suffixes[3] = {"0", "1", "2"};
std::string keys[3];
Slice key_slices[3];
std::string values[3];
ReadOptions readoptionscopy = readoptions;
readoptionscopy.snapshot = db_->GetSnapshot();
Status s;
for (int i = 0; i < 3; i++) {
keys[i] = key.ToString() + suffixes[i];
key_slices[i] = keys[i];
s = db_->Get(readoptionscopy, key_slices[i], value);
if (!s.ok() && !s.IsNotFound()) {
fprintf(stderr, "get error: %s\n", s.ToString().c_str());
values[i] = "";
// we continue after error rather than exiting so that we can
// find more errors if any
} else if (s.IsNotFound()) {
values[i] = "";
} else {
values[i] = *value;
}
}
db_->ReleaseSnapshot(readoptionscopy.snapshot);
if ((values[0] != values[1]) || (values[1] != values[2])) {
fprintf(stderr, "inconsistent values for key %s: %s, %s, %s\n",
key.ToString().c_str(), values[0].c_str(), values[1].c_str(),
values[2].c_str());
// we continue after error rather than exiting so that we can
// find more errors if any
}
return s;
}
// Differs from readrandomwriterandom in the following ways:
// (a) Uses GetMany/PutMany to read/write key values. Refer to those funcs.
// (b) Does deletes as well (per FLAGS_deletepercent)
// (c) In order to achieve high % of 'found' during lookups, and to do
// multiple writes (including puts and deletes) it uses upto
// FLAGS_numdistinct distinct keys instead of FLAGS_num distinct keys.
// (d) Does not have a MultiGet option.
void RandomWithVerify(ThreadState* thread) {
ReadOptions options(FLAGS_verify_checksum, true);
RandomGenerator gen;
std::string value;
long long found = 0;
int get_weight = 0;
int put_weight = 0;
int delete_weight = 0;
long long gets_done = 0;
long long puts_done = 0;
long long deletes_done = 0;
// the number of iterations is the larger of read_ or write_
for (long long i = 0; i < readwrites_; i++) {
const long long k = thread->rand.Next() % (FLAGS_numdistinct);
unique_ptr<char []> key = GenerateKeyFromInt(k);
if (get_weight == 0 && put_weight == 0 && delete_weight == 0) {
// one batch completed, reinitialize for next batch
get_weight = FLAGS_readwritepercent;
delete_weight = FLAGS_deletepercent;
put_weight = 100 - get_weight - delete_weight;
}
if (get_weight > 0) {
// do all the gets first
Status s = GetMany(options, key.get(), &value);
if (!s.ok() && !s.IsNotFound()) {
fprintf(stderr, "getmany error: %s\n", s.ToString().c_str());
// we continue after error rather than exiting so that we can
// find more errors if any
} else if (!s.IsNotFound()) {
found++;
}
get_weight--;
gets_done++;
} else if (put_weight > 0) {
// then do all the corresponding number of puts
// for all the gets we have done earlier
Status s = PutMany(write_options_, key.get(),
gen.Generate(value_size_));
if (!s.ok()) {
fprintf(stderr, "putmany error: %s\n", s.ToString().c_str());
exit(1);
}
put_weight--;
puts_done++;
} else if (delete_weight > 0) {
Status s = DeleteMany(write_options_, key.get());
if (!s.ok()) {
fprintf(stderr, "deletemany error: %s\n", s.ToString().c_str());
exit(1);
}
delete_weight--;
deletes_done++;
}
thread->stats.FinishedSingleOp(db_);
}
char msg[100];
snprintf(msg, sizeof(msg),
"( get:%lld put:%lld del:%lld total:%lld found:%lld)",
gets_done, puts_done, deletes_done, readwrites_, found);
thread->stats.AddMessage(msg);
}
// This is different from ReadWhileWriting because it does not use
// an extra thread.
void ReadRandomWriteRandom(ThreadState* thread) {
if (FLAGS_use_multiget){
// Separate function for multiget (for ease of reading)
ReadRandomWriteRandomMultiGet(thread);
return;
}
ReadOptions options(FLAGS_verify_checksum, true);
RandomGenerator gen;
std::string value;
long long found = 0;
int get_weight = 0;
int put_weight = 0;
long long reads_done = 0;
long long writes_done = 0;
Duration duration(FLAGS_duration, readwrites_);
// the number of iterations is the larger of read_ or write_
while (!duration.Done(1)) {
const long long k = thread->rand.Next() % FLAGS_num;
unique_ptr<char []> key = GenerateKeyFromInt(k);
if (get_weight == 0 && put_weight == 0) {
// one batch completed, reinitialize for next batch
get_weight = FLAGS_readwritepercent;
put_weight = 100 - get_weight;
}
if (get_weight > 0) {
if (FLAGS_use_snapshot) {
options.snapshot = db_->GetSnapshot();
}
if (FLAGS_get_approx) {
char key2[100];
snprintf(key2, sizeof(key2), "%016lld", k + 1);
Slice skey2(key2);
Slice skey(key2);
Range range(skey, skey2);
uint64_t sizes;
db_->GetApproximateSizes(&range, 1, &sizes);
}
// do all the gets first
Status s = db_->Get(options, key.get(), &value);
if (!s.ok() && !s.IsNotFound()) {
fprintf(stderr, "get error: %s\n", s.ToString().c_str());
// we continue after error rather than exiting so that we can
// find more errors if any
} else if (!s.IsNotFound()) {
found++;
}
get_weight--;
reads_done++;
if (FLAGS_use_snapshot) {
db_->ReleaseSnapshot(options.snapshot);
}
} else if (put_weight > 0) {
// then do all the corresponding number of puts
// for all the gets we have done earlier
Status s = db_->Put(write_options_, key.get(),
gen.Generate(value_size_));
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
exit(1);
}
put_weight--;
writes_done++;
}
thread->stats.FinishedSingleOp(db_);
}
char msg[100];
snprintf(msg, sizeof(msg),
"( reads:%lld writes:%lld total:%lld found:%lld)",
reads_done, writes_done, readwrites_, found);
thread->stats.AddMessage(msg);
}
// ReadRandomWriteRandom (with multiget)
// Does FLAGS_keys_per_multiget reads (per multiget), followed by some puts.
// FLAGS_readwritepercent will specify the ratio of gets to puts.
// e.g.: If FLAGS_keys_per_multiget == 100 and FLAGS_readwritepercent == 75
// Then each block will do 100 multigets and 33 puts
// So there are 133 operations in-total: 100 of them (75%) are gets, and 33
// of them (25%) are puts.
void ReadRandomWriteRandomMultiGet(ThreadState* thread) {
ReadOptions options(FLAGS_verify_checksum, true);
RandomGenerator gen;
// For multiget
const long& kpg = FLAGS_keys_per_multiget; // keys per multiget group
long keys_left = readwrites_; // number of keys still left to read
long num_keys; // number of keys to read in current group
long num_put_keys; // number of keys to put in current group
long found = 0;
long reads_done = 0;
long writes_done = 0;
long multigets_done = 0;
// the number of iterations is the larger of read_ or write_
Duration duration(FLAGS_duration, readwrites_);
while(true) {
// Read num_keys keys, then write num_put_keys keys.
// The ratio of num_keys to num_put_keys is always FLAGS_readwritepercent
// And num_keys is set to be FLAGS_keys_per_multiget (kpg)
// num_put_keys is calculated accordingly (to maintain the ratio)
// Note: On the final iteration, num_keys and num_put_keys will be smaller
num_keys = std::min(keys_left*(FLAGS_readwritepercent + 99)/100, kpg);
num_put_keys = num_keys * (100-FLAGS_readwritepercent)
/ FLAGS_readwritepercent;
// This will break the loop when duration is complete
if (duration.Done(num_keys + num_put_keys)) {
break;
}
// A quick check to make sure our formula doesn't break on edge cases
assert(num_keys >= 1);
assert(num_keys + num_put_keys <= keys_left);
// Apply the MultiGet operations
found += MultiGetRandom(options, num_keys, thread->rand, FLAGS_num, "");
++multigets_done;
reads_done+=num_keys;
thread->stats.FinishedSingleOp(db_);
// Now do the puts
int i;
long long k;
for(i=0; i<num_put_keys; ++i) {
k = thread->rand.Next() % FLAGS_num;
unique_ptr<char []> key = GenerateKeyFromInt(k);
Status s = db_->Put(write_options_, key.get(),
gen.Generate(value_size_));
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
exit(1);
}
writes_done++;
thread->stats.FinishedSingleOp(db_);
}
keys_left -= (num_keys + num_put_keys);
}
char msg[100];
snprintf(msg, sizeof(msg),
"( reads:%ld writes:%ld total:%lld multiget_ops:%ld found:%ld)",
reads_done, writes_done, readwrites_, multigets_done, found);
thread->stats.AddMessage(msg);
}
//
// Read-modify-write for random keys
void UpdateRandom(ThreadState* thread) {
ReadOptions options(FLAGS_verify_checksum, true);
RandomGenerator gen;
std::string value;
long long found = 0;
Duration duration(FLAGS_duration, readwrites_);
// the number of iterations is the larger of read_ or write_
while (!duration.Done(1)) {
const long long k = thread->rand.Next() % FLAGS_num;
unique_ptr<char []> key = GenerateKeyFromInt(k);
if (FLAGS_use_snapshot) {
options.snapshot = db_->GetSnapshot();
}
if (FLAGS_get_approx) {
char key2[100];
snprintf(key2, sizeof(key2), "%016lld", k + 1);
Slice skey2(key2);
Slice skey(key2);
Range range(skey, skey2);
uint64_t sizes;
db_->GetApproximateSizes(&range, 1, &sizes);
}
if (db_->Get(options, key.get(), &value).ok()) {
found++;
}
if (FLAGS_use_snapshot) {
db_->ReleaseSnapshot(options.snapshot);
}
Status s = db_->Put(write_options_, key.get(), gen.Generate(value_size_));
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
exit(1);
}
thread->stats.FinishedSingleOp(db_);
}
char msg[100];
snprintf(msg, sizeof(msg),
"( updates:%lld found:%lld)", readwrites_, found);
thread->stats.AddMessage(msg);
}
// Read-modify-write for random keys.
// Each operation causes the key grow by value_size (simulating an append).
// Generally used for benchmarking against merges of similar type
void AppendRandom(ThreadState* thread) {
ReadOptions options(FLAGS_verify_checksum, true);
RandomGenerator gen;
std::string value;
long found = 0;
// The number of iterations is the larger of read_ or write_
Duration duration(FLAGS_duration, readwrites_);
while (!duration.Done(1)) {
const long long k = thread->rand.Next() % FLAGS_num;
unique_ptr<char []> key = GenerateKeyFromInt(k);
if (FLAGS_use_snapshot) {
options.snapshot = db_->GetSnapshot();
}
if (FLAGS_get_approx) {
char key2[100];
snprintf(key2, sizeof(key2), "%016lld", k + 1);
Slice skey2(key2);
Slice skey(key2);
Range range(skey, skey2);
uint64_t sizes;
db_->GetApproximateSizes(&range, 1, &sizes);
}
// Get the existing value
if (db_->Get(options, key.get(), &value).ok()) {
found++;
} else {
// If not existing, then just assume an empty string of data
value.clear();
}
if (FLAGS_use_snapshot) {
db_->ReleaseSnapshot(options.snapshot);
}
// Update the value (by appending data)
Slice operand = gen.Generate(value_size_);
if (value.size() > 0) {
// Use a delimeter to match the semantics for StringAppendOperator
value.append(1,',');
}
value.append(operand.data(), operand.size());
// Write back to the database
Status s = db_->Put(write_options_, key.get(), value);
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
exit(1);
}
thread->stats.FinishedSingleOp(db_);
}
char msg[100];
snprintf(msg, sizeof(msg), "( updates:%lld found:%ld)", readwrites_, found);
thread->stats.AddMessage(msg);
}
// Read-modify-write for random keys (using MergeOperator)
// The merge operator to use should be defined by FLAGS_merge_operator
// Adjust FLAGS_value_size so that the keys are reasonable for this operator
// Assumes that the merge operator is non-null (i.e.: is well-defined)
//
// For example, use FLAGS_merge_operator="uint64add" and FLAGS_value_size=8
// to simulate random additions over 64-bit integers using merge.
//
// The number of merges on the same key can be controlled by adjusting
// FLAGS_merge_keys.
void MergeRandom(ThreadState* thread) {
RandomGenerator gen;
// The number of iterations is the larger of read_ or write_
Duration duration(FLAGS_duration, readwrites_);
while (!duration.Done(1)) {
const long long k = thread->rand.Next() % merge_keys_;
unique_ptr<char []> key = GenerateKeyFromInt(k);
Status s = db_->Merge(write_options_, key.get(),
gen.Generate(value_size_));
if (!s.ok()) {
fprintf(stderr, "merge error: %s\n", s.ToString().c_str());
exit(1);
}
thread->stats.FinishedSingleOp(db_);
}
// Print some statistics
char msg[100];
snprintf(msg, sizeof(msg), "( updates:%lld)", readwrites_);
thread->stats.AddMessage(msg);
}
// Read and merge random keys. The amount of reads and merges are controlled
// by adjusting FLAGS_num and FLAGS_mergereadpercent. The number of distinct
// keys (and thus also the number of reads and merges on the same key) can be
// adjusted with FLAGS_merge_keys.
//
// As with MergeRandom, the merge operator to use should be defined by
// FLAGS_merge_operator.
void ReadRandomMergeRandom(ThreadState* thread) {
ReadOptions options(FLAGS_verify_checksum, true);
RandomGenerator gen;
std::string value;
long long num_hits = 0;
long long num_gets = 0;
long long num_merges = 0;
size_t max_length = 0;
// the number of iterations is the larger of read_ or write_
Duration duration(FLAGS_duration, readwrites_);
while (!duration.Done(1)) {
const long long k = thread->rand.Next() % merge_keys_;
unique_ptr<char []> key = GenerateKeyFromInt(k);
bool do_merge = int(thread->rand.Next() % 100) < FLAGS_mergereadpercent;
if (do_merge) {
Status s = db_->Merge(write_options_, key.get(),
gen.Generate(value_size_));
if (!s.ok()) {
fprintf(stderr, "merge error: %s\n", s.ToString().c_str());
exit(1);
}
num_merges++;
} else {
Status s = db_->Get(options, key.get(), &value);
if (value.length() > max_length)
max_length = value.length();
if (!s.ok() && !s.IsNotFound()) {
fprintf(stderr, "get error: %s\n", s.ToString().c_str());
// we continue after error rather than exiting so that we can
// find more errors if any
} else if (!s.IsNotFound()) {
num_hits++;
}
num_gets++;
}
thread->stats.FinishedSingleOp(db_);
}
char msg[100];
snprintf(msg, sizeof(msg),
"(reads:%lld merges:%lld total:%lld hits:%lld maxlength:%zu)",
num_gets, num_merges, readwrites_, num_hits, max_length);
thread->stats.AddMessage(msg);
}
void Compact(ThreadState* thread) {
db_->CompactRange(nullptr, nullptr);
}
void PrintStats(const char* key) {
std::string stats;
if (!db_->GetProperty(key, &stats)) {
stats = "(failed)";
}
fprintf(stdout, "\n%s\n", stats.c_str());
}
static void WriteToFile(void* arg, const char* buf, int n) {
reinterpret_cast<WritableFile*>(arg)->Append(Slice(buf, n));
}
void HeapProfile() {
char fname[100];
EnvOptions soptions;
snprintf(fname, sizeof(fname), "%s/heap-%04d", FLAGS_db.c_str(),
++heap_counter_);
unique_ptr<WritableFile> file;
Status s = FLAGS_env->NewWritableFile(fname, &file, soptions);
if (!s.ok()) {
fprintf(stderr, "%s\n", s.ToString().c_str());
return;
}
bool ok = port::GetHeapProfile(WriteToFile, file.get());
if (!ok) {
fprintf(stderr, "heap profiling not supported\n");
FLAGS_env->DeleteFile(fname);
}
}
};
} // namespace rocksdb
int main(int argc, char** argv) {
rocksdb::InstallStackTraceHandler();
google::SetUsageMessage(std::string("\nUSAGE:\n") + std::string(argv[0]) +
" [OPTIONS]...");
google::ParseCommandLineFlags(&argc, &argv, true);
FLAGS_compaction_style_e = (rocksdb::CompactionStyle) FLAGS_compaction_style;
if (FLAGS_statistics) {
dbstats = rocksdb::CreateDBStatistics();
}
std::vector<std::string> fanout =
rocksdb::stringSplit(FLAGS_max_bytes_for_level_multiplier_additional, ',');
for (unsigned int j= 0; j < fanout.size(); j++) {
FLAGS_max_bytes_for_level_multiplier_additional_v.push_back(
std::stoi(fanout[j]));
}
FLAGS_compression_type_e =
StringToCompressionType(FLAGS_compression_type.c_str());
if (!FLAGS_hdfs.empty()) {
FLAGS_env = new rocksdb::HdfsEnv(FLAGS_hdfs);
}
if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "NONE"))
FLAGS_compaction_fadvice_e = rocksdb::Options::NONE;
else if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "NORMAL"))
FLAGS_compaction_fadvice_e = rocksdb::Options::NORMAL;
else if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "SEQUENTIAL"))
FLAGS_compaction_fadvice_e = rocksdb::Options::SEQUENTIAL;
else if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "WILLNEED"))
FLAGS_compaction_fadvice_e = rocksdb::Options::WILLNEED;
else {
fprintf(stdout, "Unknown compaction fadvice:%s\n",
FLAGS_compaction_fadvice.c_str());
}
FLAGS_rep_factory = StringToRepFactory(FLAGS_memtablerep.c_str());
// The number of background threads should be at least as much the
// max number of concurrent compactions.
FLAGS_env->SetBackgroundThreads(FLAGS_max_background_compactions);
// Choose a location for the test database if none given with --db=<path>
if (FLAGS_db.empty()) {
std::string default_db_path;
rocksdb::Env::Default()->GetTestDirectory(&default_db_path);
default_db_path += "/dbbench";
FLAGS_db = default_db_path;
}
rocksdb::Benchmark benchmark;
benchmark.Run();
return 0;
}