rocksdb/db/db_test.cc
sdong 7508175558 Introduce options.check_flush_compaction_key_order (#7467)
Summary:
Introduce an new option options.check_flush_compaction_key_order, by default set to true, which checks key order of flush and compaction, and fail the operation if the order is violated.
Also did minor refactor hash checking code, which consolidates the hashing logic to a vlidation class, where the key ordering logic is added.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/7467

Test Plan: Add unit tests to validate the check can catch reordering in flush and compaction, and can be properly disabled.

Reviewed By: riversand963

Differential Revision: D24010683

fbshipit-source-id: 8dd6292d2cda8006054e9ded7cfa4bf405f0527c
2020-10-01 10:10:26 -07:00

6743 lines
226 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
// Introduction of SyncPoint effectively disabled building and running this test
// in Release build.
// which is a pity, it is a good test
#include <fcntl.h>
#include <algorithm>
#include <set>
#include <thread>
#include <unordered_set>
#include <utility>
#ifndef OS_WIN
#include <unistd.h>
#endif
#ifdef OS_SOLARIS
#include <alloca.h>
#endif
#include "cache/lru_cache.h"
#include "db/blob/blob_index.h"
#include "db/db_impl/db_impl.h"
#include "db/db_test_util.h"
#include "db/dbformat.h"
#include "db/job_context.h"
#include "db/version_set.h"
#include "db/write_batch_internal.h"
#include "env/mock_env.h"
#include "file/filename.h"
#include "memtable/hash_linklist_rep.h"
#include "monitoring/thread_status_util.h"
#include "port/port.h"
#include "port/stack_trace.h"
#include "rocksdb/cache.h"
#include "rocksdb/compaction_filter.h"
#include "rocksdb/convenience.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/experimental.h"
#include "rocksdb/filter_policy.h"
#include "rocksdb/options.h"
#include "rocksdb/perf_context.h"
#include "rocksdb/slice.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/snapshot.h"
#include "rocksdb/table.h"
#include "rocksdb/table_properties.h"
#include "rocksdb/thread_status.h"
#include "rocksdb/utilities/checkpoint.h"
#include "rocksdb/utilities/optimistic_transaction_db.h"
#include "rocksdb/utilities/write_batch_with_index.h"
#include "table/mock_table.h"
#include "table/scoped_arena_iterator.h"
#include "test_util/sync_point.h"
#include "test_util/testharness.h"
#include "test_util/testutil.h"
#include "util/compression.h"
#include "util/mutexlock.h"
#include "util/random.h"
#include "util/rate_limiter.h"
#include "util/string_util.h"
#include "utilities/merge_operators.h"
namespace ROCKSDB_NAMESPACE {
// Note that whole DBTest and its child classes disable fsync on files
// and directories for speed.
// If fsync needs to be covered in a test, put it in other places.
class DBTest : public DBTestBase {
public:
DBTest() : DBTestBase("/db_test", /*env_do_fsync=*/false) {}
};
class DBTestWithParam
: public DBTest,
public testing::WithParamInterface<std::tuple<uint32_t, bool>> {
public:
DBTestWithParam() {
max_subcompactions_ = std::get<0>(GetParam());
exclusive_manual_compaction_ = std::get<1>(GetParam());
}
// Required if inheriting from testing::WithParamInterface<>
static void SetUpTestCase() {}
static void TearDownTestCase() {}
uint32_t max_subcompactions_;
bool exclusive_manual_compaction_;
};
TEST_F(DBTest, MockEnvTest) {
std::unique_ptr<MockEnv> env{new MockEnv(Env::Default())};
Options options;
options.create_if_missing = true;
options.env = env.get();
DB* db;
const Slice keys[] = {Slice("aaa"), Slice("bbb"), Slice("ccc")};
const Slice vals[] = {Slice("foo"), Slice("bar"), Slice("baz")};
ASSERT_OK(DB::Open(options, "/dir/db", &db));
for (size_t i = 0; i < 3; ++i) {
ASSERT_OK(db->Put(WriteOptions(), keys[i], vals[i]));
}
for (size_t i = 0; i < 3; ++i) {
std::string res;
ASSERT_OK(db->Get(ReadOptions(), keys[i], &res));
ASSERT_TRUE(res == vals[i]);
}
Iterator* iterator = db->NewIterator(ReadOptions());
iterator->SeekToFirst();
for (size_t i = 0; i < 3; ++i) {
ASSERT_TRUE(iterator->Valid());
ASSERT_TRUE(keys[i] == iterator->key());
ASSERT_TRUE(vals[i] == iterator->value());
iterator->Next();
}
ASSERT_TRUE(!iterator->Valid());
delete iterator;
// TEST_FlushMemTable() is not supported in ROCKSDB_LITE
#ifndef ROCKSDB_LITE
DBImpl* dbi = static_cast_with_check<DBImpl>(db);
ASSERT_OK(dbi->TEST_FlushMemTable());
for (size_t i = 0; i < 3; ++i) {
std::string res;
ASSERT_OK(db->Get(ReadOptions(), keys[i], &res));
ASSERT_TRUE(res == vals[i]);
}
#endif // ROCKSDB_LITE
delete db;
}
// NewMemEnv returns nullptr in ROCKSDB_LITE since class InMemoryEnv isn't
// defined.
#ifndef ROCKSDB_LITE
TEST_F(DBTest, MemEnvTest) {
std::unique_ptr<Env> env{NewMemEnv(Env::Default())};
Options options;
options.create_if_missing = true;
options.env = env.get();
DB* db;
const Slice keys[] = {Slice("aaa"), Slice("bbb"), Slice("ccc")};
const Slice vals[] = {Slice("foo"), Slice("bar"), Slice("baz")};
ASSERT_OK(DB::Open(options, "/dir/db", &db));
for (size_t i = 0; i < 3; ++i) {
ASSERT_OK(db->Put(WriteOptions(), keys[i], vals[i]));
}
for (size_t i = 0; i < 3; ++i) {
std::string res;
ASSERT_OK(db->Get(ReadOptions(), keys[i], &res));
ASSERT_TRUE(res == vals[i]);
}
Iterator* iterator = db->NewIterator(ReadOptions());
iterator->SeekToFirst();
for (size_t i = 0; i < 3; ++i) {
ASSERT_TRUE(iterator->Valid());
ASSERT_TRUE(keys[i] == iterator->key());
ASSERT_TRUE(vals[i] == iterator->value());
iterator->Next();
}
ASSERT_TRUE(!iterator->Valid());
delete iterator;
DBImpl* dbi = static_cast_with_check<DBImpl>(db);
ASSERT_OK(dbi->TEST_FlushMemTable());
for (size_t i = 0; i < 3; ++i) {
std::string res;
ASSERT_OK(db->Get(ReadOptions(), keys[i], &res));
ASSERT_TRUE(res == vals[i]);
}
delete db;
options.create_if_missing = false;
ASSERT_OK(DB::Open(options, "/dir/db", &db));
for (size_t i = 0; i < 3; ++i) {
std::string res;
ASSERT_OK(db->Get(ReadOptions(), keys[i], &res));
ASSERT_TRUE(res == vals[i]);
}
delete db;
}
#endif // ROCKSDB_LITE
TEST_F(DBTest, WriteEmptyBatch) {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000;
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "foo", "bar"));
WriteOptions wo;
wo.sync = true;
wo.disableWAL = false;
WriteBatch empty_batch;
ASSERT_OK(dbfull()->Write(wo, &empty_batch));
// make sure we can re-open it.
ASSERT_OK(TryReopenWithColumnFamilies({"default", "pikachu"}, options));
ASSERT_EQ("bar", Get(1, "foo"));
}
TEST_F(DBTest, SkipDelay) {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000;
CreateAndReopenWithCF({"pikachu"}, options);
for (bool sync : {true, false}) {
for (bool disableWAL : {true, false}) {
if (sync && disableWAL) {
// sync and disableWAL is incompatible.
continue;
}
// Use a small number to ensure a large delay that is still effective
// when we do Put
// TODO(myabandeh): this is time dependent and could potentially make
// the test flaky
auto token = dbfull()->TEST_write_controler().GetDelayToken(1);
std::atomic<int> sleep_count(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::DelayWrite:Sleep",
[&](void* /*arg*/) { sleep_count.fetch_add(1); });
std::atomic<int> wait_count(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::DelayWrite:Wait",
[&](void* /*arg*/) { wait_count.fetch_add(1); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
WriteOptions wo;
wo.sync = sync;
wo.disableWAL = disableWAL;
wo.no_slowdown = true;
dbfull()->Put(wo, "foo", "bar");
// We need the 2nd write to trigger delay. This is because delay is
// estimated based on the last write size which is 0 for the first write.
ASSERT_NOK(dbfull()->Put(wo, "foo2", "bar2"));
ASSERT_GE(sleep_count.load(), 0);
ASSERT_GE(wait_count.load(), 0);
token.reset();
token = dbfull()->TEST_write_controler().GetDelayToken(1000000000);
wo.no_slowdown = false;
ASSERT_OK(dbfull()->Put(wo, "foo3", "bar3"));
ASSERT_GE(sleep_count.load(), 1);
token.reset();
}
}
}
TEST_F(DBTest, MixedSlowdownOptions) {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000;
CreateAndReopenWithCF({"pikachu"}, options);
std::vector<port::Thread> threads;
std::atomic<int> thread_num(0);
std::function<void()> write_slowdown_func = [&]() {
int a = thread_num.fetch_add(1);
std::string key = "foo" + std::to_string(a);
WriteOptions wo;
wo.no_slowdown = false;
ASSERT_OK(dbfull()->Put(wo, key, "bar"));
};
std::function<void()> write_no_slowdown_func = [&]() {
int a = thread_num.fetch_add(1);
std::string key = "foo" + std::to_string(a);
WriteOptions wo;
wo.no_slowdown = true;
ASSERT_NOK(dbfull()->Put(wo, key, "bar"));
};
// Use a small number to ensure a large delay that is still effective
// when we do Put
// TODO(myabandeh): this is time dependent and could potentially make
// the test flaky
auto token = dbfull()->TEST_write_controler().GetDelayToken(1);
std::atomic<int> sleep_count(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::DelayWrite:BeginWriteStallDone", [&](void* /*arg*/) {
sleep_count.fetch_add(1);
if (threads.empty()) {
for (int i = 0; i < 2; ++i) {
threads.emplace_back(write_slowdown_func);
}
for (int i = 0; i < 2; ++i) {
threads.emplace_back(write_no_slowdown_func);
}
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
WriteOptions wo;
wo.sync = false;
wo.disableWAL = false;
wo.no_slowdown = false;
dbfull()->Put(wo, "foo", "bar");
// We need the 2nd write to trigger delay. This is because delay is
// estimated based on the last write size which is 0 for the first write.
ASSERT_OK(dbfull()->Put(wo, "foo2", "bar2"));
token.reset();
for (auto& t : threads) {
t.join();
}
ASSERT_GE(sleep_count.load(), 1);
wo.no_slowdown = true;
ASSERT_OK(dbfull()->Put(wo, "foo3", "bar"));
}
TEST_F(DBTest, MixedSlowdownOptionsInQueue) {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000;
CreateAndReopenWithCF({"pikachu"}, options);
std::vector<port::Thread> threads;
std::atomic<int> thread_num(0);
std::function<void()> write_no_slowdown_func = [&]() {
int a = thread_num.fetch_add(1);
std::string key = "foo" + std::to_string(a);
WriteOptions wo;
wo.no_slowdown = true;
ASSERT_NOK(dbfull()->Put(wo, key, "bar"));
};
// Use a small number to ensure a large delay that is still effective
// when we do Put
// TODO(myabandeh): this is time dependent and could potentially make
// the test flaky
auto token = dbfull()->TEST_write_controler().GetDelayToken(1);
std::atomic<int> sleep_count(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::DelayWrite:Sleep", [&](void* /*arg*/) {
sleep_count.fetch_add(1);
if (threads.empty()) {
for (int i = 0; i < 2; ++i) {
threads.emplace_back(write_no_slowdown_func);
}
// Sleep for 2s to allow the threads to insert themselves into the
// write queue
env_->SleepForMicroseconds(3000000ULL);
}
});
std::atomic<int> wait_count(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::DelayWrite:Wait",
[&](void* /*arg*/) { wait_count.fetch_add(1); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
WriteOptions wo;
wo.sync = false;
wo.disableWAL = false;
wo.no_slowdown = false;
dbfull()->Put(wo, "foo", "bar");
// We need the 2nd write to trigger delay. This is because delay is
// estimated based on the last write size which is 0 for the first write.
ASSERT_OK(dbfull()->Put(wo, "foo2", "bar2"));
token.reset();
for (auto& t : threads) {
t.join();
}
ASSERT_EQ(sleep_count.load(), 1);
ASSERT_GE(wait_count.load(), 0);
}
TEST_F(DBTest, MixedSlowdownOptionsStop) {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000;
CreateAndReopenWithCF({"pikachu"}, options);
std::vector<port::Thread> threads;
std::atomic<int> thread_num(0);
std::function<void()> write_slowdown_func = [&]() {
int a = thread_num.fetch_add(1);
std::string key = "foo" + std::to_string(a);
WriteOptions wo;
wo.no_slowdown = false;
ASSERT_OK(dbfull()->Put(wo, key, "bar"));
};
std::function<void()> write_no_slowdown_func = [&]() {
int a = thread_num.fetch_add(1);
std::string key = "foo" + std::to_string(a);
WriteOptions wo;
wo.no_slowdown = true;
ASSERT_NOK(dbfull()->Put(wo, key, "bar"));
};
std::function<void()> wakeup_writer = [&]() {
dbfull()->mutex_.Lock();
dbfull()->bg_cv_.SignalAll();
dbfull()->mutex_.Unlock();
};
// Use a small number to ensure a large delay that is still effective
// when we do Put
// TODO(myabandeh): this is time dependent and could potentially make
// the test flaky
auto token = dbfull()->TEST_write_controler().GetStopToken();
std::atomic<int> wait_count(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::DelayWrite:Wait", [&](void* /*arg*/) {
wait_count.fetch_add(1);
if (threads.empty()) {
for (int i = 0; i < 2; ++i) {
threads.emplace_back(write_slowdown_func);
}
for (int i = 0; i < 2; ++i) {
threads.emplace_back(write_no_slowdown_func);
}
// Sleep for 2s to allow the threads to insert themselves into the
// write queue
env_->SleepForMicroseconds(3000000ULL);
}
token.reset();
threads.emplace_back(wakeup_writer);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
WriteOptions wo;
wo.sync = false;
wo.disableWAL = false;
wo.no_slowdown = false;
dbfull()->Put(wo, "foo", "bar");
// We need the 2nd write to trigger delay. This is because delay is
// estimated based on the last write size which is 0 for the first write.
ASSERT_OK(dbfull()->Put(wo, "foo2", "bar2"));
token.reset();
for (auto& t : threads) {
t.join();
}
ASSERT_GE(wait_count.load(), 1);
wo.no_slowdown = true;
ASSERT_OK(dbfull()->Put(wo, "foo3", "bar"));
}
#ifndef ROCKSDB_LITE
TEST_F(DBTest, LevelLimitReopen) {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu"}, options);
const std::string value(1024 * 1024, ' ');
int i = 0;
while (NumTableFilesAtLevel(2, 1) == 0) {
ASSERT_OK(Put(1, Key(i++), value));
}
options.num_levels = 1;
options.max_bytes_for_level_multiplier_additional.resize(1, 1);
Status s = TryReopenWithColumnFamilies({"default", "pikachu"}, options);
ASSERT_EQ(s.IsInvalidArgument(), true);
ASSERT_EQ(s.ToString(),
"Invalid argument: db has more levels than options.num_levels");
options.num_levels = 10;
options.max_bytes_for_level_multiplier_additional.resize(10, 1);
ASSERT_OK(TryReopenWithColumnFamilies({"default", "pikachu"}, options));
}
#endif // ROCKSDB_LITE
TEST_F(DBTest, PutSingleDeleteGet) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_OK(Put(1, "foo2", "v2"));
ASSERT_EQ("v2", Get(1, "foo2"));
ASSERT_OK(SingleDelete(1, "foo"));
ASSERT_EQ("NOT_FOUND", Get(1, "foo"));
// Skip FIFO and universal compaction beccause they do not apply to the test
// case. Skip MergePut because single delete does not get removed when it
// encounters a merge.
} while (ChangeOptions(kSkipFIFOCompaction | kSkipUniversalCompaction |
kSkipMergePut));
}
TEST_F(DBTest, ReadFromPersistedTier) {
do {
Random rnd(301);
Options options = CurrentOptions();
for (int disableWAL = 0; disableWAL <= 1; ++disableWAL) {
CreateAndReopenWithCF({"pikachu"}, options);
WriteOptions wopt;
wopt.disableWAL = (disableWAL == 1);
// 1st round: put but not flush
ASSERT_OK(db_->Put(wopt, handles_[1], "foo", "first"));
ASSERT_OK(db_->Put(wopt, handles_[1], "bar", "one"));
ASSERT_EQ("first", Get(1, "foo"));
ASSERT_EQ("one", Get(1, "bar"));
// Read directly from persited data.
ReadOptions ropt;
ropt.read_tier = kPersistedTier;
std::string value;
if (wopt.disableWAL) {
// as data has not yet being flushed, we expect not found.
ASSERT_TRUE(db_->Get(ropt, handles_[1], "foo", &value).IsNotFound());
ASSERT_TRUE(db_->Get(ropt, handles_[1], "bar", &value).IsNotFound());
} else {
ASSERT_OK(db_->Get(ropt, handles_[1], "foo", &value));
ASSERT_OK(db_->Get(ropt, handles_[1], "bar", &value));
}
// Multiget
std::vector<ColumnFamilyHandle*> multiget_cfs;
multiget_cfs.push_back(handles_[1]);
multiget_cfs.push_back(handles_[1]);
std::vector<Slice> multiget_keys;
multiget_keys.push_back("foo");
multiget_keys.push_back("bar");
std::vector<std::string> multiget_values;
auto statuses =
db_->MultiGet(ropt, multiget_cfs, multiget_keys, &multiget_values);
if (wopt.disableWAL) {
ASSERT_TRUE(statuses[0].IsNotFound());
ASSERT_TRUE(statuses[1].IsNotFound());
} else {
ASSERT_OK(statuses[0]);
ASSERT_OK(statuses[1]);
}
// 2nd round: flush and put a new value in memtable.
ASSERT_OK(Flush(1));
ASSERT_OK(db_->Put(wopt, handles_[1], "rocksdb", "hello"));
// once the data has been flushed, we are able to get the
// data when kPersistedTier is used.
ASSERT_TRUE(db_->Get(ropt, handles_[1], "foo", &value).ok());
ASSERT_EQ(value, "first");
ASSERT_TRUE(db_->Get(ropt, handles_[1], "bar", &value).ok());
ASSERT_EQ(value, "one");
if (wopt.disableWAL) {
ASSERT_TRUE(
db_->Get(ropt, handles_[1], "rocksdb", &value).IsNotFound());
} else {
ASSERT_OK(db_->Get(ropt, handles_[1], "rocksdb", &value));
ASSERT_EQ(value, "hello");
}
// Expect same result in multiget
multiget_cfs.push_back(handles_[1]);
multiget_keys.push_back("rocksdb");
statuses =
db_->MultiGet(ropt, multiget_cfs, multiget_keys, &multiget_values);
ASSERT_TRUE(statuses[0].ok());
ASSERT_EQ("first", multiget_values[0]);
ASSERT_TRUE(statuses[1].ok());
ASSERT_EQ("one", multiget_values[1]);
if (wopt.disableWAL) {
ASSERT_TRUE(statuses[2].IsNotFound());
} else {
ASSERT_OK(statuses[2]);
}
// 3rd round: delete and flush
ASSERT_OK(db_->Delete(wopt, handles_[1], "foo"));
Flush(1);
ASSERT_OK(db_->Delete(wopt, handles_[1], "bar"));
ASSERT_TRUE(db_->Get(ropt, handles_[1], "foo", &value).IsNotFound());
if (wopt.disableWAL) {
// Still expect finding the value as its delete has not yet being
// flushed.
ASSERT_TRUE(db_->Get(ropt, handles_[1], "bar", &value).ok());
ASSERT_EQ(value, "one");
} else {
ASSERT_TRUE(db_->Get(ropt, handles_[1], "bar", &value).IsNotFound());
}
ASSERT_TRUE(db_->Get(ropt, handles_[1], "rocksdb", &value).ok());
ASSERT_EQ(value, "hello");
statuses =
db_->MultiGet(ropt, multiget_cfs, multiget_keys, &multiget_values);
ASSERT_TRUE(statuses[0].IsNotFound());
if (wopt.disableWAL) {
ASSERT_TRUE(statuses[1].ok());
ASSERT_EQ("one", multiget_values[1]);
} else {
ASSERT_TRUE(statuses[1].IsNotFound());
}
ASSERT_TRUE(statuses[2].ok());
ASSERT_EQ("hello", multiget_values[2]);
if (wopt.disableWAL == 0) {
DestroyAndReopen(options);
}
}
} while (ChangeOptions());
}
TEST_F(DBTest, SingleDeleteFlush) {
// Test to check whether flushing preserves a single delete hidden
// behind a put.
do {
Random rnd(301);
Options options = CurrentOptions();
options.disable_auto_compactions = true;
CreateAndReopenWithCF({"pikachu"}, options);
// Put values on second level (so that they will not be in the same
// compaction as the other operations.
Put(1, "foo", "first");
Put(1, "bar", "one");
ASSERT_OK(Flush(1));
MoveFilesToLevel(2, 1);
// (Single) delete hidden by a put
SingleDelete(1, "foo");
Put(1, "foo", "second");
Delete(1, "bar");
Put(1, "bar", "two");
ASSERT_OK(Flush(1));
SingleDelete(1, "foo");
Delete(1, "bar");
ASSERT_OK(Flush(1));
dbfull()->CompactRange(CompactRangeOptions(), handles_[1], nullptr,
nullptr);
ASSERT_EQ("NOT_FOUND", Get(1, "bar"));
ASSERT_EQ("NOT_FOUND", Get(1, "foo"));
// Skip FIFO and universal compaction beccause they do not apply to the test
// case. Skip MergePut because single delete does not get removed when it
// encounters a merge.
} while (ChangeOptions(kSkipFIFOCompaction | kSkipUniversalCompaction |
kSkipMergePut));
}
TEST_F(DBTest, SingleDeletePutFlush) {
// Single deletes that encounter the matching put in a flush should get
// removed.
do {
Random rnd(301);
Options options = CurrentOptions();
options.disable_auto_compactions = true;
CreateAndReopenWithCF({"pikachu"}, options);
Put(1, "foo", Slice());
Put(1, "a", Slice());
SingleDelete(1, "a");
ASSERT_OK(Flush(1));
ASSERT_EQ("[ ]", AllEntriesFor("a", 1));
// Skip FIFO and universal compaction beccause they do not apply to the test
// case. Skip MergePut because single delete does not get removed when it
// encounters a merge.
} while (ChangeOptions(kSkipFIFOCompaction | kSkipUniversalCompaction |
kSkipMergePut));
}
// Disable because not all platform can run it.
// It requires more than 9GB memory to run it, With single allocation
// of more than 3GB.
TEST_F(DBTest, DISABLED_SanitizeVeryVeryLargeValue) {
const size_t kValueSize = 4 * size_t{1024 * 1024 * 1024}; // 4GB value
std::string raw(kValueSize, 'v');
Options options = CurrentOptions();
options.env = env_;
options.merge_operator = MergeOperators::CreatePutOperator();
options.write_buffer_size = 100000; // Small write buffer
options.paranoid_checks = true;
DestroyAndReopen(options);
ASSERT_OK(Put("boo", "v1"));
ASSERT_TRUE(Put("foo", raw).IsInvalidArgument());
ASSERT_TRUE(Merge("foo", raw).IsInvalidArgument());
WriteBatch wb;
ASSERT_TRUE(wb.Put("foo", raw).IsInvalidArgument());
ASSERT_TRUE(wb.Merge("foo", raw).IsInvalidArgument());
Slice value_slice = raw;
Slice key_slice = "foo";
SliceParts sp_key(&key_slice, 1);
SliceParts sp_value(&value_slice, 1);
ASSERT_TRUE(wb.Put(sp_key, sp_value).IsInvalidArgument());
ASSERT_TRUE(wb.Merge(sp_key, sp_value).IsInvalidArgument());
}
// Disable because not all platform can run it.
// It requires more than 9GB memory to run it, With single allocation
// of more than 3GB.
TEST_F(DBTest, DISABLED_VeryLargeValue) {
const size_t kValueSize = 3221225472u; // 3GB value
const size_t kKeySize = 8388608u; // 8MB key
std::string raw(kValueSize, 'v');
std::string key1(kKeySize, 'c');
std::string key2(kKeySize, 'd');
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000; // Small write buffer
options.paranoid_checks = true;
DestroyAndReopen(options);
ASSERT_OK(Put("boo", "v1"));
ASSERT_OK(Put("foo", "v1"));
ASSERT_OK(Put(key1, raw));
raw[0] = 'w';
ASSERT_OK(Put(key2, raw));
dbfull()->TEST_WaitForFlushMemTable();
#ifndef ROCKSDB_LITE
ASSERT_EQ(1, NumTableFilesAtLevel(0));
#endif // !ROCKSDB_LITE
std::string value;
Status s = db_->Get(ReadOptions(), key1, &value);
ASSERT_OK(s);
ASSERT_EQ(kValueSize, value.size());
ASSERT_EQ('v', value[0]);
s = db_->Get(ReadOptions(), key2, &value);
ASSERT_OK(s);
ASSERT_EQ(kValueSize, value.size());
ASSERT_EQ('w', value[0]);
// Compact all files.
Flush();
db_->CompactRange(CompactRangeOptions(), nullptr, nullptr);
// Check DB is not in read-only state.
ASSERT_OK(Put("boo", "v1"));
s = db_->Get(ReadOptions(), key1, &value);
ASSERT_OK(s);
ASSERT_EQ(kValueSize, value.size());
ASSERT_EQ('v', value[0]);
s = db_->Get(ReadOptions(), key2, &value);
ASSERT_OK(s);
ASSERT_EQ(kValueSize, value.size());
ASSERT_EQ('w', value[0]);
}
TEST_F(DBTest, GetFromImmutableLayer) {
do {
Options options = CurrentOptions();
options.env = env_;
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_EQ("v1", Get(1, "foo"));
// Block sync calls
env_->delay_sstable_sync_.store(true, std::memory_order_release);
Put(1, "k1", std::string(100000, 'x')); // Fill memtable
Put(1, "k2", std::string(100000, 'y')); // Trigger flush
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_EQ("NOT_FOUND", Get(0, "foo"));
// Release sync calls
env_->delay_sstable_sync_.store(false, std::memory_order_release);
} while (ChangeOptions());
}
TEST_F(DBTest, GetLevel0Ordering) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
// Check that we process level-0 files in correct order. The code
// below generates two level-0 files where the earlier one comes
// before the later one in the level-0 file list since the earlier
// one has a smaller "smallest" key.
ASSERT_OK(Put(1, "bar", "b"));
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_OK(Flush(1));
ASSERT_OK(Put(1, "foo", "v2"));
ASSERT_OK(Flush(1));
ASSERT_EQ("v2", Get(1, "foo"));
} while (ChangeOptions());
}
TEST_F(DBTest, WrongLevel0Config) {
Options options = CurrentOptions();
Close();
ASSERT_OK(DestroyDB(dbname_, options));
options.level0_stop_writes_trigger = 1;
options.level0_slowdown_writes_trigger = 2;
options.level0_file_num_compaction_trigger = 3;
ASSERT_OK(DB::Open(options, dbname_, &db_));
}
#ifndef ROCKSDB_LITE
TEST_F(DBTest, GetOrderedByLevels) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "foo", "v1"));
Compact(1, "a", "z");
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_OK(Put(1, "foo", "v2"));
ASSERT_EQ("v2", Get(1, "foo"));
ASSERT_OK(Flush(1));
ASSERT_EQ("v2", Get(1, "foo"));
} while (ChangeOptions());
}
TEST_F(DBTest, GetPicksCorrectFile) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
// Arrange to have multiple files in a non-level-0 level.
ASSERT_OK(Put(1, "a", "va"));
Compact(1, "a", "b");
ASSERT_OK(Put(1, "x", "vx"));
Compact(1, "x", "y");
ASSERT_OK(Put(1, "f", "vf"));
Compact(1, "f", "g");
ASSERT_EQ("va", Get(1, "a"));
ASSERT_EQ("vf", Get(1, "f"));
ASSERT_EQ("vx", Get(1, "x"));
} while (ChangeOptions());
}
TEST_F(DBTest, GetEncountersEmptyLevel) {
do {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu"}, options);
// Arrange for the following to happen:
// * sstable A in level 0
// * nothing in level 1
// * sstable B in level 2
// Then do enough Get() calls to arrange for an automatic compaction
// of sstable A. A bug would cause the compaction to be marked as
// occurring at level 1 (instead of the correct level 0).
// Step 1: First place sstables in levels 0 and 2
Put(1, "a", "begin");
Put(1, "z", "end");
ASSERT_OK(Flush(1));
dbfull()->TEST_CompactRange(0, nullptr, nullptr, handles_[1]);
dbfull()->TEST_CompactRange(1, nullptr, nullptr, handles_[1]);
Put(1, "a", "begin");
Put(1, "z", "end");
ASSERT_OK(Flush(1));
ASSERT_GT(NumTableFilesAtLevel(0, 1), 0);
ASSERT_GT(NumTableFilesAtLevel(2, 1), 0);
// Step 2: clear level 1 if necessary.
dbfull()->TEST_CompactRange(1, nullptr, nullptr, handles_[1]);
ASSERT_EQ(NumTableFilesAtLevel(0, 1), 1);
ASSERT_EQ(NumTableFilesAtLevel(1, 1), 0);
ASSERT_EQ(NumTableFilesAtLevel(2, 1), 1);
// Step 3: read a bunch of times
for (int i = 0; i < 1000; i++) {
ASSERT_EQ("NOT_FOUND", Get(1, "missing"));
}
// Step 4: Wait for compaction to finish
dbfull()->TEST_WaitForCompact();
ASSERT_EQ(NumTableFilesAtLevel(0, 1), 1); // XXX
} while (ChangeOptions(kSkipUniversalCompaction | kSkipFIFOCompaction));
}
#endif // ROCKSDB_LITE
TEST_F(DBTest, FlushMultipleMemtable) {
do {
Options options = CurrentOptions();
WriteOptions writeOpt = WriteOptions();
writeOpt.disableWAL = true;
options.max_write_buffer_number = 4;
options.min_write_buffer_number_to_merge = 3;
options.max_write_buffer_size_to_maintain = -1;
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "foo", "v1"));
ASSERT_OK(Flush(1));
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "bar", "v1"));
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_EQ("v1", Get(1, "bar"));
ASSERT_OK(Flush(1));
} while (ChangeCompactOptions());
}
#ifndef ROCKSDB_LITE
TEST_F(DBTest, FlushSchedule) {
Options options = CurrentOptions();
options.disable_auto_compactions = true;
options.level0_stop_writes_trigger = 1 << 10;
options.level0_slowdown_writes_trigger = 1 << 10;
options.min_write_buffer_number_to_merge = 1;
options.max_write_buffer_size_to_maintain =
static_cast<int64_t>(options.write_buffer_size);
options.max_write_buffer_number = 2;
options.write_buffer_size = 120 * 1024;
CreateAndReopenWithCF({"pikachu"}, options);
std::vector<port::Thread> threads;
std::atomic<int> thread_num(0);
// each column family will have 5 thread, each thread generating 2 memtables.
// each column family should end up with 10 table files
std::function<void()> fill_memtable_func = [&]() {
int a = thread_num.fetch_add(1);
Random rnd(a);
WriteOptions wo;
// this should fill up 2 memtables
for (int k = 0; k < 5000; ++k) {
ASSERT_OK(db_->Put(wo, handles_[a & 1], rnd.RandomString(13), ""));
}
};
for (int i = 0; i < 10; ++i) {
threads.emplace_back(fill_memtable_func);
}
for (auto& t : threads) {
t.join();
}
auto default_tables = GetNumberOfSstFilesForColumnFamily(db_, "default");
auto pikachu_tables = GetNumberOfSstFilesForColumnFamily(db_, "pikachu");
ASSERT_LE(default_tables, static_cast<uint64_t>(10));
ASSERT_GT(default_tables, static_cast<uint64_t>(0));
ASSERT_LE(pikachu_tables, static_cast<uint64_t>(10));
ASSERT_GT(pikachu_tables, static_cast<uint64_t>(0));
}
#endif // ROCKSDB_LITE
namespace {
class KeepFilter : public CompactionFilter {
public:
bool Filter(int /*level*/, const Slice& /*key*/, const Slice& /*value*/,
std::string* /*new_value*/,
bool* /*value_changed*/) const override {
return false;
}
const char* Name() const override { return "KeepFilter"; }
};
class KeepFilterFactory : public CompactionFilterFactory {
public:
explicit KeepFilterFactory(bool check_context = false)
: check_context_(check_context) {}
std::unique_ptr<CompactionFilter> CreateCompactionFilter(
const CompactionFilter::Context& context) override {
if (check_context_) {
EXPECT_EQ(expect_full_compaction_.load(), context.is_full_compaction);
EXPECT_EQ(expect_manual_compaction_.load(), context.is_manual_compaction);
}
return std::unique_ptr<CompactionFilter>(new KeepFilter());
}
const char* Name() const override { return "KeepFilterFactory"; }
bool check_context_;
std::atomic_bool expect_full_compaction_;
std::atomic_bool expect_manual_compaction_;
};
class DelayFilter : public CompactionFilter {
public:
explicit DelayFilter(DBTestBase* d) : db_test(d) {}
bool Filter(int /*level*/, const Slice& /*key*/, const Slice& /*value*/,
std::string* /*new_value*/,
bool* /*value_changed*/) const override {
db_test->env_->MockSleepForMicroseconds(1000);
return true;
}
const char* Name() const override { return "DelayFilter"; }
private:
DBTestBase* db_test;
};
class DelayFilterFactory : public CompactionFilterFactory {
public:
explicit DelayFilterFactory(DBTestBase* d) : db_test(d) {}
std::unique_ptr<CompactionFilter> CreateCompactionFilter(
const CompactionFilter::Context& /*context*/) override {
return std::unique_ptr<CompactionFilter>(new DelayFilter(db_test));
}
const char* Name() const override { return "DelayFilterFactory"; }
private:
DBTestBase* db_test;
};
} // namespace
#ifndef ROCKSDB_LITE
static std::string CompressibleString(Random* rnd, int len) {
std::string r;
test::CompressibleString(rnd, 0.8, len, &r);
return r;
}
#endif // ROCKSDB_LITE
TEST_F(DBTest, FailMoreDbPaths) {
Options options = CurrentOptions();
options.db_paths.emplace_back(dbname_, 10000000);
options.db_paths.emplace_back(dbname_ + "_2", 1000000);
options.db_paths.emplace_back(dbname_ + "_3", 1000000);
options.db_paths.emplace_back(dbname_ + "_4", 1000000);
options.db_paths.emplace_back(dbname_ + "_5", 1000000);
ASSERT_TRUE(TryReopen(options).IsNotSupported());
}
void CheckColumnFamilyMeta(
const ColumnFamilyMetaData& cf_meta,
const std::vector<std::vector<FileMetaData>>& files_by_level,
uint64_t start_time, uint64_t end_time) {
ASSERT_EQ(cf_meta.name, kDefaultColumnFamilyName);
ASSERT_EQ(cf_meta.levels.size(), files_by_level.size());
uint64_t cf_size = 0;
size_t file_count = 0;
for (size_t i = 0; i < cf_meta.levels.size(); ++i) {
const auto& level_meta_from_cf = cf_meta.levels[i];
const auto& level_meta_from_files = files_by_level[i];
ASSERT_EQ(level_meta_from_cf.level, i);
ASSERT_EQ(level_meta_from_cf.files.size(), level_meta_from_files.size());
file_count += level_meta_from_cf.files.size();
uint64_t level_size = 0;
for (size_t j = 0; j < level_meta_from_cf.files.size(); ++j) {
const auto& file_meta_from_cf = level_meta_from_cf.files[j];
const auto& file_meta_from_files = level_meta_from_files[j];
level_size += file_meta_from_cf.size;
ASSERT_EQ(file_meta_from_cf.file_number,
file_meta_from_files.fd.GetNumber());
ASSERT_EQ(file_meta_from_cf.file_number,
TableFileNameToNumber(file_meta_from_cf.name));
ASSERT_EQ(file_meta_from_cf.size, file_meta_from_files.fd.file_size);
ASSERT_EQ(file_meta_from_cf.smallest_seqno,
file_meta_from_files.fd.smallest_seqno);
ASSERT_EQ(file_meta_from_cf.largest_seqno,
file_meta_from_files.fd.largest_seqno);
ASSERT_EQ(file_meta_from_cf.smallestkey,
file_meta_from_files.smallest.user_key().ToString());
ASSERT_EQ(file_meta_from_cf.largestkey,
file_meta_from_files.largest.user_key().ToString());
ASSERT_EQ(file_meta_from_cf.oldest_blob_file_number,
file_meta_from_files.oldest_blob_file_number);
ASSERT_EQ(file_meta_from_cf.oldest_ancester_time,
file_meta_from_files.oldest_ancester_time);
ASSERT_EQ(file_meta_from_cf.file_creation_time,
file_meta_from_files.file_creation_time);
ASSERT_GE(file_meta_from_cf.file_creation_time, start_time);
ASSERT_LE(file_meta_from_cf.file_creation_time, end_time);
ASSERT_GE(file_meta_from_cf.oldest_ancester_time, start_time);
ASSERT_LE(file_meta_from_cf.oldest_ancester_time, end_time);
}
ASSERT_EQ(level_meta_from_cf.size, level_size);
cf_size += level_size;
}
ASSERT_EQ(cf_meta.file_count, file_count);
ASSERT_EQ(cf_meta.size, cf_size);
}
void CheckLiveFilesMeta(
const std::vector<LiveFileMetaData>& live_file_meta,
const std::vector<std::vector<FileMetaData>>& files_by_level) {
size_t total_file_count = 0;
for (const auto& f : files_by_level) {
total_file_count += f.size();
}
ASSERT_EQ(live_file_meta.size(), total_file_count);
int level = 0;
int i = 0;
for (const auto& meta : live_file_meta) {
if (level != meta.level) {
level = meta.level;
i = 0;
}
ASSERT_LT(i, files_by_level[level].size());
const auto& expected_meta = files_by_level[level][i];
ASSERT_EQ(meta.column_family_name, kDefaultColumnFamilyName);
ASSERT_EQ(meta.file_number, expected_meta.fd.GetNumber());
ASSERT_EQ(meta.file_number, TableFileNameToNumber(meta.name));
ASSERT_EQ(meta.size, expected_meta.fd.file_size);
ASSERT_EQ(meta.smallest_seqno, expected_meta.fd.smallest_seqno);
ASSERT_EQ(meta.largest_seqno, expected_meta.fd.largest_seqno);
ASSERT_EQ(meta.smallestkey, expected_meta.smallest.user_key().ToString());
ASSERT_EQ(meta.largestkey, expected_meta.largest.user_key().ToString());
ASSERT_EQ(meta.oldest_blob_file_number,
expected_meta.oldest_blob_file_number);
++i;
}
}
#ifndef ROCKSDB_LITE
TEST_F(DBTest, MetaDataTest) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.disable_auto_compactions = true;
int64_t temp_time = 0;
options.env->GetCurrentTime(&temp_time);
uint64_t start_time = static_cast<uint64_t>(temp_time);
DestroyAndReopen(options);
Random rnd(301);
int key_index = 0;
for (int i = 0; i < 100; ++i) {
// Add a single blob reference to each file
std::string blob_index;
BlobIndex::EncodeBlob(&blob_index, /* blob_file_number */ i + 1000,
/* offset */ 1234, /* size */ 5678, kNoCompression);
WriteBatch batch;
ASSERT_OK(WriteBatchInternal::PutBlobIndex(&batch, 0, Key(key_index),
blob_index));
ASSERT_OK(dbfull()->Write(WriteOptions(), &batch));
++key_index;
// Fill up the rest of the file with random values.
GenerateNewFile(&rnd, &key_index, /* nowait */ true);
Flush();
}
std::vector<std::vector<FileMetaData>> files_by_level;
dbfull()->TEST_GetFilesMetaData(db_->DefaultColumnFamily(), &files_by_level);
options.env->GetCurrentTime(&temp_time);
uint64_t end_time = static_cast<uint64_t>(temp_time);
ColumnFamilyMetaData cf_meta;
db_->GetColumnFamilyMetaData(&cf_meta);
CheckColumnFamilyMeta(cf_meta, files_by_level, start_time, end_time);
std::vector<LiveFileMetaData> live_file_meta;
db_->GetLiveFilesMetaData(&live_file_meta);
CheckLiveFilesMeta(live_file_meta, files_by_level);
}
namespace {
void MinLevelHelper(DBTest* self, Options& options) {
Random rnd(301);
for (int num = 0; num < options.level0_file_num_compaction_trigger - 1;
num++) {
std::vector<std::string> values;
// Write 120KB (12 values, each 10K)
for (int i = 0; i < 12; i++) {
values.push_back(rnd.RandomString(10000));
ASSERT_OK(self->Put(DBTestBase::Key(i), values[i]));
}
self->dbfull()->TEST_WaitForFlushMemTable();
ASSERT_EQ(self->NumTableFilesAtLevel(0), num + 1);
}
// generate one more file in level-0, and should trigger level-0 compaction
std::vector<std::string> values;
for (int i = 0; i < 12; i++) {
values.push_back(rnd.RandomString(10000));
ASSERT_OK(self->Put(DBTestBase::Key(i), values[i]));
}
self->dbfull()->TEST_WaitForCompact();
ASSERT_EQ(self->NumTableFilesAtLevel(0), 0);
ASSERT_EQ(self->NumTableFilesAtLevel(1), 1);
}
// returns false if the calling-Test should be skipped
bool MinLevelToCompress(CompressionType& type, Options& options, int wbits,
int lev, int strategy) {
fprintf(stderr,
"Test with compression options : window_bits = %d, level = %d, "
"strategy = %d}\n",
wbits, lev, strategy);
options.write_buffer_size = 100 << 10; // 100KB
options.arena_block_size = 4096;
options.num_levels = 3;
options.level0_file_num_compaction_trigger = 3;
options.create_if_missing = true;
if (Snappy_Supported()) {
type = kSnappyCompression;
fprintf(stderr, "using snappy\n");
} else if (Zlib_Supported()) {
type = kZlibCompression;
fprintf(stderr, "using zlib\n");
} else if (BZip2_Supported()) {
type = kBZip2Compression;
fprintf(stderr, "using bzip2\n");
} else if (LZ4_Supported()) {
type = kLZ4Compression;
fprintf(stderr, "using lz4\n");
} else if (XPRESS_Supported()) {
type = kXpressCompression;
fprintf(stderr, "using xpress\n");
} else if (ZSTD_Supported()) {
type = kZSTD;
fprintf(stderr, "using ZSTD\n");
} else {
fprintf(stderr, "skipping test, compression disabled\n");
return false;
}
options.compression_per_level.resize(options.num_levels);
// do not compress L0
for (int i = 0; i < 1; i++) {
options.compression_per_level[i] = kNoCompression;
}
for (int i = 1; i < options.num_levels; i++) {
options.compression_per_level[i] = type;
}
return true;
}
} // namespace
TEST_F(DBTest, MinLevelToCompress1) {
Options options = CurrentOptions();
CompressionType type = kSnappyCompression;
if (!MinLevelToCompress(type, options, -14, -1, 0)) {
return;
}
Reopen(options);
MinLevelHelper(this, options);
// do not compress L0 and L1
for (int i = 0; i < 2; i++) {
options.compression_per_level[i] = kNoCompression;
}
for (int i = 2; i < options.num_levels; i++) {
options.compression_per_level[i] = type;
}
DestroyAndReopen(options);
MinLevelHelper(this, options);
}
TEST_F(DBTest, MinLevelToCompress2) {
Options options = CurrentOptions();
CompressionType type = kSnappyCompression;
if (!MinLevelToCompress(type, options, 15, -1, 0)) {
return;
}
Reopen(options);
MinLevelHelper(this, options);
// do not compress L0 and L1
for (int i = 0; i < 2; i++) {
options.compression_per_level[i] = kNoCompression;
}
for (int i = 2; i < options.num_levels; i++) {
options.compression_per_level[i] = type;
}
DestroyAndReopen(options);
MinLevelHelper(this, options);
}
// This test may fail because of a legit case that multiple L0 files
// are trivial moved to L1.
TEST_F(DBTest, DISABLED_RepeatedWritesToSameKey) {
do {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000; // Small write buffer
CreateAndReopenWithCF({"pikachu"}, options);
// We must have at most one file per level except for level-0,
// which may have up to kL0_StopWritesTrigger files.
const int kMaxFiles =
options.num_levels + options.level0_stop_writes_trigger;
Random rnd(301);
std::string value =
rnd.RandomString(static_cast<int>(2 * options.write_buffer_size));
for (int i = 0; i < 5 * kMaxFiles; i++) {
ASSERT_OK(Put(1, "key", value));
ASSERT_LE(TotalTableFiles(1), kMaxFiles);
}
} while (ChangeCompactOptions());
}
#endif // ROCKSDB_LITE
TEST_F(DBTest, SparseMerge) {
do {
Options options = CurrentOptions();
options.compression = kNoCompression;
CreateAndReopenWithCF({"pikachu"}, options);
FillLevels("A", "Z", 1);
// Suppose there is:
// small amount of data with prefix A
// large amount of data with prefix B
// small amount of data with prefix C
// and that recent updates have made small changes to all three prefixes.
// Check that we do not do a compaction that merges all of B in one shot.
const std::string value(1000, 'x');
Put(1, "A", "va");
// Write approximately 100MB of "B" values
for (int i = 0; i < 100000; i++) {
char key[100];
snprintf(key, sizeof(key), "B%010d", i);
Put(1, key, value);
}
Put(1, "C", "vc");
ASSERT_OK(Flush(1));
dbfull()->TEST_CompactRange(0, nullptr, nullptr, handles_[1]);
// Make sparse update
Put(1, "A", "va2");
Put(1, "B100", "bvalue2");
Put(1, "C", "vc2");
ASSERT_OK(Flush(1));
// Compactions should not cause us to create a situation where
// a file overlaps too much data at the next level.
ASSERT_LE(dbfull()->TEST_MaxNextLevelOverlappingBytes(handles_[1]),
20 * 1048576);
dbfull()->TEST_CompactRange(0, nullptr, nullptr);
ASSERT_LE(dbfull()->TEST_MaxNextLevelOverlappingBytes(handles_[1]),
20 * 1048576);
dbfull()->TEST_CompactRange(1, nullptr, nullptr);
ASSERT_LE(dbfull()->TEST_MaxNextLevelOverlappingBytes(handles_[1]),
20 * 1048576);
} while (ChangeCompactOptions());
}
#ifndef ROCKSDB_LITE
static bool Between(uint64_t val, uint64_t low, uint64_t high) {
bool result = (val >= low) && (val <= high);
if (!result) {
fprintf(stderr, "Value %llu is not in range [%llu, %llu]\n",
(unsigned long long)(val), (unsigned long long)(low),
(unsigned long long)(high));
}
return result;
}
TEST_F(DBTest, ApproximateSizesMemTable) {
Options options = CurrentOptions();
options.write_buffer_size = 100000000; // Large write buffer
options.compression = kNoCompression;
options.create_if_missing = true;
DestroyAndReopen(options);
auto default_cf = db_->DefaultColumnFamily();
const int N = 128;
Random rnd(301);
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(i), rnd.RandomString(1024)));
}
uint64_t size;
std::string start = Key(50);
std::string end = Key(60);
Range r(start, end);
SizeApproximationOptions size_approx_options;
size_approx_options.include_memtabtles = true;
size_approx_options.include_files = true;
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size);
ASSERT_GT(size, 6000);
ASSERT_LT(size, 204800);
// Zero if not including mem table
db_->GetApproximateSizes(&r, 1, &size);
ASSERT_EQ(size, 0);
start = Key(500);
end = Key(600);
r = Range(start, end);
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size);
ASSERT_EQ(size, 0);
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(1000 + i), rnd.RandomString(1024)));
}
start = Key(500);
end = Key(600);
r = Range(start, end);
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size);
ASSERT_EQ(size, 0);
start = Key(100);
end = Key(1020);
r = Range(start, end);
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size);
ASSERT_GT(size, 6000);
options.max_write_buffer_number = 8;
options.min_write_buffer_number_to_merge = 5;
options.write_buffer_size = 1024 * N; // Not very large
DestroyAndReopen(options);
default_cf = db_->DefaultColumnFamily();
int keys[N * 3];
for (int i = 0; i < N; i++) {
keys[i * 3] = i * 5;
keys[i * 3 + 1] = i * 5 + 1;
keys[i * 3 + 2] = i * 5 + 2;
}
// MemTable entry counting is estimated and can vary greatly depending on
// layout. Thus, using deterministic seed for test stability.
RandomShuffle(std::begin(keys), std::end(keys), rnd.Next());
for (int i = 0; i < N * 3; i++) {
ASSERT_OK(Put(Key(keys[i] + 1000), rnd.RandomString(1024)));
}
start = Key(100);
end = Key(300);
r = Range(start, end);
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size);
ASSERT_EQ(size, 0);
start = Key(1050);
end = Key(1080);
r = Range(start, end);
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size);
ASSERT_GT(size, 6000);
start = Key(2100);
end = Key(2300);
r = Range(start, end);
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size);
ASSERT_EQ(size, 0);
start = Key(1050);
end = Key(1080);
r = Range(start, end);
uint64_t size_with_mt, size_without_mt;
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1,
&size_with_mt);
ASSERT_GT(size_with_mt, 6000);
db_->GetApproximateSizes(&r, 1, &size_without_mt);
ASSERT_EQ(size_without_mt, 0);
Flush();
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(i + 1000), rnd.RandomString(1024)));
}
start = Key(1050);
end = Key(1080);
r = Range(start, end);
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1,
&size_with_mt);
db_->GetApproximateSizes(&r, 1, &size_without_mt);
ASSERT_GT(size_with_mt, size_without_mt);
ASSERT_GT(size_without_mt, 6000);
// Check that include_memtabtles flag works as expected
size_approx_options.include_memtabtles = false;
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size);
ASSERT_EQ(size, size_without_mt);
// Check that files_size_error_margin works as expected, when the heuristic
// conditions are not met
start = Key(1);
end = Key(1000 + N - 2);
r = Range(start, end);
size_approx_options.files_size_error_margin = -1.0; // disabled
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size);
uint64_t size2;
size_approx_options.files_size_error_margin = 0.5; // enabled, but not used
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size2);
ASSERT_EQ(size, size2);
}
TEST_F(DBTest, ApproximateSizesFilesWithErrorMargin) {
// Roughly 4 keys per data block, 1000 keys per file,
// with filter substantially larger than a data block
BlockBasedTableOptions table_options;
table_options.filter_policy.reset(NewBloomFilterPolicy(16));
table_options.block_size = 100;
Options options = CurrentOptions();
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.write_buffer_size = 24 * 1024;
options.compression = kNoCompression;
options.create_if_missing = true;
options.target_file_size_base = 24 * 1024;
DestroyAndReopen(options);
const auto default_cf = db_->DefaultColumnFamily();
const int N = 64000;
Random rnd(301);
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(i), rnd.RandomString(24)));
}
// Flush everything to files
Flush();
// Compact the entire key space into the next level
db_->CompactRange(CompactRangeOptions(), default_cf, nullptr, nullptr);
// Write more keys
for (int i = N; i < (N + N / 4); i++) {
ASSERT_OK(Put(Key(i), rnd.RandomString(24)));
}
// Flush everything to files again
Flush();
// Wait for compaction to finish
ASSERT_OK(dbfull()->TEST_WaitForCompact());
{
const std::string start = Key(0);
const std::string end = Key(2 * N);
const Range r(start, end);
SizeApproximationOptions size_approx_options;
size_approx_options.include_memtabtles = false;
size_approx_options.include_files = true;
size_approx_options.files_size_error_margin = -1.0; // disabled
// Get the precise size without any approximation heuristic
uint64_t size;
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size);
ASSERT_NE(size, 0);
// Get the size with an approximation heuristic
uint64_t size2;
const double error_margin = 0.2;
size_approx_options.files_size_error_margin = error_margin;
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size2);
ASSERT_LT(size2, size * (1 + error_margin));
ASSERT_GT(size2, size * (1 - error_margin));
}
{
// Ensure that metadata is not falsely attributed only to the last data in
// the file. (In some applications, filters can be large portion of data
// size.)
// Perform many queries over small range, enough to ensure crossing file
// boundary, and make sure we never see a spike for large filter.
for (int i = 0; i < 3000; i += 10) {
const std::string start = Key(i);
const std::string end = Key(i + 11); // overlap by 1 key
const Range r(start, end);
uint64_t size;
db_->GetApproximateSizes(&r, 1, &size);
ASSERT_LE(size, 11 * 100);
}
}
}
TEST_F(DBTest, GetApproximateMemTableStats) {
Options options = CurrentOptions();
options.write_buffer_size = 100000000;
options.compression = kNoCompression;
options.create_if_missing = true;
DestroyAndReopen(options);
const int N = 128;
Random rnd(301);
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(i), rnd.RandomString(1024)));
}
uint64_t count;
uint64_t size;
std::string start = Key(50);
std::string end = Key(60);
Range r(start, end);
db_->GetApproximateMemTableStats(r, &count, &size);
ASSERT_GT(count, 0);
ASSERT_LE(count, N);
ASSERT_GT(size, 6000);
ASSERT_LT(size, 204800);
start = Key(500);
end = Key(600);
r = Range(start, end);
db_->GetApproximateMemTableStats(r, &count, &size);
ASSERT_EQ(count, 0);
ASSERT_EQ(size, 0);
Flush();
start = Key(50);
end = Key(60);
r = Range(start, end);
db_->GetApproximateMemTableStats(r, &count, &size);
ASSERT_EQ(count, 0);
ASSERT_EQ(size, 0);
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(1000 + i), rnd.RandomString(1024)));
}
start = Key(100);
end = Key(1020);
r = Range(start, end);
db_->GetApproximateMemTableStats(r, &count, &size);
ASSERT_GT(count, 20);
ASSERT_GT(size, 6000);
}
TEST_F(DBTest, ApproximateSizes) {
do {
Options options = CurrentOptions();
options.write_buffer_size = 100000000; // Large write buffer
options.compression = kNoCompression;
options.create_if_missing = true;
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_TRUE(Between(Size("", "xyz", 1), 0, 0));
ReopenWithColumnFamilies({"default", "pikachu"}, options);
ASSERT_TRUE(Between(Size("", "xyz", 1), 0, 0));
// Write 8MB (80 values, each 100K)
ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0);
const int N = 80;
static const int S1 = 100000;
static const int S2 = 105000; // Allow some expansion from metadata
Random rnd(301);
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(1, Key(i), rnd.RandomString(S1)));
}
// 0 because GetApproximateSizes() does not account for memtable space
ASSERT_TRUE(Between(Size("", Key(50), 1), 0, 0));
// Check sizes across recovery by reopening a few times
for (int run = 0; run < 3; run++) {
ReopenWithColumnFamilies({"default", "pikachu"}, options);
for (int compact_start = 0; compact_start < N; compact_start += 10) {
for (int i = 0; i < N; i += 10) {
ASSERT_TRUE(Between(Size("", Key(i), 1), S1 * i, S2 * i));
ASSERT_TRUE(Between(Size("", Key(i) + ".suffix", 1), S1 * (i + 1),
S2 * (i + 1)));
ASSERT_TRUE(Between(Size(Key(i), Key(i + 10), 1), S1 * 10, S2 * 10));
}
ASSERT_TRUE(Between(Size("", Key(50), 1), S1 * 50, S2 * 50));
ASSERT_TRUE(
Between(Size("", Key(50) + ".suffix", 1), S1 * 50, S2 * 50));
std::string cstart_str = Key(compact_start);
std::string cend_str = Key(compact_start + 9);
Slice cstart = cstart_str;
Slice cend = cend_str;
dbfull()->TEST_CompactRange(0, &cstart, &cend, handles_[1]);
}
ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0);
ASSERT_GT(NumTableFilesAtLevel(1, 1), 0);
}
// ApproximateOffsetOf() is not yet implemented in plain table format.
} while (ChangeOptions(kSkipUniversalCompaction | kSkipFIFOCompaction |
kSkipPlainTable | kSkipHashIndex));
}
TEST_F(DBTest, ApproximateSizes_MixOfSmallAndLarge) {
do {
Options options = CurrentOptions();
options.compression = kNoCompression;
CreateAndReopenWithCF({"pikachu"}, options);
Random rnd(301);
std::string big1 = rnd.RandomString(100000);
ASSERT_OK(Put(1, Key(0), rnd.RandomString(10000)));
ASSERT_OK(Put(1, Key(1), rnd.RandomString(10000)));
ASSERT_OK(Put(1, Key(2), big1));
ASSERT_OK(Put(1, Key(3), rnd.RandomString(10000)));
ASSERT_OK(Put(1, Key(4), big1));
ASSERT_OK(Put(1, Key(5), rnd.RandomString(10000)));
ASSERT_OK(Put(1, Key(6), rnd.RandomString(300000)));
ASSERT_OK(Put(1, Key(7), rnd.RandomString(10000)));
// Check sizes across recovery by reopening a few times
for (int run = 0; run < 3; run++) {
ReopenWithColumnFamilies({"default", "pikachu"}, options);
ASSERT_TRUE(Between(Size("", Key(0), 1), 0, 0));
ASSERT_TRUE(Between(Size("", Key(1), 1), 10000, 11000));
ASSERT_TRUE(Between(Size("", Key(2), 1), 20000, 21000));
ASSERT_TRUE(Between(Size("", Key(3), 1), 120000, 121000));
ASSERT_TRUE(Between(Size("", Key(4), 1), 130000, 131000));
ASSERT_TRUE(Between(Size("", Key(5), 1), 230000, 232000));
ASSERT_TRUE(Between(Size("", Key(6), 1), 240000, 242000));
// Ensure some overhead is accounted for, even without including all
ASSERT_TRUE(Between(Size("", Key(7), 1), 540500, 545000));
ASSERT_TRUE(Between(Size("", Key(8), 1), 550500, 555000));
ASSERT_TRUE(Between(Size(Key(3), Key(5), 1), 110100, 111000));
dbfull()->TEST_CompactRange(0, nullptr, nullptr, handles_[1]);
}
// ApproximateOffsetOf() is not yet implemented in plain table format.
} while (ChangeOptions(kSkipPlainTable));
}
#endif // ROCKSDB_LITE
#ifndef ROCKSDB_LITE
TEST_F(DBTest, Snapshot) {
env_->SetMockSleep();
anon::OptionsOverride options_override;
options_override.skip_policy = kSkipNoSnapshot;
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions(options_override));
Put(0, "foo", "0v1");
Put(1, "foo", "1v1");
const Snapshot* s1 = db_->GetSnapshot();
ASSERT_EQ(1U, GetNumSnapshots());
uint64_t time_snap1 = GetTimeOldestSnapshots();
ASSERT_GT(time_snap1, 0U);
ASSERT_EQ(GetSequenceOldestSnapshots(), s1->GetSequenceNumber());
Put(0, "foo", "0v2");
Put(1, "foo", "1v2");
env_->MockSleepForSeconds(1);
const Snapshot* s2 = db_->GetSnapshot();
ASSERT_EQ(2U, GetNumSnapshots());
ASSERT_EQ(time_snap1, GetTimeOldestSnapshots());
ASSERT_EQ(GetSequenceOldestSnapshots(), s1->GetSequenceNumber());
Put(0, "foo", "0v3");
Put(1, "foo", "1v3");
{
ManagedSnapshot s3(db_);
ASSERT_EQ(3U, GetNumSnapshots());
ASSERT_EQ(time_snap1, GetTimeOldestSnapshots());
ASSERT_EQ(GetSequenceOldestSnapshots(), s1->GetSequenceNumber());
Put(0, "foo", "0v4");
Put(1, "foo", "1v4");
ASSERT_EQ("0v1", Get(0, "foo", s1));
ASSERT_EQ("1v1", Get(1, "foo", s1));
ASSERT_EQ("0v2", Get(0, "foo", s2));
ASSERT_EQ("1v2", Get(1, "foo", s2));
ASSERT_EQ("0v3", Get(0, "foo", s3.snapshot()));
ASSERT_EQ("1v3", Get(1, "foo", s3.snapshot()));
ASSERT_EQ("0v4", Get(0, "foo"));
ASSERT_EQ("1v4", Get(1, "foo"));
}
ASSERT_EQ(2U, GetNumSnapshots());
ASSERT_EQ(time_snap1, GetTimeOldestSnapshots());
ASSERT_EQ(GetSequenceOldestSnapshots(), s1->GetSequenceNumber());
ASSERT_EQ("0v1", Get(0, "foo", s1));
ASSERT_EQ("1v1", Get(1, "foo", s1));
ASSERT_EQ("0v2", Get(0, "foo", s2));
ASSERT_EQ("1v2", Get(1, "foo", s2));
ASSERT_EQ("0v4", Get(0, "foo"));
ASSERT_EQ("1v4", Get(1, "foo"));
db_->ReleaseSnapshot(s1);
ASSERT_EQ("0v2", Get(0, "foo", s2));
ASSERT_EQ("1v2", Get(1, "foo", s2));
ASSERT_EQ("0v4", Get(0, "foo"));
ASSERT_EQ("1v4", Get(1, "foo"));
ASSERT_EQ(1U, GetNumSnapshots());
ASSERT_LT(time_snap1, GetTimeOldestSnapshots());
ASSERT_EQ(GetSequenceOldestSnapshots(), s2->GetSequenceNumber());
db_->ReleaseSnapshot(s2);
ASSERT_EQ(0U, GetNumSnapshots());
ASSERT_EQ(GetSequenceOldestSnapshots(), 0);
ASSERT_EQ("0v4", Get(0, "foo"));
ASSERT_EQ("1v4", Get(1, "foo"));
} while (ChangeOptions());
}
TEST_F(DBTest, HiddenValuesAreRemoved) {
anon::OptionsOverride options_override;
options_override.skip_policy = kSkipNoSnapshot;
do {
Options options = CurrentOptions(options_override);
CreateAndReopenWithCF({"pikachu"}, options);
Random rnd(301);
FillLevels("a", "z", 1);
std::string big = rnd.RandomString(50000);
Put(1, "foo", big);
Put(1, "pastfoo", "v");
const Snapshot* snapshot = db_->GetSnapshot();
Put(1, "foo", "tiny");
Put(1, "pastfoo2", "v2"); // Advance sequence number one more
ASSERT_OK(Flush(1));
ASSERT_GT(NumTableFilesAtLevel(0, 1), 0);
ASSERT_EQ(big, Get(1, "foo", snapshot));
ASSERT_TRUE(Between(Size("", "pastfoo", 1), 50000, 60000));
db_->ReleaseSnapshot(snapshot);
ASSERT_EQ(AllEntriesFor("foo", 1), "[ tiny, " + big + " ]");
Slice x("x");
dbfull()->TEST_CompactRange(0, nullptr, &x, handles_[1]);
ASSERT_EQ(AllEntriesFor("foo", 1), "[ tiny ]");
ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0);
ASSERT_GE(NumTableFilesAtLevel(1, 1), 1);
dbfull()->TEST_CompactRange(1, nullptr, &x, handles_[1]);
ASSERT_EQ(AllEntriesFor("foo", 1), "[ tiny ]");
ASSERT_TRUE(Between(Size("", "pastfoo", 1), 0, 1000));
// ApproximateOffsetOf() is not yet implemented in plain table format,
// which is used by Size().
} while (ChangeOptions(kSkipUniversalCompaction | kSkipFIFOCompaction |
kSkipPlainTable));
}
#endif // ROCKSDB_LITE
TEST_F(DBTest, UnremovableSingleDelete) {
// If we compact:
//
// Put(A, v1) Snapshot SingleDelete(A) Put(A, v2)
//
// We do not want to end up with:
//
// Put(A, v1) Snapshot Put(A, v2)
//
// Because a subsequent SingleDelete(A) would delete the Put(A, v2)
// but not Put(A, v1), so Get(A) would return v1.
anon::OptionsOverride options_override;
options_override.skip_policy = kSkipNoSnapshot;
do {
Options options = CurrentOptions(options_override);
options.disable_auto_compactions = true;
CreateAndReopenWithCF({"pikachu"}, options);
Put(1, "foo", "first");
const Snapshot* snapshot = db_->GetSnapshot();
SingleDelete(1, "foo");
Put(1, "foo", "second");
ASSERT_OK(Flush(1));
ASSERT_EQ("first", Get(1, "foo", snapshot));
ASSERT_EQ("second", Get(1, "foo"));
dbfull()->CompactRange(CompactRangeOptions(), handles_[1], nullptr,
nullptr);
ASSERT_EQ("[ second, SDEL, first ]", AllEntriesFor("foo", 1));
SingleDelete(1, "foo");
ASSERT_EQ("first", Get(1, "foo", snapshot));
ASSERT_EQ("NOT_FOUND", Get(1, "foo"));
dbfull()->CompactRange(CompactRangeOptions(), handles_[1], nullptr,
nullptr);
ASSERT_EQ("first", Get(1, "foo", snapshot));
ASSERT_EQ("NOT_FOUND", Get(1, "foo"));
db_->ReleaseSnapshot(snapshot);
// Skip FIFO and universal compaction beccause they do not apply to the test
// case. Skip MergePut because single delete does not get removed when it
// encounters a merge.
} while (ChangeOptions(kSkipFIFOCompaction | kSkipUniversalCompaction |
kSkipMergePut));
}
#ifndef ROCKSDB_LITE
TEST_F(DBTest, DeletionMarkers1) {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu"}, options);
Put(1, "foo", "v1");
ASSERT_OK(Flush(1));
const int last = 2;
MoveFilesToLevel(last, 1);
// foo => v1 is now in last level
ASSERT_EQ(NumTableFilesAtLevel(last, 1), 1);
// Place a table at level last-1 to prevent merging with preceding mutation
Put(1, "a", "begin");
Put(1, "z", "end");
Flush(1);
MoveFilesToLevel(last - 1, 1);
ASSERT_EQ(NumTableFilesAtLevel(last, 1), 1);
ASSERT_EQ(NumTableFilesAtLevel(last - 1, 1), 1);
Delete(1, "foo");
Put(1, "foo", "v2");
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v2, DEL, v1 ]");
ASSERT_OK(Flush(1)); // Moves to level last-2
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v2, v1 ]");
Slice z("z");
dbfull()->TEST_CompactRange(last - 2, nullptr, &z, handles_[1]);
// DEL eliminated, but v1 remains because we aren't compacting that level
// (DEL can be eliminated because v2 hides v1).
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v2, v1 ]");
dbfull()->TEST_CompactRange(last - 1, nullptr, nullptr, handles_[1]);
// Merging last-1 w/ last, so we are the base level for "foo", so
// DEL is removed. (as is v1).
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v2 ]");
}
TEST_F(DBTest, DeletionMarkers2) {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu"}, options);
Put(1, "foo", "v1");
ASSERT_OK(Flush(1));
const int last = 2;
MoveFilesToLevel(last, 1);
// foo => v1 is now in last level
ASSERT_EQ(NumTableFilesAtLevel(last, 1), 1);
// Place a table at level last-1 to prevent merging with preceding mutation
Put(1, "a", "begin");
Put(1, "z", "end");
Flush(1);
MoveFilesToLevel(last - 1, 1);
ASSERT_EQ(NumTableFilesAtLevel(last, 1), 1);
ASSERT_EQ(NumTableFilesAtLevel(last - 1, 1), 1);
Delete(1, "foo");
ASSERT_EQ(AllEntriesFor("foo", 1), "[ DEL, v1 ]");
ASSERT_OK(Flush(1)); // Moves to level last-2
ASSERT_EQ(AllEntriesFor("foo", 1), "[ DEL, v1 ]");
dbfull()->TEST_CompactRange(last - 2, nullptr, nullptr, handles_[1]);
// DEL kept: "last" file overlaps
ASSERT_EQ(AllEntriesFor("foo", 1), "[ DEL, v1 ]");
dbfull()->TEST_CompactRange(last - 1, nullptr, nullptr, handles_[1]);
// Merging last-1 w/ last, so we are the base level for "foo", so
// DEL is removed. (as is v1).
ASSERT_EQ(AllEntriesFor("foo", 1), "[ ]");
}
TEST_F(DBTest, OverlapInLevel0) {
do {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu"}, options);
// Fill levels 1 and 2 to disable the pushing of new memtables to levels >
// 0.
ASSERT_OK(Put(1, "100", "v100"));
ASSERT_OK(Put(1, "999", "v999"));
Flush(1);
MoveFilesToLevel(2, 1);
ASSERT_OK(Delete(1, "100"));
ASSERT_OK(Delete(1, "999"));
Flush(1);
MoveFilesToLevel(1, 1);
ASSERT_EQ("0,1,1", FilesPerLevel(1));
// Make files spanning the following ranges in level-0:
// files[0] 200 .. 900
// files[1] 300 .. 500
// Note that files are sorted by smallest key.
ASSERT_OK(Put(1, "300", "v300"));
ASSERT_OK(Put(1, "500", "v500"));
Flush(1);
ASSERT_OK(Put(1, "200", "v200"));
ASSERT_OK(Put(1, "600", "v600"));
ASSERT_OK(Put(1, "900", "v900"));
Flush(1);
ASSERT_EQ("2,1,1", FilesPerLevel(1));
// Compact away the placeholder files we created initially
dbfull()->TEST_CompactRange(1, nullptr, nullptr, handles_[1]);
dbfull()->TEST_CompactRange(2, nullptr, nullptr, handles_[1]);
ASSERT_EQ("2", FilesPerLevel(1));
// Do a memtable compaction. Before bug-fix, the compaction would
// not detect the overlap with level-0 files and would incorrectly place
// the deletion in a deeper level.
ASSERT_OK(Delete(1, "600"));
Flush(1);
ASSERT_EQ("3", FilesPerLevel(1));
ASSERT_EQ("NOT_FOUND", Get(1, "600"));
} while (ChangeOptions(kSkipUniversalCompaction | kSkipFIFOCompaction));
}
#endif // ROCKSDB_LITE
TEST_F(DBTest, ComparatorCheck) {
class NewComparator : public Comparator {
public:
const char* Name() const override { return "rocksdb.NewComparator"; }
int Compare(const Slice& a, const Slice& b) const override {
return BytewiseComparator()->Compare(a, b);
}
void FindShortestSeparator(std::string* s, const Slice& l) const override {
BytewiseComparator()->FindShortestSeparator(s, l);
}
void FindShortSuccessor(std::string* key) const override {
BytewiseComparator()->FindShortSuccessor(key);
}
};
Options new_options, options;
NewComparator cmp;
do {
options = CurrentOptions();
CreateAndReopenWithCF({"pikachu"}, options);
new_options = CurrentOptions();
new_options.comparator = &cmp;
// only the non-default column family has non-matching comparator
Status s = TryReopenWithColumnFamilies(
{"default", "pikachu"}, std::vector<Options>({options, new_options}));
ASSERT_TRUE(!s.ok());
ASSERT_TRUE(s.ToString().find("comparator") != std::string::npos)
<< s.ToString();
} while (ChangeCompactOptions());
}
TEST_F(DBTest, CustomComparator) {
class NumberComparator : public Comparator {
public:
const char* Name() const override { return "test.NumberComparator"; }
int Compare(const Slice& a, const Slice& b) const override {
return ToNumber(a) - ToNumber(b);
}
void FindShortestSeparator(std::string* s, const Slice& l) const override {
ToNumber(*s); // Check format
ToNumber(l); // Check format
}
void FindShortSuccessor(std::string* key) const override {
ToNumber(*key); // Check format
}
private:
static int ToNumber(const Slice& x) {
// Check that there are no extra characters.
EXPECT_TRUE(x.size() >= 2 && x[0] == '[' && x[x.size() - 1] == ']')
<< EscapeString(x);
int val;
char ignored;
EXPECT_TRUE(sscanf(x.ToString().c_str(), "[%i]%c", &val, &ignored) == 1)
<< EscapeString(x);
return val;
}
};
Options new_options;
NumberComparator cmp;
do {
new_options = CurrentOptions();
new_options.create_if_missing = true;
new_options.comparator = &cmp;
new_options.write_buffer_size = 4096; // Compact more often
new_options.arena_block_size = 4096;
new_options = CurrentOptions(new_options);
DestroyAndReopen(new_options);
CreateAndReopenWithCF({"pikachu"}, new_options);
ASSERT_OK(Put(1, "[10]", "ten"));
ASSERT_OK(Put(1, "[0x14]", "twenty"));
for (int i = 0; i < 2; i++) {
ASSERT_EQ("ten", Get(1, "[10]"));
ASSERT_EQ("ten", Get(1, "[0xa]"));
ASSERT_EQ("twenty", Get(1, "[20]"));
ASSERT_EQ("twenty", Get(1, "[0x14]"));
ASSERT_EQ("NOT_FOUND", Get(1, "[15]"));
ASSERT_EQ("NOT_FOUND", Get(1, "[0xf]"));
Compact(1, "[0]", "[9999]");
}
for (int run = 0; run < 2; run++) {
for (int i = 0; i < 1000; i++) {
char buf[100];
snprintf(buf, sizeof(buf), "[%d]", i * 10);
ASSERT_OK(Put(1, buf, buf));
}
Compact(1, "[0]", "[1000000]");
}
} while (ChangeCompactOptions());
}
TEST_F(DBTest, DBOpen_Options) {
Options options = CurrentOptions();
std::string dbname = test::PerThreadDBPath("db_options_test");
ASSERT_OK(DestroyDB(dbname, options));
// Does not exist, and create_if_missing == false: error
DB* db = nullptr;
options.create_if_missing = false;
Status s = DB::Open(options, dbname, &db);
ASSERT_TRUE(strstr(s.ToString().c_str(), "does not exist") != nullptr);
ASSERT_TRUE(db == nullptr);
// Does not exist, and create_if_missing == true: OK
options.create_if_missing = true;
s = DB::Open(options, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != nullptr);
delete db;
db = nullptr;
// Does exist, and error_if_exists == true: error
options.create_if_missing = false;
options.error_if_exists = true;
s = DB::Open(options, dbname, &db);
ASSERT_TRUE(strstr(s.ToString().c_str(), "exists") != nullptr);
ASSERT_TRUE(db == nullptr);
// Does exist, and error_if_exists == false: OK
options.create_if_missing = true;
options.error_if_exists = false;
s = DB::Open(options, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != nullptr);
delete db;
db = nullptr;
}
TEST_F(DBTest, DBOpen_Change_NumLevels) {
Options options = CurrentOptions();
options.create_if_missing = true;
DestroyAndReopen(options);
ASSERT_TRUE(db_ != nullptr);
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "a", "123"));
ASSERT_OK(Put(1, "b", "234"));
Flush(1);
MoveFilesToLevel(3, 1);
Close();
options.create_if_missing = false;
options.num_levels = 2;
Status s = TryReopenWithColumnFamilies({"default", "pikachu"}, options);
ASSERT_TRUE(strstr(s.ToString().c_str(), "Invalid argument") != nullptr);
ASSERT_TRUE(db_ == nullptr);
}
TEST_F(DBTest, DestroyDBMetaDatabase) {
std::string dbname = test::PerThreadDBPath("db_meta");
ASSERT_OK(env_->CreateDirIfMissing(dbname));
std::string metadbname = MetaDatabaseName(dbname, 0);
ASSERT_OK(env_->CreateDirIfMissing(metadbname));
std::string metametadbname = MetaDatabaseName(metadbname, 0);
ASSERT_OK(env_->CreateDirIfMissing(metametadbname));
// Destroy previous versions if they exist. Using the long way.
Options options = CurrentOptions();
ASSERT_OK(DestroyDB(metametadbname, options));
ASSERT_OK(DestroyDB(metadbname, options));
ASSERT_OK(DestroyDB(dbname, options));
// Setup databases
DB* db = nullptr;
ASSERT_OK(DB::Open(options, dbname, &db));
delete db;
db = nullptr;
ASSERT_OK(DB::Open(options, metadbname, &db));
delete db;
db = nullptr;
ASSERT_OK(DB::Open(options, metametadbname, &db));
delete db;
db = nullptr;
// Delete databases
ASSERT_OK(DestroyDB(dbname, options));
// Check if deletion worked.
options.create_if_missing = false;
ASSERT_TRUE(!(DB::Open(options, dbname, &db)).ok());
ASSERT_TRUE(!(DB::Open(options, metadbname, &db)).ok());
ASSERT_TRUE(!(DB::Open(options, metametadbname, &db)).ok());
}
#ifndef ROCKSDB_LITE
TEST_F(DBTest, SnapshotFiles) {
do {
Options options = CurrentOptions();
options.write_buffer_size = 100000000; // Large write buffer
CreateAndReopenWithCF({"pikachu"}, options);
Random rnd(301);
// Write 8MB (80 values, each 100K)
ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0);
std::vector<std::string> values;
for (int i = 0; i < 80; i++) {
values.push_back(rnd.RandomString(100000));
ASSERT_OK(Put((i < 40), Key(i), values[i]));
}
// assert that nothing makes it to disk yet.
ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0);
// get a file snapshot
uint64_t manifest_number = 0;
uint64_t manifest_size = 0;
std::vector<std::string> files;
dbfull()->DisableFileDeletions();
dbfull()->GetLiveFiles(files, &manifest_size);
// CURRENT, MANIFEST, OPTIONS, *.sst files (one for each CF)
ASSERT_EQ(files.size(), 5U);
uint64_t number = 0;
FileType type;
// copy these files to a new snapshot directory
std::string snapdir = dbname_ + ".snapdir/";
if (env_->FileExists(snapdir).ok()) {
ASSERT_OK(DestroyDir(env_, snapdir));
}
ASSERT_OK(env_->CreateDir(snapdir));
for (size_t i = 0; i < files.size(); i++) {
// our clients require that GetLiveFiles returns
// files with "/" as first character!
ASSERT_EQ(files[i][0], '/');
std::string src = dbname_ + files[i];
std::string dest = snapdir + files[i];
uint64_t size;
ASSERT_OK(env_->GetFileSize(src, &size));
// record the number and the size of the
// latest manifest file
if (ParseFileName(files[i].substr(1), &number, &type)) {
if (type == kDescriptorFile) {
if (number > manifest_number) {
manifest_number = number;
ASSERT_GE(size, manifest_size);
size = manifest_size; // copy only valid MANIFEST data
}
}
}
CopyFile(src, dest, size);
}
// release file snapshot
dbfull()->DisableFileDeletions();
// overwrite one key, this key should not appear in the snapshot
std::vector<std::string> extras;
for (unsigned int i = 0; i < 1; i++) {
extras.push_back(rnd.RandomString(100000));
ASSERT_OK(Put(0, Key(i), extras[i]));
}
// verify that data in the snapshot are correct
std::vector<ColumnFamilyDescriptor> column_families;
column_families.emplace_back("default", ColumnFamilyOptions());
column_families.emplace_back("pikachu", ColumnFamilyOptions());
std::vector<ColumnFamilyHandle*> cf_handles;
DB* snapdb;
DBOptions opts;
opts.env = env_;
opts.create_if_missing = false;
Status stat =
DB::Open(opts, snapdir, column_families, &cf_handles, &snapdb);
ASSERT_OK(stat);
ReadOptions roptions;
std::string val;
for (unsigned int i = 0; i < 80; i++) {
stat = snapdb->Get(roptions, cf_handles[i < 40], Key(i), &val);
ASSERT_EQ(values[i].compare(val), 0);
}
for (auto cfh : cf_handles) {
delete cfh;
}
delete snapdb;
// look at the new live files after we added an 'extra' key
// and after we took the first snapshot.
uint64_t new_manifest_number = 0;
uint64_t new_manifest_size = 0;
std::vector<std::string> newfiles;
dbfull()->DisableFileDeletions();
dbfull()->GetLiveFiles(newfiles, &new_manifest_size);
// find the new manifest file. assert that this manifest file is
// the same one as in the previous snapshot. But its size should be
// larger because we added an extra key after taking the
// previous shapshot.
for (size_t i = 0; i < newfiles.size(); i++) {
std::string src = dbname_ + "/" + newfiles[i];
// record the lognumber and the size of the
// latest manifest file
if (ParseFileName(newfiles[i].substr(1), &number, &type)) {
if (type == kDescriptorFile) {
if (number > new_manifest_number) {
uint64_t size;
new_manifest_number = number;
ASSERT_OK(env_->GetFileSize(src, &size));
ASSERT_GE(size, new_manifest_size);
}
}
}
}
ASSERT_EQ(manifest_number, new_manifest_number);
ASSERT_GT(new_manifest_size, manifest_size);
// release file snapshot
dbfull()->DisableFileDeletions();
} while (ChangeCompactOptions());
}
TEST_F(DBTest, ReadonlyDBGetLiveManifestSize) {
do {
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = 2;
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "bar"));
ASSERT_OK(Flush());
ASSERT_OK(Put("foo", "bar"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
Close();
ASSERT_OK(ReadOnlyReopen(options));
uint64_t manifest_size = 0;
std::vector<std::string> files;
dbfull()->GetLiveFiles(files, &manifest_size);
for (const std::string& f : files) {
uint64_t number = 0;
FileType type;
if (ParseFileName(f.substr(1), &number, &type)) {
if (type == kDescriptorFile) {
uint64_t size_on_disk;
env_->GetFileSize(dbname_ + "/" + f, &size_on_disk);
ASSERT_EQ(manifest_size, size_on_disk);
break;
}
}
}
Close();
} while (ChangeCompactOptions());
}
TEST_F(DBTest, GetLiveBlobFiles) {
VersionSet* const versions = dbfull()->TEST_GetVersionSet();
assert(versions);
assert(versions->GetColumnFamilySet());
ColumnFamilyData* const cfd = versions->GetColumnFamilySet()->GetDefault();
assert(cfd);
Version* const version = cfd->current();
assert(version);
VersionStorageInfo* const storage_info = version->storage_info();
assert(storage_info);
// Add a live blob file.
constexpr uint64_t blob_file_number = 234;
constexpr uint64_t total_blob_count = 555;
constexpr uint64_t total_blob_bytes = 66666;
constexpr char checksum_method[] = "CRC32";
constexpr char checksum_value[] = "3d87ff57";
auto shared_meta = SharedBlobFileMetaData::Create(
blob_file_number, total_blob_count, total_blob_bytes, checksum_method,
checksum_value);
constexpr uint64_t garbage_blob_count = 0;
constexpr uint64_t garbage_blob_bytes = 0;
auto meta = BlobFileMetaData::Create(std::move(shared_meta),
BlobFileMetaData::LinkedSsts(),
garbage_blob_count, garbage_blob_bytes);
storage_info->AddBlobFile(std::move(meta));
// Make sure it appears in the results returned by GetLiveFiles.
uint64_t manifest_size = 0;
std::vector<std::string> files;
ASSERT_OK(dbfull()->GetLiveFiles(files, &manifest_size));
ASSERT_FALSE(files.empty());
ASSERT_EQ(files[0], BlobFileName("", blob_file_number));
}
#endif
TEST_F(DBTest, PurgeInfoLogs) {
Options options = CurrentOptions();
options.keep_log_file_num = 5;
options.create_if_missing = true;
for (int mode = 0; mode <= 1; mode++) {
if (mode == 1) {
options.db_log_dir = dbname_ + "_logs";
env_->CreateDirIfMissing(options.db_log_dir);
} else {
options.db_log_dir = "";
}
for (int i = 0; i < 8; i++) {
Reopen(options);
}
std::vector<std::string> files;
env_->GetChildren(options.db_log_dir.empty() ? dbname_ : options.db_log_dir,
&files);
int info_log_count = 0;
for (std::string file : files) {
if (file.find("LOG") != std::string::npos) {
info_log_count++;
}
}
ASSERT_EQ(5, info_log_count);
Destroy(options);
// For mode (1), test DestroyDB() to delete all the logs under DB dir.
// For mode (2), no info log file should have been put under DB dir.
std::vector<std::string> db_files;
env_->GetChildren(dbname_, &db_files);
for (std::string file : db_files) {
ASSERT_TRUE(file.find("LOG") == std::string::npos);
}
if (mode == 1) {
// Cleaning up
env_->GetChildren(options.db_log_dir, &files);
for (std::string file : files) {
env_->DeleteFile(options.db_log_dir + "/" + file);
}
env_->DeleteDir(options.db_log_dir);
}
}
}
#ifndef ROCKSDB_LITE
// Multi-threaded test:
namespace {
static const int kColumnFamilies = 10;
static const int kNumThreads = 10;
static const int kTestSeconds = 10;
static const int kNumKeys = 1000;
struct MTState {
DBTest* test;
std::atomic<bool> stop;
std::atomic<int> counter[kNumThreads];
std::atomic<bool> thread_done[kNumThreads];
};
struct MTThread {
MTState* state;
int id;
bool multiget_batched;
};
static void MTThreadBody(void* arg) {
MTThread* t = reinterpret_cast<MTThread*>(arg);
int id = t->id;
DB* db = t->state->test->db_;
int counter = 0;
fprintf(stderr, "... starting thread %d\n", id);
Random rnd(1000 + id);
char valbuf[1500];
while (t->state->stop.load(std::memory_order_acquire) == false) {
t->state->counter[id].store(counter, std::memory_order_release);
int key = rnd.Uniform(kNumKeys);
char keybuf[20];
snprintf(keybuf, sizeof(keybuf), "%016d", key);
if (rnd.OneIn(2)) {
// Write values of the form <key, my id, counter, cf, unique_id>.
// into each of the CFs
// We add some padding for force compactions.
int unique_id = rnd.Uniform(1000000);
// Half of the time directly use WriteBatch. Half of the time use
// WriteBatchWithIndex.
if (rnd.OneIn(2)) {
WriteBatch batch;
for (int cf = 0; cf < kColumnFamilies; ++cf) {
snprintf(valbuf, sizeof(valbuf), "%d.%d.%d.%d.%-1000d", key, id,
static_cast<int>(counter), cf, unique_id);
batch.Put(t->state->test->handles_[cf], Slice(keybuf), Slice(valbuf));
}
ASSERT_OK(db->Write(WriteOptions(), &batch));
} else {
WriteBatchWithIndex batch(db->GetOptions().comparator);
for (int cf = 0; cf < kColumnFamilies; ++cf) {
snprintf(valbuf, sizeof(valbuf), "%d.%d.%d.%d.%-1000d", key, id,
static_cast<int>(counter), cf, unique_id);
batch.Put(t->state->test->handles_[cf], Slice(keybuf), Slice(valbuf));
}
ASSERT_OK(db->Write(WriteOptions(), batch.GetWriteBatch()));
}
} else {
// Read a value and verify that it matches the pattern written above
// and that writes to all column families were atomic (unique_id is the
// same)
std::vector<Slice> keys(kColumnFamilies, Slice(keybuf));
std::vector<std::string> values;
std::vector<Status> statuses;
if (!t->multiget_batched) {
statuses = db->MultiGet(ReadOptions(), t->state->test->handles_, keys,
&values);
} else {
std::vector<PinnableSlice> pin_values(keys.size());
statuses.resize(keys.size());
const Snapshot* snapshot = db->GetSnapshot();
ReadOptions ro;
ro.snapshot = snapshot;
for (int cf = 0; cf < kColumnFamilies; ++cf) {
db->MultiGet(ro, t->state->test->handles_[cf], 1, &keys[cf],
&pin_values[cf], &statuses[cf]);
}
db->ReleaseSnapshot(snapshot);
values.resize(keys.size());
for (int cf = 0; cf < kColumnFamilies; ++cf) {
if (statuses[cf].ok()) {
values[cf].assign(pin_values[cf].data(), pin_values[cf].size());
}
}
}
Status s = statuses[0];
// all statuses have to be the same
for (size_t i = 1; i < statuses.size(); ++i) {
// they are either both ok or both not-found
ASSERT_TRUE((s.ok() && statuses[i].ok()) ||
(s.IsNotFound() && statuses[i].IsNotFound()));
}
if (s.IsNotFound()) {
// Key has not yet been written
} else {
// Check that the writer thread counter is >= the counter in the value
ASSERT_OK(s);
int unique_id = -1;
for (int i = 0; i < kColumnFamilies; ++i) {
int k, w, c, cf, u;
ASSERT_EQ(5, sscanf(values[i].c_str(), "%d.%d.%d.%d.%d", &k, &w, &c,
&cf, &u))
<< values[i];
ASSERT_EQ(k, key);
ASSERT_GE(w, 0);
ASSERT_LT(w, kNumThreads);
ASSERT_LE(c, t->state->counter[w].load(std::memory_order_acquire));
ASSERT_EQ(cf, i);
if (i == 0) {
unique_id = u;
} else {
// this checks that updates across column families happened
// atomically -- all unique ids are the same
ASSERT_EQ(u, unique_id);
}
}
}
}
counter++;
}
t->state->thread_done[id].store(true, std::memory_order_release);
fprintf(stderr, "... stopping thread %d after %d ops\n", id, int(counter));
}
} // namespace
class MultiThreadedDBTest
: public DBTest,
public ::testing::WithParamInterface<std::tuple<int, bool>> {
public:
void SetUp() override {
std::tie(option_config_, multiget_batched_) = GetParam();
}
static std::vector<int> GenerateOptionConfigs() {
std::vector<int> optionConfigs;
for (int optionConfig = kDefault; optionConfig < kEnd; ++optionConfig) {
optionConfigs.push_back(optionConfig);
}
return optionConfigs;
}
bool multiget_batched_;
};
TEST_P(MultiThreadedDBTest, MultiThreaded) {
if (option_config_ == kPipelinedWrite) return;
anon::OptionsOverride options_override;
options_override.skip_policy = kSkipNoSnapshot;
Options options = CurrentOptions(options_override);
std::vector<std::string> cfs;
for (int i = 1; i < kColumnFamilies; ++i) {
cfs.push_back(ToString(i));
}
Reopen(options);
CreateAndReopenWithCF(cfs, options);
// Initialize state
MTState mt;
mt.test = this;
mt.stop.store(false, std::memory_order_release);
for (int id = 0; id < kNumThreads; id++) {
mt.counter[id].store(0, std::memory_order_release);
mt.thread_done[id].store(false, std::memory_order_release);
}
// Start threads
MTThread thread[kNumThreads];
for (int id = 0; id < kNumThreads; id++) {
thread[id].state = &mt;
thread[id].id = id;
thread[id].multiget_batched = multiget_batched_;
env_->StartThread(MTThreadBody, &thread[id]);
}
// Let them run for a while
env_->SleepForMicroseconds(kTestSeconds * 1000000);
// Stop the threads and wait for them to finish
mt.stop.store(true, std::memory_order_release);
for (int id = 0; id < kNumThreads; id++) {
while (mt.thread_done[id].load(std::memory_order_acquire) == false) {
env_->SleepForMicroseconds(100000);
}
}
}
INSTANTIATE_TEST_CASE_P(
MultiThreaded, MultiThreadedDBTest,
::testing::Combine(
::testing::ValuesIn(MultiThreadedDBTest::GenerateOptionConfigs()),
::testing::Bool()));
#endif // ROCKSDB_LITE
// Group commit test:
#if !defined(TRAVIS) && !defined(OS_WIN)
// Disable this test temporarily on Travis and appveyor as it fails
// intermittently. Github issue: #4151
namespace {
static const int kGCNumThreads = 4;
static const int kGCNumKeys = 1000;
struct GCThread {
DB* db;
int id;
std::atomic<bool> done;
};
static void GCThreadBody(void* arg) {
GCThread* t = reinterpret_cast<GCThread*>(arg);
int id = t->id;
DB* db = t->db;
WriteOptions wo;
for (int i = 0; i < kGCNumKeys; ++i) {
std::string kv(ToString(i + id * kGCNumKeys));
ASSERT_OK(db->Put(wo, kv, kv));
}
t->done = true;
}
} // namespace
TEST_F(DBTest, GroupCommitTest) {
do {
Options options = CurrentOptions();
options.env = env_;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
Reopen(options);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"WriteThread::JoinBatchGroup:BeganWaiting",
"DBImpl::WriteImpl:BeforeLeaderEnters"},
{"WriteThread::AwaitState:BlockingWaiting",
"WriteThread::EnterAsBatchGroupLeader:End"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Start threads
GCThread thread[kGCNumThreads];
for (int id = 0; id < kGCNumThreads; id++) {
thread[id].id = id;
thread[id].db = db_;
thread[id].done = false;
env_->StartThread(GCThreadBody, &thread[id]);
}
env_->WaitForJoin();
ASSERT_GT(TestGetTickerCount(options, WRITE_DONE_BY_OTHER), 0);
std::vector<std::string> expected_db;
for (int i = 0; i < kGCNumThreads * kGCNumKeys; ++i) {
expected_db.push_back(ToString(i));
}
std::sort(expected_db.begin(), expected_db.end());
Iterator* itr = db_->NewIterator(ReadOptions());
itr->SeekToFirst();
for (auto x : expected_db) {
ASSERT_TRUE(itr->Valid());
ASSERT_EQ(itr->key().ToString(), x);
ASSERT_EQ(itr->value().ToString(), x);
itr->Next();
}
ASSERT_TRUE(!itr->Valid());
delete itr;
HistogramData hist_data;
options.statistics->histogramData(DB_WRITE, &hist_data);
ASSERT_GT(hist_data.average, 0.0);
} while (ChangeOptions(kSkipNoSeekToLast));
}
#endif // TRAVIS
namespace {
typedef std::map<std::string, std::string> KVMap;
}
class ModelDB : public DB {
public:
class ModelSnapshot : public Snapshot {
public:
KVMap map_;
SequenceNumber GetSequenceNumber() const override {
// no need to call this
assert(false);
return 0;
}
};
explicit ModelDB(const Options& options) : options_(options) {}
using DB::Put;
Status Put(const WriteOptions& o, ColumnFamilyHandle* cf, const Slice& k,
const Slice& v) override {
WriteBatch batch;
batch.Put(cf, k, v);
return Write(o, &batch);
}
using DB::Close;
Status Close() override { return Status::OK(); }
using DB::Delete;
Status Delete(const WriteOptions& o, ColumnFamilyHandle* cf,
const Slice& key) override {
WriteBatch batch;
batch.Delete(cf, key);
return Write(o, &batch);
}
using DB::SingleDelete;
Status SingleDelete(const WriteOptions& o, ColumnFamilyHandle* cf,
const Slice& key) override {
WriteBatch batch;
batch.SingleDelete(cf, key);
return Write(o, &batch);
}
using DB::Merge;
Status Merge(const WriteOptions& o, ColumnFamilyHandle* cf, const Slice& k,
const Slice& v) override {
WriteBatch batch;
batch.Merge(cf, k, v);
return Write(o, &batch);
}
using DB::Get;
Status Get(const ReadOptions& /*options*/, ColumnFamilyHandle* /*cf*/,
const Slice& key, PinnableSlice* /*value*/) override {
return Status::NotSupported(key);
}
using DB::GetMergeOperands;
virtual Status GetMergeOperands(
const ReadOptions& /*options*/, ColumnFamilyHandle* /*column_family*/,
const Slice& key, PinnableSlice* /*slice*/,
GetMergeOperandsOptions* /*merge_operands_options*/,
int* /*number_of_operands*/) override {
return Status::NotSupported(key);
}
using DB::MultiGet;
std::vector<Status> MultiGet(
const ReadOptions& /*options*/,
const std::vector<ColumnFamilyHandle*>& /*column_family*/,
const std::vector<Slice>& keys,
std::vector<std::string>* /*values*/) override {
std::vector<Status> s(keys.size(),
Status::NotSupported("Not implemented."));
return s;
}
#ifndef ROCKSDB_LITE
using DB::IngestExternalFile;
Status IngestExternalFile(
ColumnFamilyHandle* /*column_family*/,
const std::vector<std::string>& /*external_files*/,
const IngestExternalFileOptions& /*options*/) override {
return Status::NotSupported("Not implemented.");
}
using DB::IngestExternalFiles;
Status IngestExternalFiles(
const std::vector<IngestExternalFileArg>& /*args*/) override {
return Status::NotSupported("Not implemented");
}
using DB::CreateColumnFamilyWithImport;
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& /*options*/,
const std::string& /*column_family_name*/,
const ImportColumnFamilyOptions& /*import_options*/,
const ExportImportFilesMetaData& /*metadata*/,
ColumnFamilyHandle** /*handle*/) override {
return Status::NotSupported("Not implemented.");
}
using DB::VerifyChecksum;
Status VerifyChecksum(const ReadOptions&) override {
return Status::NotSupported("Not implemented.");
}
using DB::GetPropertiesOfAllTables;
Status GetPropertiesOfAllTables(
ColumnFamilyHandle* /*column_family*/,
TablePropertiesCollection* /*props*/) override {
return Status();
}
Status GetPropertiesOfTablesInRange(
ColumnFamilyHandle* /*column_family*/, const Range* /*range*/,
std::size_t /*n*/, TablePropertiesCollection* /*props*/) override {
return Status();
}
#endif // ROCKSDB_LITE
using DB::KeyMayExist;
bool KeyMayExist(const ReadOptions& /*options*/,
ColumnFamilyHandle* /*column_family*/, const Slice& /*key*/,
std::string* /*value*/,
bool* value_found = nullptr) override {
if (value_found != nullptr) {
*value_found = false;
}
return true; // Not Supported directly
}
using DB::NewIterator;
Iterator* NewIterator(const ReadOptions& options,
ColumnFamilyHandle* /*column_family*/) override {
if (options.snapshot == nullptr) {
KVMap* saved = new KVMap;
*saved = map_;
return new ModelIter(saved, true);
} else {
const KVMap* snapshot_state =
&(reinterpret_cast<const ModelSnapshot*>(options.snapshot)->map_);
return new ModelIter(snapshot_state, false);
}
}
Status NewIterators(const ReadOptions& /*options*/,
const std::vector<ColumnFamilyHandle*>& /*column_family*/,
std::vector<Iterator*>* /*iterators*/) override {
return Status::NotSupported("Not supported yet");
}
const Snapshot* GetSnapshot() override {
ModelSnapshot* snapshot = new ModelSnapshot;
snapshot->map_ = map_;
return snapshot;
}
void ReleaseSnapshot(const Snapshot* snapshot) override {
delete reinterpret_cast<const ModelSnapshot*>(snapshot);
}
Status Write(const WriteOptions& /*options*/, WriteBatch* batch) override {
class Handler : public WriteBatch::Handler {
public:
KVMap* map_;
void Put(const Slice& key, const Slice& value) override {
(*map_)[key.ToString()] = value.ToString();
}
void Merge(const Slice& /*key*/, const Slice& /*value*/) override {
// ignore merge for now
// (*map_)[key.ToString()] = value.ToString();
}
void Delete(const Slice& key) override { map_->erase(key.ToString()); }
};
Handler handler;
handler.map_ = &map_;
return batch->Iterate(&handler);
}
using DB::GetProperty;
bool GetProperty(ColumnFamilyHandle* /*column_family*/,
const Slice& /*property*/, std::string* /*value*/) override {
return false;
}
using DB::GetIntProperty;
bool GetIntProperty(ColumnFamilyHandle* /*column_family*/,
const Slice& /*property*/, uint64_t* /*value*/) override {
return false;
}
using DB::GetMapProperty;
bool GetMapProperty(ColumnFamilyHandle* /*column_family*/,
const Slice& /*property*/,
std::map<std::string, std::string>* /*value*/) override {
return false;
}
using DB::GetAggregatedIntProperty;
bool GetAggregatedIntProperty(const Slice& /*property*/,
uint64_t* /*value*/) override {
return false;
}
using DB::GetApproximateSizes;
Status GetApproximateSizes(const SizeApproximationOptions& /*options*/,
ColumnFamilyHandle* /*column_family*/,
const Range* /*range*/, int n,
uint64_t* sizes) override {
for (int i = 0; i < n; i++) {
sizes[i] = 0;
}
return Status::OK();
}
using DB::GetApproximateMemTableStats;
void GetApproximateMemTableStats(ColumnFamilyHandle* /*column_family*/,
const Range& /*range*/,
uint64_t* const count,
uint64_t* const size) override {
*count = 0;
*size = 0;
}
using DB::CompactRange;
Status CompactRange(const CompactRangeOptions& /*options*/,
ColumnFamilyHandle* /*column_family*/,
const Slice* /*start*/, const Slice* /*end*/) override {
return Status::NotSupported("Not supported operation.");
}
Status SetDBOptions(
const std::unordered_map<std::string, std::string>& /*new_options*/)
override {
return Status::NotSupported("Not supported operation.");
}
using DB::CompactFiles;
Status CompactFiles(
const CompactionOptions& /*compact_options*/,
ColumnFamilyHandle* /*column_family*/,
const std::vector<std::string>& /*input_file_names*/,
const int /*output_level*/, const int /*output_path_id*/ = -1,
std::vector<std::string>* const /*output_file_names*/ = nullptr,
CompactionJobInfo* /*compaction_job_info*/ = nullptr) override {
return Status::NotSupported("Not supported operation.");
}
Status PauseBackgroundWork() override {
return Status::NotSupported("Not supported operation.");
}
Status ContinueBackgroundWork() override {
return Status::NotSupported("Not supported operation.");
}
Status EnableAutoCompaction(
const std::vector<ColumnFamilyHandle*>& /*column_family_handles*/)
override {
return Status::NotSupported("Not supported operation.");
}
void EnableManualCompaction() override { return; }
void DisableManualCompaction() override { return; }
using DB::NumberLevels;
int NumberLevels(ColumnFamilyHandle* /*column_family*/) override { return 1; }
using DB::MaxMemCompactionLevel;
int MaxMemCompactionLevel(ColumnFamilyHandle* /*column_family*/) override {
return 1;
}
using DB::Level0StopWriteTrigger;
int Level0StopWriteTrigger(ColumnFamilyHandle* /*column_family*/) override {
return -1;
}
const std::string& GetName() const override { return name_; }
Env* GetEnv() const override { return nullptr; }
using DB::GetOptions;
Options GetOptions(ColumnFamilyHandle* /*column_family*/) const override {
return options_;
}
using DB::GetDBOptions;
DBOptions GetDBOptions() const override { return options_; }
using DB::Flush;
Status Flush(const ROCKSDB_NAMESPACE::FlushOptions& /*options*/,
ColumnFamilyHandle* /*column_family*/) override {
Status ret;
return ret;
}
Status Flush(
const ROCKSDB_NAMESPACE::FlushOptions& /*options*/,
const std::vector<ColumnFamilyHandle*>& /*column_families*/) override {
return Status::OK();
}
Status SyncWAL() override { return Status::OK(); }
Status DisableFileDeletions() override { return Status::OK(); }
Status EnableFileDeletions(bool /*force*/) override { return Status::OK(); }
#ifndef ROCKSDB_LITE
Status GetLiveFiles(std::vector<std::string>&, uint64_t* /*size*/,
bool /*flush_memtable*/ = true) override {
return Status::OK();
}
Status GetLiveFilesChecksumInfo(
FileChecksumList* /*checksum_list*/) override {
return Status::OK();
}
Status GetSortedWalFiles(VectorLogPtr& /*files*/) override {
return Status::OK();
}
Status GetCurrentWalFile(
std::unique_ptr<LogFile>* /*current_log_file*/) override {
return Status::OK();
}
virtual Status GetCreationTimeOfOldestFile(
uint64_t* /*creation_time*/) override {
return Status::NotSupported();
}
Status DeleteFile(std::string /*name*/) override { return Status::OK(); }
Status GetUpdatesSince(
ROCKSDB_NAMESPACE::SequenceNumber,
std::unique_ptr<ROCKSDB_NAMESPACE::TransactionLogIterator>*,
const TransactionLogIterator::ReadOptions& /*read_options*/ =
TransactionLogIterator::ReadOptions()) override {
return Status::NotSupported("Not supported in Model DB");
}
void GetColumnFamilyMetaData(ColumnFamilyHandle* /*column_family*/,
ColumnFamilyMetaData* /*metadata*/) override {}
#endif // ROCKSDB_LITE
Status GetDbIdentity(std::string& /*identity*/) const override {
return Status::OK();
}
Status GetDbSessionId(std::string& /*session_id*/) const override {
return Status::OK();
}
SequenceNumber GetLatestSequenceNumber() const override { return 0; }
bool SetPreserveDeletesSequenceNumber(SequenceNumber /*seqnum*/) override {
return true;
}
ColumnFamilyHandle* DefaultColumnFamily() const override { return nullptr; }
private:
class ModelIter : public Iterator {
public:
ModelIter(const KVMap* map, bool owned)
: map_(map), owned_(owned), iter_(map_->end()) {}
~ModelIter() override {
if (owned_) delete map_;
}
bool Valid() const override { return iter_ != map_->end(); }
void SeekToFirst() override { iter_ = map_->begin(); }
void SeekToLast() override {
if (map_->empty()) {
iter_ = map_->end();
} else {
iter_ = map_->find(map_->rbegin()->first);
}
}
void Seek(const Slice& k) override {
iter_ = map_->lower_bound(k.ToString());
}
void SeekForPrev(const Slice& k) override {
iter_ = map_->upper_bound(k.ToString());
Prev();
}
void Next() override { ++iter_; }
void Prev() override {
if (iter_ == map_->begin()) {
iter_ = map_->end();
return;
}
--iter_;
}
Slice key() const override { return iter_->first; }
Slice value() const override { return iter_->second; }
Status status() const override { return Status::OK(); }
private:
const KVMap* const map_;
const bool owned_; // Do we own map_
KVMap::const_iterator iter_;
};
const Options options_;
KVMap map_;
std::string name_ = "";
};
#ifndef ROCKSDB_VALGRIND_RUN
static std::string RandomKey(Random* rnd, int minimum = 0) {
int len;
do {
len = (rnd->OneIn(3)
? 1 // Short sometimes to encourage collisions
: (rnd->OneIn(100) ? rnd->Skewed(10) : rnd->Uniform(10)));
} while (len < minimum);
return test::RandomKey(rnd, len);
}
static bool CompareIterators(int step, DB* model, DB* db,
const Snapshot* model_snap,
const Snapshot* db_snap) {
ReadOptions options;
options.snapshot = model_snap;
Iterator* miter = model->NewIterator(options);
options.snapshot = db_snap;
Iterator* dbiter = db->NewIterator(options);
bool ok = true;
int count = 0;
for (miter->SeekToFirst(), dbiter->SeekToFirst();
ok && miter->Valid() && dbiter->Valid(); miter->Next(), dbiter->Next()) {
count++;
if (miter->key().compare(dbiter->key()) != 0) {
fprintf(stderr, "step %d: Key mismatch: '%s' vs. '%s'\n", step,
EscapeString(miter->key()).c_str(),
EscapeString(dbiter->key()).c_str());
ok = false;
break;
}
if (miter->value().compare(dbiter->value()) != 0) {
fprintf(stderr, "step %d: Value mismatch for key '%s': '%s' vs. '%s'\n",
step, EscapeString(miter->key()).c_str(),
EscapeString(miter->value()).c_str(),
EscapeString(dbiter->value()).c_str());
ok = false;
}
}
if (ok) {
if (miter->Valid() != dbiter->Valid()) {
fprintf(stderr, "step %d: Mismatch at end of iterators: %d vs. %d\n",
step, miter->Valid(), dbiter->Valid());
ok = false;
}
}
delete miter;
delete dbiter;
return ok;
}
class DBTestRandomized : public DBTest,
public ::testing::WithParamInterface<int> {
public:
void SetUp() override { option_config_ = GetParam(); }
static std::vector<int> GenerateOptionConfigs() {
std::vector<int> option_configs;
// skip cuckoo hash as it does not support snapshot.
for (int option_config = kDefault; option_config < kEnd; ++option_config) {
if (!ShouldSkipOptions(option_config,
kSkipDeletesFilterFirst | kSkipNoSeekToLast)) {
option_configs.push_back(option_config);
}
}
option_configs.push_back(kBlockBasedTableWithIndexRestartInterval);
return option_configs;
}
};
INSTANTIATE_TEST_CASE_P(
DBTestRandomized, DBTestRandomized,
::testing::ValuesIn(DBTestRandomized::GenerateOptionConfigs()));
TEST_P(DBTestRandomized, Randomized) {
anon::OptionsOverride options_override;
options_override.skip_policy = kSkipNoSnapshot;
Options options = CurrentOptions(options_override);
DestroyAndReopen(options);
Random rnd(test::RandomSeed() + GetParam());
ModelDB model(options);
const int N = 10000;
const Snapshot* model_snap = nullptr;
const Snapshot* db_snap = nullptr;
std::string k, v;
for (int step = 0; step < N; step++) {
// TODO(sanjay): Test Get() works
int p = rnd.Uniform(100);
int minimum = 0;
if (option_config_ == kHashSkipList || option_config_ == kHashLinkList ||
option_config_ == kPlainTableFirstBytePrefix ||
option_config_ == kBlockBasedTableWithWholeKeyHashIndex ||
option_config_ == kBlockBasedTableWithPrefixHashIndex) {
minimum = 1;
}
if (p < 45) { // Put
k = RandomKey(&rnd, minimum);
v = rnd.RandomString(rnd.OneIn(20) ? 100 + rnd.Uniform(100)
: rnd.Uniform(8));
ASSERT_OK(model.Put(WriteOptions(), k, v));
ASSERT_OK(db_->Put(WriteOptions(), k, v));
} else if (p < 90) { // Delete
k = RandomKey(&rnd, minimum);
ASSERT_OK(model.Delete(WriteOptions(), k));
ASSERT_OK(db_->Delete(WriteOptions(), k));
} else { // Multi-element batch
WriteBatch b;
const int num = rnd.Uniform(8);
for (int i = 0; i < num; i++) {
if (i == 0 || !rnd.OneIn(10)) {
k = RandomKey(&rnd, minimum);
} else {
// Periodically re-use the same key from the previous iter, so
// we have multiple entries in the write batch for the same key
}
if (rnd.OneIn(2)) {
v = rnd.RandomString(rnd.Uniform(10));
b.Put(k, v);
} else {
b.Delete(k);
}
}
ASSERT_OK(model.Write(WriteOptions(), &b));
ASSERT_OK(db_->Write(WriteOptions(), &b));
}
if ((step % 100) == 0) {
// For DB instances that use the hash index + block-based table, the
// iterator will be invalid right when seeking a non-existent key, right
// than return a key that is close to it.
if (option_config_ != kBlockBasedTableWithWholeKeyHashIndex &&
option_config_ != kBlockBasedTableWithPrefixHashIndex) {
ASSERT_TRUE(CompareIterators(step, &model, db_, nullptr, nullptr));
ASSERT_TRUE(CompareIterators(step, &model, db_, model_snap, db_snap));
}
// Save a snapshot from each DB this time that we'll use next
// time we compare things, to make sure the current state is
// preserved with the snapshot
if (model_snap != nullptr) model.ReleaseSnapshot(model_snap);
if (db_snap != nullptr) db_->ReleaseSnapshot(db_snap);
Reopen(options);
ASSERT_TRUE(CompareIterators(step, &model, db_, nullptr, nullptr));
model_snap = model.GetSnapshot();
db_snap = db_->GetSnapshot();
}
}
if (model_snap != nullptr) model.ReleaseSnapshot(model_snap);
if (db_snap != nullptr) db_->ReleaseSnapshot(db_snap);
}
#endif // ROCKSDB_VALGRIND_RUN
TEST_F(DBTest, BlockBasedTablePrefixIndexTest) {
// create a DB with block prefix index
BlockBasedTableOptions table_options;
Options options = CurrentOptions();
table_options.index_type = BlockBasedTableOptions::kHashSearch;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.prefix_extractor.reset(NewFixedPrefixTransform(1));
Reopen(options);
ASSERT_OK(Put("k1", "v1"));
Flush();
ASSERT_OK(Put("k2", "v2"));
// Reopen it without prefix extractor, make sure everything still works.
// RocksDB should just fall back to the binary index.
table_options.index_type = BlockBasedTableOptions::kBinarySearch;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.prefix_extractor.reset();
Reopen(options);
ASSERT_EQ("v1", Get("k1"));
ASSERT_EQ("v2", Get("k2"));
}
TEST_F(DBTest, BlockBasedTablePrefixIndexTotalOrderSeek) {
// create a DB with block prefix index
BlockBasedTableOptions table_options;
Options options = CurrentOptions();
options.max_open_files = 10;
table_options.index_type = BlockBasedTableOptions::kHashSearch;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.prefix_extractor.reset(NewFixedPrefixTransform(1));
// RocksDB sanitize max open files to at least 20. Modify it back.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"SanitizeOptions::AfterChangeMaxOpenFiles", [&](void* arg) {
int* max_open_files = static_cast<int*>(arg);
*max_open_files = 11;
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Reopen(options);
ASSERT_OK(Put("k1", "v1"));
Flush();
CompactRangeOptions cro;
cro.change_level = true;
cro.target_level = 1;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
// Force evict tables
dbfull()->TEST_table_cache()->SetCapacity(0);
// Make table cache to keep one entry.
dbfull()->TEST_table_cache()->SetCapacity(1);
ReadOptions read_options;
read_options.total_order_seek = true;
{
std::unique_ptr<Iterator> iter(db_->NewIterator(read_options));
iter->Seek("k1");
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("k1", iter->key().ToString());
}
// After total order seek, prefix index should still be used.
read_options.total_order_seek = false;
{
std::unique_ptr<Iterator> iter(db_->NewIterator(read_options));
iter->Seek("k1");
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("k1", iter->key().ToString());
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBTest, ChecksumTest) {
BlockBasedTableOptions table_options;
Options options = CurrentOptions();
table_options.checksum = kCRC32c;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
Reopen(options);
ASSERT_OK(Put("a", "b"));
ASSERT_OK(Put("c", "d"));
ASSERT_OK(Flush()); // table with crc checksum
table_options.checksum = kxxHash;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
Reopen(options);
ASSERT_OK(Put("e", "f"));
ASSERT_OK(Put("g", "h"));
ASSERT_OK(Flush()); // table with xxhash checksum
table_options.checksum = kCRC32c;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
Reopen(options);
ASSERT_EQ("b", Get("a"));
ASSERT_EQ("d", Get("c"));
ASSERT_EQ("f", Get("e"));
ASSERT_EQ("h", Get("g"));
table_options.checksum = kCRC32c;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
Reopen(options);
ASSERT_EQ("b", Get("a"));
ASSERT_EQ("d", Get("c"));
ASSERT_EQ("f", Get("e"));
ASSERT_EQ("h", Get("g"));
}
#ifndef ROCKSDB_LITE
TEST_P(DBTestWithParam, FIFOCompactionTest) {
for (int iter = 0; iter < 2; ++iter) {
// first iteration -- auto compaction
// second iteration -- manual compaction
Options options;
options.compaction_style = kCompactionStyleFIFO;
options.write_buffer_size = 100 << 10; // 100KB
options.arena_block_size = 4096;
options.compaction_options_fifo.max_table_files_size = 500 << 10; // 500KB
options.compression = kNoCompression;
options.create_if_missing = true;
options.max_subcompactions = max_subcompactions_;
if (iter == 1) {
options.disable_auto_compactions = true;
}
options = CurrentOptions(options);
DestroyAndReopen(options);
Random rnd(301);
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 110; ++j) {
ASSERT_OK(Put(ToString(i * 100 + j), rnd.RandomString(980)));
}
// flush should happen here
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
}
if (iter == 0) {
ASSERT_OK(dbfull()->TEST_WaitForCompact());
} else {
CompactRangeOptions cro;
cro.exclusive_manual_compaction = exclusive_manual_compaction_;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
}
// only 5 files should survive
ASSERT_EQ(NumTableFilesAtLevel(0), 5);
for (int i = 0; i < 50; ++i) {
// these keys should be deleted in previous compaction
ASSERT_EQ("NOT_FOUND", Get(ToString(i)));
}
}
}
TEST_F(DBTest, FIFOCompactionTestWithCompaction) {
Options options;
options.compaction_style = kCompactionStyleFIFO;
options.write_buffer_size = 20 << 10; // 20K
options.arena_block_size = 4096;
options.compaction_options_fifo.max_table_files_size = 1500 << 10; // 1MB
options.compaction_options_fifo.allow_compaction = true;
options.level0_file_num_compaction_trigger = 6;
options.compression = kNoCompression;
options.create_if_missing = true;
options = CurrentOptions(options);
DestroyAndReopen(options);
Random rnd(301);
for (int i = 0; i < 60; i++) {
// Generate and flush a file about 20KB.
for (int j = 0; j < 20; j++) {
ASSERT_OK(Put(ToString(i * 20 + j), rnd.RandomString(980)));
}
Flush();
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
// It should be compacted to 10 files.
ASSERT_EQ(NumTableFilesAtLevel(0), 10);
for (int i = 0; i < 60; i++) {
// Generate and flush a file about 20KB.
for (int j = 0; j < 20; j++) {
ASSERT_OK(Put(ToString(i * 20 + j + 2000), rnd.RandomString(980)));
}
Flush();
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
// It should be compacted to no more than 20 files.
ASSERT_GT(NumTableFilesAtLevel(0), 10);
ASSERT_LT(NumTableFilesAtLevel(0), 18);
// Size limit is still guaranteed.
ASSERT_LE(SizeAtLevel(0),
options.compaction_options_fifo.max_table_files_size);
}
TEST_F(DBTest, FIFOCompactionStyleWithCompactionAndDelete) {
Options options;
options.compaction_style = kCompactionStyleFIFO;
options.write_buffer_size = 20 << 10; // 20K
options.arena_block_size = 4096;
options.compaction_options_fifo.max_table_files_size = 1500 << 10; // 1MB
options.compaction_options_fifo.allow_compaction = true;
options.level0_file_num_compaction_trigger = 3;
options.compression = kNoCompression;
options.create_if_missing = true;
options = CurrentOptions(options);
DestroyAndReopen(options);
Random rnd(301);
for (int i = 0; i < 3; i++) {
// Each file contains a different key which will be dropped later.
ASSERT_OK(Put("a" + ToString(i), rnd.RandomString(500)));
ASSERT_OK(Put("key" + ToString(i), ""));
ASSERT_OK(Put("z" + ToString(i), rnd.RandomString(500)));
Flush();
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_EQ(NumTableFilesAtLevel(0), 1);
for (int i = 0; i < 3; i++) {
ASSERT_EQ("", Get("key" + ToString(i)));
}
for (int i = 0; i < 3; i++) {
// Each file contains a different key which will be dropped later.
ASSERT_OK(Put("a" + ToString(i), rnd.RandomString(500)));
ASSERT_OK(Delete("key" + ToString(i)));
ASSERT_OK(Put("z" + ToString(i), rnd.RandomString(500)));
Flush();
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_EQ(NumTableFilesAtLevel(0), 2);
for (int i = 0; i < 3; i++) {
ASSERT_EQ("NOT_FOUND", Get("key" + ToString(i)));
}
}
// Check that FIFO-with-TTL is not supported with max_open_files != -1.
TEST_F(DBTest, FIFOCompactionWithTTLAndMaxOpenFilesTest) {
Options options;
options.compaction_style = kCompactionStyleFIFO;
options.create_if_missing = true;
options.ttl = 600; // seconds
// TTL is now supported with max_open_files != -1.
options.max_open_files = 100;
options = CurrentOptions(options);
ASSERT_OK(TryReopen(options));
options.max_open_files = -1;
ASSERT_OK(TryReopen(options));
}
// Check that FIFO-with-TTL is supported only with BlockBasedTableFactory.
TEST_F(DBTest, FIFOCompactionWithTTLAndVariousTableFormatsTest) {
Options options;
options.compaction_style = kCompactionStyleFIFO;
options.create_if_missing = true;
options.ttl = 600; // seconds
options = CurrentOptions(options);
options.table_factory.reset(NewBlockBasedTableFactory());
ASSERT_OK(TryReopen(options));
Destroy(options);
options.table_factory.reset(NewPlainTableFactory());
ASSERT_TRUE(TryReopen(options).IsNotSupported());
Destroy(options);
options.table_factory.reset(NewAdaptiveTableFactory());
ASSERT_TRUE(TryReopen(options).IsNotSupported());
}
TEST_F(DBTest, FIFOCompactionWithTTLTest) {
Options options;
options.compaction_style = kCompactionStyleFIFO;
options.write_buffer_size = 10 << 10; // 10KB
options.arena_block_size = 4096;
options.compression = kNoCompression;
options.create_if_missing = true;
env_->SetMockSleep();
options.env = env_;
// Test to make sure that all files with expired ttl are deleted on next
// manual compaction.
{
// NOTE: Presumed unnecessary and removed: resetting mock time in env
options.compaction_options_fifo.max_table_files_size = 150 << 10; // 150KB
options.compaction_options_fifo.allow_compaction = false;
options.ttl = 1 * 60 * 60 ; // 1 hour
options = CurrentOptions(options);
DestroyAndReopen(options);
Random rnd(301);
for (int i = 0; i < 10; i++) {
// Generate and flush a file about 10KB.
for (int j = 0; j < 10; j++) {
ASSERT_OK(Put(ToString(i * 20 + j), rnd.RandomString(980)));
}
Flush();
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_EQ(NumTableFilesAtLevel(0), 10);
// Sleep for 2 hours -- which is much greater than TTL.
env_->MockSleepForSeconds(2 * 60 * 60);
// Since no flushes and compactions have run, the db should still be in
// the same state even after considerable time has passed.
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(NumTableFilesAtLevel(0), 10);
dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr);
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
}
// Test to make sure that all files with expired ttl are deleted on next
// automatic compaction.
{
options.compaction_options_fifo.max_table_files_size = 150 << 10; // 150KB
options.compaction_options_fifo.allow_compaction = false;
options.ttl = 1 * 60 * 60; // 1 hour
options = CurrentOptions(options);
DestroyAndReopen(options);
Random rnd(301);
for (int i = 0; i < 10; i++) {
// Generate and flush a file about 10KB.
for (int j = 0; j < 10; j++) {
ASSERT_OK(Put(ToString(i * 20 + j), rnd.RandomString(980)));
}
Flush();
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_EQ(NumTableFilesAtLevel(0), 10);
// Sleep for 2 hours -- which is much greater than TTL.
env_->MockSleepForSeconds(2 * 60 * 60);
// Just to make sure that we are in the same state even after sleeping.
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(NumTableFilesAtLevel(0), 10);
// Create 1 more file to trigger TTL compaction. The old files are dropped.
for (int i = 0; i < 1; i++) {
for (int j = 0; j < 10; j++) {
ASSERT_OK(Put(ToString(i * 20 + j), rnd.RandomString(980)));
}
Flush();
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Only the new 10 files remain.
ASSERT_EQ(NumTableFilesAtLevel(0), 1);
ASSERT_LE(SizeAtLevel(0),
options.compaction_options_fifo.max_table_files_size);
}
// Test that shows the fall back to size-based FIFO compaction if TTL-based
// deletion doesn't move the total size to be less than max_table_files_size.
{
options.write_buffer_size = 10 << 10; // 10KB
options.compaction_options_fifo.max_table_files_size = 150 << 10; // 150KB
options.compaction_options_fifo.allow_compaction = false;
options.ttl = 1 * 60 * 60; // 1 hour
options = CurrentOptions(options);
DestroyAndReopen(options);
Random rnd(301);
for (int i = 0; i < 3; i++) {
// Generate and flush a file about 10KB.
for (int j = 0; j < 10; j++) {
ASSERT_OK(Put(ToString(i * 20 + j), rnd.RandomString(980)));
}
Flush();
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_EQ(NumTableFilesAtLevel(0), 3);
// Sleep for 2 hours -- which is much greater than TTL.
env_->MockSleepForSeconds(2 * 60 * 60);
// Just to make sure that we are in the same state even after sleeping.
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(NumTableFilesAtLevel(0), 3);
for (int i = 0; i < 5; i++) {
for (int j = 0; j < 140; j++) {
ASSERT_OK(Put(ToString(i * 20 + j), rnd.RandomString(980)));
}
Flush();
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
// Size limit is still guaranteed.
ASSERT_LE(SizeAtLevel(0),
options.compaction_options_fifo.max_table_files_size);
}
// Test with TTL + Intra-L0 compactions.
{
options.compaction_options_fifo.max_table_files_size = 150 << 10; // 150KB
options.compaction_options_fifo.allow_compaction = true;
options.ttl = 1 * 60 * 60; // 1 hour
options.level0_file_num_compaction_trigger = 6;
options = CurrentOptions(options);
DestroyAndReopen(options);
Random rnd(301);
for (int i = 0; i < 10; i++) {
// Generate and flush a file about 10KB.
for (int j = 0; j < 10; j++) {
ASSERT_OK(Put(ToString(i * 20 + j), rnd.RandomString(980)));
}
Flush();
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
// With Intra-L0 compaction, out of 10 files, 6 files will be compacted to 1
// (due to level0_file_num_compaction_trigger = 6).
// So total files = 1 + remaining 4 = 5.
ASSERT_EQ(NumTableFilesAtLevel(0), 5);
// Sleep for 2 hours -- which is much greater than TTL.
env_->MockSleepForSeconds(2 * 60 * 60);
// Just to make sure that we are in the same state even after sleeping.
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(NumTableFilesAtLevel(0), 5);
// Create 10 more files. The old 5 files are dropped as their ttl expired.
for (int i = 0; i < 10; i++) {
for (int j = 0; j < 10; j++) {
ASSERT_OK(Put(ToString(i * 20 + j), rnd.RandomString(980)));
}
Flush();
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_EQ(NumTableFilesAtLevel(0), 5);
ASSERT_LE(SizeAtLevel(0),
options.compaction_options_fifo.max_table_files_size);
}
// Test with large TTL + Intra-L0 compactions.
// Files dropped based on size, as ttl doesn't kick in.
{
options.write_buffer_size = 20 << 10; // 20K
options.compaction_options_fifo.max_table_files_size = 1500 << 10; // 1.5MB
options.compaction_options_fifo.allow_compaction = true;
options.ttl = 1 * 60 * 60; // 1 hour
options.level0_file_num_compaction_trigger = 6;
options = CurrentOptions(options);
DestroyAndReopen(options);
Random rnd(301);
for (int i = 0; i < 60; i++) {
// Generate and flush a file about 20KB.
for (int j = 0; j < 20; j++) {
ASSERT_OK(Put(ToString(i * 20 + j), rnd.RandomString(980)));
}
Flush();
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
// It should be compacted to 10 files.
ASSERT_EQ(NumTableFilesAtLevel(0), 10);
for (int i = 0; i < 60; i++) {
// Generate and flush a file about 20KB.
for (int j = 0; j < 20; j++) {
ASSERT_OK(Put(ToString(i * 20 + j + 2000), rnd.RandomString(980)));
}
Flush();
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
// It should be compacted to no more than 20 files.
ASSERT_GT(NumTableFilesAtLevel(0), 10);
ASSERT_LT(NumTableFilesAtLevel(0), 18);
// Size limit is still guaranteed.
ASSERT_LE(SizeAtLevel(0),
options.compaction_options_fifo.max_table_files_size);
}
}
#endif // ROCKSDB_LITE
#ifndef ROCKSDB_LITE
/*
* This test is not reliable enough as it heavily depends on disk behavior.
* Disable as it is flaky.
*/
TEST_F(DBTest, DISABLED_RateLimitingTest) {
Options options = CurrentOptions();
options.write_buffer_size = 1 << 20; // 1MB
options.level0_file_num_compaction_trigger = 2;
options.target_file_size_base = 1 << 20; // 1MB
options.max_bytes_for_level_base = 4 << 20; // 4MB
options.max_bytes_for_level_multiplier = 4;
options.compression = kNoCompression;
options.create_if_missing = true;
options.env = env_;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.IncreaseParallelism(4);
DestroyAndReopen(options);
WriteOptions wo;
wo.disableWAL = true;
// # no rate limiting
Random rnd(301);
uint64_t start = env_->NowMicros();
// Write ~96M data
for (int64_t i = 0; i < (96 << 10); ++i) {
ASSERT_OK(Put(rnd.RandomString(32), rnd.RandomString((1 << 10) + 1), wo));
}
uint64_t elapsed = env_->NowMicros() - start;
double raw_rate = env_->bytes_written_ * 1000000.0 / elapsed;
uint64_t rate_limiter_drains =
TestGetTickerCount(options, NUMBER_RATE_LIMITER_DRAINS);
ASSERT_EQ(0, rate_limiter_drains);
Close();
// # rate limiting with 0.7 x threshold
options.rate_limiter.reset(
NewGenericRateLimiter(static_cast<int64_t>(0.7 * raw_rate)));
env_->bytes_written_ = 0;
DestroyAndReopen(options);
start = env_->NowMicros();
// Write ~96M data
for (int64_t i = 0; i < (96 << 10); ++i) {
ASSERT_OK(Put(rnd.RandomString(32), rnd.RandomString((1 << 10) + 1), wo));
}
rate_limiter_drains =
TestGetTickerCount(options, NUMBER_RATE_LIMITER_DRAINS) -
rate_limiter_drains;
elapsed = env_->NowMicros() - start;
Close();
ASSERT_EQ(options.rate_limiter->GetTotalBytesThrough(), env_->bytes_written_);
// Most intervals should've been drained (interval time is 100ms, elapsed is
// micros)
ASSERT_GT(rate_limiter_drains, 0);
ASSERT_LE(rate_limiter_drains, elapsed / 100000 + 1);
double ratio = env_->bytes_written_ * 1000000 / elapsed / raw_rate;
fprintf(stderr, "write rate ratio = %.2lf, expected 0.7\n", ratio);
ASSERT_TRUE(ratio < 0.8);
// # rate limiting with half of the raw_rate
options.rate_limiter.reset(
NewGenericRateLimiter(static_cast<int64_t>(raw_rate / 2)));
env_->bytes_written_ = 0;
DestroyAndReopen(options);
start = env_->NowMicros();
// Write ~96M data
for (int64_t i = 0; i < (96 << 10); ++i) {
ASSERT_OK(Put(rnd.RandomString(32), rnd.RandomString((1 << 10) + 1), wo));
}
elapsed = env_->NowMicros() - start;
rate_limiter_drains =
TestGetTickerCount(options, NUMBER_RATE_LIMITER_DRAINS) -
rate_limiter_drains;
Close();
ASSERT_EQ(options.rate_limiter->GetTotalBytesThrough(), env_->bytes_written_);
// Most intervals should've been drained (interval time is 100ms, elapsed is
// micros)
ASSERT_GT(rate_limiter_drains, elapsed / 100000 / 2);
ASSERT_LE(rate_limiter_drains, elapsed / 100000 + 1);
ratio = env_->bytes_written_ * 1000000 / elapsed / raw_rate;
fprintf(stderr, "write rate ratio = %.2lf, expected 0.5\n", ratio);
ASSERT_LT(ratio, 0.6);
}
TEST_F(DBTest, TableOptionsSanitizeTest) {
Options options = CurrentOptions();
options.create_if_missing = true;
DestroyAndReopen(options);
ASSERT_EQ(db_->GetOptions().allow_mmap_reads, false);
options.table_factory.reset(NewPlainTableFactory());
options.prefix_extractor.reset(NewNoopTransform());
Destroy(options);
ASSERT_TRUE(!TryReopen(options).IsNotSupported());
// Test for check of prefix_extractor when hash index is used for
// block-based table
BlockBasedTableOptions to;
to.index_type = BlockBasedTableOptions::kHashSearch;
options = CurrentOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(to));
ASSERT_TRUE(TryReopen(options).IsInvalidArgument());
options.prefix_extractor.reset(NewFixedPrefixTransform(1));
ASSERT_OK(TryReopen(options));
}
TEST_F(DBTest, ConcurrentMemtableNotSupported) {
Options options = CurrentOptions();
options.allow_concurrent_memtable_write = true;
options.soft_pending_compaction_bytes_limit = 0;
options.hard_pending_compaction_bytes_limit = 100;
options.create_if_missing = true;
DestroyDB(dbname_, options);
options.memtable_factory.reset(NewHashLinkListRepFactory(4, 0, 3, true, 4));
ASSERT_NOK(TryReopen(options));
options.memtable_factory.reset(new SkipListFactory);
ASSERT_OK(TryReopen(options));
ColumnFamilyOptions cf_options(options);
cf_options.memtable_factory.reset(
NewHashLinkListRepFactory(4, 0, 3, true, 4));
ColumnFamilyHandle* handle;
ASSERT_NOK(db_->CreateColumnFamily(cf_options, "name", &handle));
}
#endif // ROCKSDB_LITE
TEST_F(DBTest, SanitizeNumThreads) {
for (int attempt = 0; attempt < 2; attempt++) {
const size_t kTotalTasks = 8;
test::SleepingBackgroundTask sleeping_tasks[kTotalTasks];
Options options = CurrentOptions();
if (attempt == 0) {
options.max_background_compactions = 3;
options.max_background_flushes = 2;
}
options.create_if_missing = true;
DestroyAndReopen(options);
for (size_t i = 0; i < kTotalTasks; i++) {
// Insert 5 tasks to low priority queue and 5 tasks to high priority queue
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask,
&sleeping_tasks[i],
(i < 4) ? Env::Priority::LOW : Env::Priority::HIGH);
}
// Wait until 10s for they are scheduled.
for (int i = 0; i < 10000; i++) {
if (options.env->GetThreadPoolQueueLen(Env::Priority::LOW) <= 1 &&
options.env->GetThreadPoolQueueLen(Env::Priority::HIGH) <= 2) {
break;
}
env_->SleepForMicroseconds(1000);
}
// pool size 3, total task 4. Queue size should be 1.
ASSERT_EQ(1U, options.env->GetThreadPoolQueueLen(Env::Priority::LOW));
// pool size 2, total task 4. Queue size should be 2.
ASSERT_EQ(2U, options.env->GetThreadPoolQueueLen(Env::Priority::HIGH));
for (size_t i = 0; i < kTotalTasks; i++) {
sleeping_tasks[i].WakeUp();
sleeping_tasks[i].WaitUntilDone();
}
ASSERT_OK(Put("abc", "def"));
ASSERT_EQ("def", Get("abc"));
Flush();
ASSERT_EQ("def", Get("abc"));
}
}
TEST_F(DBTest, WriteSingleThreadEntry) {
std::vector<port::Thread> threads;
dbfull()->TEST_LockMutex();
auto w = dbfull()->TEST_BeginWrite();
threads.emplace_back([&] { Put("a", "b"); });
env_->SleepForMicroseconds(10000);
threads.emplace_back([&] { Flush(); });
env_->SleepForMicroseconds(10000);
dbfull()->TEST_UnlockMutex();
dbfull()->TEST_LockMutex();
dbfull()->TEST_EndWrite(w);
dbfull()->TEST_UnlockMutex();
for (auto& t : threads) {
t.join();
}
}
TEST_F(DBTest, ConcurrentFlushWAL) {
const size_t cnt = 100;
Options options;
WriteOptions wopt;
ReadOptions ropt;
for (bool two_write_queues : {false, true}) {
for (bool manual_wal_flush : {false, true}) {
options.two_write_queues = two_write_queues;
options.manual_wal_flush = manual_wal_flush;
options.create_if_missing = true;
DestroyAndReopen(options);
std::vector<port::Thread> threads;
threads.emplace_back([&] {
for (size_t i = 0; i < cnt; i++) {
auto istr = ToString(i);
db_->Put(wopt, db_->DefaultColumnFamily(), "a" + istr, "b" + istr);
}
});
if (two_write_queues) {
threads.emplace_back([&] {
for (size_t i = cnt; i < 2 * cnt; i++) {
auto istr = ToString(i);
WriteBatch batch;
batch.Put("a" + istr, "b" + istr);
dbfull()->WriteImpl(wopt, &batch, nullptr, nullptr, 0, true);
}
});
}
threads.emplace_back([&] {
for (size_t i = 0; i < cnt * 100; i++) { // FlushWAL is faster than Put
db_->FlushWAL(false);
}
});
for (auto& t : threads) {
t.join();
}
options.create_if_missing = false;
// Recover from the wal and make sure that it is not corrupted
Reopen(options);
for (size_t i = 0; i < cnt; i++) {
PinnableSlice pval;
auto istr = ToString(i);
ASSERT_OK(
db_->Get(ropt, db_->DefaultColumnFamily(), "a" + istr, &pval));
ASSERT_TRUE(pval == ("b" + istr));
}
}
}
}
#ifndef ROCKSDB_LITE
TEST_F(DBTest, DynamicMemtableOptions) {
const uint64_t k64KB = 1 << 16;
const uint64_t k128KB = 1 << 17;
const uint64_t k5KB = 5 * 1024;
Options options;
options.env = env_;
options.create_if_missing = true;
options.compression = kNoCompression;
options.max_background_compactions = 1;
options.write_buffer_size = k64KB;
options.arena_block_size = 16 * 1024;
options.max_write_buffer_number = 2;
// Don't trigger compact/slowdown/stop
options.level0_file_num_compaction_trigger = 1024;
options.level0_slowdown_writes_trigger = 1024;
options.level0_stop_writes_trigger = 1024;
DestroyAndReopen(options);
auto gen_l0_kb = [this](int size) {
const int kNumPutsBeforeWaitForFlush = 64;
Random rnd(301);
for (int i = 0; i < size; i++) {
ASSERT_OK(Put(Key(i), rnd.RandomString(1024)));
// The following condition prevents a race condition between flush jobs
// acquiring work and this thread filling up multiple memtables. Without
// this, the flush might produce less files than expected because
// multiple memtables are flushed into a single L0 file. This race
// condition affects assertion (A).
if (i % kNumPutsBeforeWaitForFlush == kNumPutsBeforeWaitForFlush - 1) {
dbfull()->TEST_WaitForFlushMemTable();
}
}
dbfull()->TEST_WaitForFlushMemTable();
};
// Test write_buffer_size
gen_l0_kb(64);
ASSERT_EQ(NumTableFilesAtLevel(0), 1);
ASSERT_LT(SizeAtLevel(0), k64KB + k5KB);
ASSERT_GT(SizeAtLevel(0), k64KB - k5KB * 2);
// Clean up L0
dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr);
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
// Increase buffer size
ASSERT_OK(dbfull()->SetOptions({
{"write_buffer_size", "131072"},
}));
// The existing memtable inflated 64KB->128KB when we invoked SetOptions().
// Write 192KB, we should have a 128KB L0 file and a memtable with 64KB data.
gen_l0_kb(192);
ASSERT_EQ(NumTableFilesAtLevel(0), 1); // (A)
ASSERT_LT(SizeAtLevel(0), k128KB + 2 * k5KB);
ASSERT_GT(SizeAtLevel(0), k128KB - 4 * k5KB);
// Decrease buffer size below current usage
ASSERT_OK(dbfull()->SetOptions({
{"write_buffer_size", "65536"},
}));
// The existing memtable became eligible for flush when we reduced its
// capacity to 64KB. Two keys need to be added to trigger flush: first causes
// memtable to be marked full, second schedules the flush. Then we should have
// a 128KB L0 file, a 64KB L0 file, and a memtable with just one key.
gen_l0_kb(2);
ASSERT_EQ(NumTableFilesAtLevel(0), 2);
ASSERT_LT(SizeAtLevel(0), k128KB + k64KB + 2 * k5KB);
ASSERT_GT(SizeAtLevel(0), k128KB + k64KB - 4 * k5KB);
// Test max_write_buffer_number
// Block compaction thread, which will also block the flushes because
// max_background_flushes == 0, so flushes are getting executed by the
// compaction thread
env_->SetBackgroundThreads(1, Env::LOW);
test::SleepingBackgroundTask sleeping_task_low;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
// Start from scratch and disable compaction/flush. Flush can only happen
// during compaction but trigger is pretty high
options.disable_auto_compactions = true;
DestroyAndReopen(options);
env_->SetBackgroundThreads(0, Env::HIGH);
// Put until writes are stopped, bounded by 256 puts. We should see stop at
// ~128KB
int count = 0;
Random rnd(301);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::DelayWrite:Wait",
[&](void* /*arg*/) { sleeping_task_low.WakeUp(); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
while (!sleeping_task_low.WokenUp() && count < 256) {
ASSERT_OK(Put(Key(count), rnd.RandomString(1024), WriteOptions()));
count++;
}
ASSERT_GT(static_cast<double>(count), 128 * 0.8);
ASSERT_LT(static_cast<double>(count), 128 * 1.2);
sleeping_task_low.WaitUntilDone();
// Increase
ASSERT_OK(dbfull()->SetOptions({
{"max_write_buffer_number", "8"},
}));
// Clean up memtable and L0
dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr);
sleeping_task_low.Reset();
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
count = 0;
while (!sleeping_task_low.WokenUp() && count < 1024) {
ASSERT_OK(Put(Key(count), rnd.RandomString(1024), WriteOptions()));
count++;
}
// Windows fails this test. Will tune in the future and figure out
// approp number
#ifndef OS_WIN
ASSERT_GT(static_cast<double>(count), 512 * 0.8);
ASSERT_LT(static_cast<double>(count), 512 * 1.2);
#endif
sleeping_task_low.WaitUntilDone();
// Decrease
ASSERT_OK(dbfull()->SetOptions({
{"max_write_buffer_number", "4"},
}));
// Clean up memtable and L0
dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr);
sleeping_task_low.Reset();
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
count = 0;
while (!sleeping_task_low.WokenUp() && count < 1024) {
ASSERT_OK(Put(Key(count), rnd.RandomString(1024), WriteOptions()));
count++;
}
// Windows fails this test. Will tune in the future and figure out
// approp number
#ifndef OS_WIN
ASSERT_GT(static_cast<double>(count), 256 * 0.8);
ASSERT_LT(static_cast<double>(count), 266 * 1.2);
#endif
sleeping_task_low.WaitUntilDone();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
#endif // ROCKSDB_LITE
#ifdef ROCKSDB_USING_THREAD_STATUS
namespace {
void VerifyOperationCount(Env* env, ThreadStatus::OperationType op_type,
int expected_count) {
int op_count = 0;
std::vector<ThreadStatus> thread_list;
ASSERT_OK(env->GetThreadList(&thread_list));
for (auto thread : thread_list) {
if (thread.operation_type == op_type) {
op_count++;
}
}
ASSERT_EQ(op_count, expected_count);
}
} // namespace
TEST_F(DBTest, GetThreadStatus) {
Options options;
options.env = env_;
options.enable_thread_tracking = true;
TryReopen(options);
std::vector<ThreadStatus> thread_list;
Status s = env_->GetThreadList(&thread_list);
for (int i = 0; i < 2; ++i) {
// repeat the test with differet number of high / low priority threads
const int kTestCount = 3;
const unsigned int kHighPriCounts[kTestCount] = {3, 2, 5};
const unsigned int kLowPriCounts[kTestCount] = {10, 15, 3};
const unsigned int kBottomPriCounts[kTestCount] = {2, 1, 4};
for (int test = 0; test < kTestCount; ++test) {
// Change the number of threads in high / low priority pool.
env_->SetBackgroundThreads(kHighPriCounts[test], Env::HIGH);
env_->SetBackgroundThreads(kLowPriCounts[test], Env::LOW);
env_->SetBackgroundThreads(kBottomPriCounts[test], Env::BOTTOM);
// Wait to ensure the all threads has been registered
unsigned int thread_type_counts[ThreadStatus::NUM_THREAD_TYPES];
// TODO(ajkr): it'd be better if SetBackgroundThreads returned only after
// all threads have been registered.
// Try up to 60 seconds.
for (int num_try = 0; num_try < 60000; num_try++) {
env_->SleepForMicroseconds(1000);
thread_list.clear();
s = env_->GetThreadList(&thread_list);
ASSERT_OK(s);
memset(thread_type_counts, 0, sizeof(thread_type_counts));
for (auto thread : thread_list) {
ASSERT_LT(thread.thread_type, ThreadStatus::NUM_THREAD_TYPES);
thread_type_counts[thread.thread_type]++;
}
if (thread_type_counts[ThreadStatus::HIGH_PRIORITY] ==
kHighPriCounts[test] &&
thread_type_counts[ThreadStatus::LOW_PRIORITY] ==
kLowPriCounts[test] &&
thread_type_counts[ThreadStatus::BOTTOM_PRIORITY] ==
kBottomPriCounts[test]) {
break;
}
}
// Verify the number of high-priority threads
ASSERT_EQ(thread_type_counts[ThreadStatus::HIGH_PRIORITY],
kHighPriCounts[test]);
// Verify the number of low-priority threads
ASSERT_EQ(thread_type_counts[ThreadStatus::LOW_PRIORITY],
kLowPriCounts[test]);
// Verify the number of bottom-priority threads
ASSERT_EQ(thread_type_counts[ThreadStatus::BOTTOM_PRIORITY],
kBottomPriCounts[test]);
}
if (i == 0) {
// repeat the test with multiple column families
CreateAndReopenWithCF({"pikachu", "about-to-remove"}, options);
env_->GetThreadStatusUpdater()->TEST_VerifyColumnFamilyInfoMap(handles_,
true);
}
}
db_->DropColumnFamily(handles_[2]);
delete handles_[2];
handles_.erase(handles_.begin() + 2);
env_->GetThreadStatusUpdater()->TEST_VerifyColumnFamilyInfoMap(handles_,
true);
Close();
env_->GetThreadStatusUpdater()->TEST_VerifyColumnFamilyInfoMap(handles_,
true);
}
TEST_F(DBTest, DisableThreadStatus) {
Options options;
options.env = env_;
options.enable_thread_tracking = false;
TryReopen(options);
CreateAndReopenWithCF({"pikachu", "about-to-remove"}, options);
// Verify non of the column family info exists
env_->GetThreadStatusUpdater()->TEST_VerifyColumnFamilyInfoMap(handles_,
false);
}
TEST_F(DBTest, ThreadStatusFlush) {
Options options;
options.env = env_;
options.write_buffer_size = 100000; // Small write buffer
options.enable_thread_tracking = true;
options = CurrentOptions(options);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency({
{"FlushJob::FlushJob()", "DBTest::ThreadStatusFlush:1"},
{"DBTest::ThreadStatusFlush:2", "FlushJob::WriteLevel0Table"},
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
CreateAndReopenWithCF({"pikachu"}, options);
VerifyOperationCount(env_, ThreadStatus::OP_FLUSH, 0);
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_EQ("v1", Get(1, "foo"));
VerifyOperationCount(env_, ThreadStatus::OP_FLUSH, 0);
uint64_t num_running_flushes = 0;
db_->GetIntProperty(DB::Properties::kNumRunningFlushes, &num_running_flushes);
ASSERT_EQ(num_running_flushes, 0);
Put(1, "k1", std::string(100000, 'x')); // Fill memtable
Put(1, "k2", std::string(100000, 'y')); // Trigger flush
// The first sync point is to make sure there's one flush job
// running when we perform VerifyOperationCount().
TEST_SYNC_POINT("DBTest::ThreadStatusFlush:1");
VerifyOperationCount(env_, ThreadStatus::OP_FLUSH, 1);
db_->GetIntProperty(DB::Properties::kNumRunningFlushes, &num_running_flushes);
ASSERT_EQ(num_running_flushes, 1);
// This second sync point is to ensure the flush job will not
// be completed until we already perform VerifyOperationCount().
TEST_SYNC_POINT("DBTest::ThreadStatusFlush:2");
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_P(DBTestWithParam, ThreadStatusSingleCompaction) {
const int kTestKeySize = 16;
const int kTestValueSize = 984;
const int kEntrySize = kTestKeySize + kTestValueSize;
const int kEntriesPerBuffer = 100;
Options options;
options.create_if_missing = true;
options.write_buffer_size = kEntrySize * kEntriesPerBuffer;
options.compaction_style = kCompactionStyleLevel;
options.target_file_size_base = options.write_buffer_size;
options.max_bytes_for_level_base = options.target_file_size_base * 2;
options.max_bytes_for_level_multiplier = 2;
options.compression = kNoCompression;
options = CurrentOptions(options);
options.env = env_;
options.enable_thread_tracking = true;
const int kNumL0Files = 4;
options.level0_file_num_compaction_trigger = kNumL0Files;
options.max_subcompactions = max_subcompactions_;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency({
{"DBTest::ThreadStatusSingleCompaction:0", "DBImpl::BGWorkCompaction"},
{"CompactionJob::Run():Start", "DBTest::ThreadStatusSingleCompaction:1"},
{"DBTest::ThreadStatusSingleCompaction:2", "CompactionJob::Run():End"},
});
for (int tests = 0; tests < 2; ++tests) {
DestroyAndReopen(options);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearTrace();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Random rnd(301);
// The Put Phase.
for (int file = 0; file < kNumL0Files; ++file) {
for (int key = 0; key < kEntriesPerBuffer; ++key) {
ASSERT_OK(Put(ToString(key + file * kEntriesPerBuffer),
rnd.RandomString(kTestValueSize)));
}
Flush();
}
// This makes sure a compaction won't be scheduled until
// we have done with the above Put Phase.
uint64_t num_running_compactions = 0;
db_->GetIntProperty(DB::Properties::kNumRunningCompactions,
&num_running_compactions);
ASSERT_EQ(num_running_compactions, 0);
TEST_SYNC_POINT("DBTest::ThreadStatusSingleCompaction:0");
ASSERT_GE(NumTableFilesAtLevel(0),
options.level0_file_num_compaction_trigger);
// This makes sure at least one compaction is running.
TEST_SYNC_POINT("DBTest::ThreadStatusSingleCompaction:1");
if (options.enable_thread_tracking) {
// expecting one single L0 to L1 compaction
VerifyOperationCount(env_, ThreadStatus::OP_COMPACTION, 1);
} else {
// If thread tracking is not enabled, compaction count should be 0.
VerifyOperationCount(env_, ThreadStatus::OP_COMPACTION, 0);
}
db_->GetIntProperty(DB::Properties::kNumRunningCompactions,
&num_running_compactions);
ASSERT_EQ(num_running_compactions, 1);
// TODO(yhchiang): adding assert to verify each compaction stage.
TEST_SYNC_POINT("DBTest::ThreadStatusSingleCompaction:2");
// repeat the test with disabling thread tracking.
options.enable_thread_tracking = false;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
}
TEST_P(DBTestWithParam, PreShutdownManualCompaction) {
Options options = CurrentOptions();
options.max_subcompactions = max_subcompactions_;
CreateAndReopenWithCF({"pikachu"}, options);
// iter - 0 with 7 levels
// iter - 1 with 3 levels
for (int iter = 0; iter < 2; ++iter) {
MakeTables(3, "p", "q", 1);
ASSERT_EQ("1,1,1", FilesPerLevel(1));
// Compaction range falls before files
Compact(1, "", "c");
ASSERT_EQ("1,1,1", FilesPerLevel(1));
// Compaction range falls after files
Compact(1, "r", "z");
ASSERT_EQ("1,1,1", FilesPerLevel(1));
// Compaction range overlaps files
Compact(1, "p", "q");
ASSERT_EQ("0,0,1", FilesPerLevel(1));
// Populate a different range
MakeTables(3, "c", "e", 1);
ASSERT_EQ("1,1,2", FilesPerLevel(1));
// Compact just the new range
Compact(1, "b", "f");
ASSERT_EQ("0,0,2", FilesPerLevel(1));
// Compact all
MakeTables(1, "a", "z", 1);
ASSERT_EQ("1,0,2", FilesPerLevel(1));
CancelAllBackgroundWork(db_);
db_->CompactRange(CompactRangeOptions(), handles_[1], nullptr, nullptr);
ASSERT_EQ("1,0,2", FilesPerLevel(1));
if (iter == 0) {
options = CurrentOptions();
options.num_levels = 3;
options.create_if_missing = true;
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
}
}
}
TEST_F(DBTest, PreShutdownFlush) {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "key", "value"));
CancelAllBackgroundWork(db_);
Status s =
db_->CompactRange(CompactRangeOptions(), handles_[1], nullptr, nullptr);
ASSERT_TRUE(s.IsShutdownInProgress());
}
TEST_P(DBTestWithParam, PreShutdownMultipleCompaction) {
const int kTestKeySize = 16;
const int kTestValueSize = 984;
const int kEntrySize = kTestKeySize + kTestValueSize;
const int kEntriesPerBuffer = 40;
const int kNumL0Files = 4;
const int kHighPriCount = 3;
const int kLowPriCount = 5;
env_->SetBackgroundThreads(kHighPriCount, Env::HIGH);
env_->SetBackgroundThreads(kLowPriCount, Env::LOW);
Options options;
options.create_if_missing = true;
options.write_buffer_size = kEntrySize * kEntriesPerBuffer;
options.compaction_style = kCompactionStyleLevel;
options.target_file_size_base = options.write_buffer_size;
options.max_bytes_for_level_base =
options.target_file_size_base * kNumL0Files;
options.compression = kNoCompression;
options = CurrentOptions(options);
options.env = env_;
options.enable_thread_tracking = true;
options.level0_file_num_compaction_trigger = kNumL0Files;
options.max_bytes_for_level_multiplier = 2;
options.max_background_compactions = kLowPriCount;
options.level0_stop_writes_trigger = 1 << 10;
options.level0_slowdown_writes_trigger = 1 << 10;
options.max_subcompactions = max_subcompactions_;
TryReopen(options);
Random rnd(301);
std::vector<ThreadStatus> thread_list;
// Delay both flush and compaction
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"FlushJob::FlushJob()", "CompactionJob::Run():Start"},
{"CompactionJob::Run():Start",
"DBTest::PreShutdownMultipleCompaction:Preshutdown"},
{"CompactionJob::Run():Start",
"DBTest::PreShutdownMultipleCompaction:VerifyCompaction"},
{"DBTest::PreShutdownMultipleCompaction:Preshutdown",
"CompactionJob::Run():End"},
{"CompactionJob::Run():End",
"DBTest::PreShutdownMultipleCompaction:VerifyPreshutdown"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Make rocksdb busy
int key = 0;
// check how many threads are doing compaction using GetThreadList
int operation_count[ThreadStatus::NUM_OP_TYPES] = {0};
for (int file = 0; file < 16 * kNumL0Files; ++file) {
for (int k = 0; k < kEntriesPerBuffer; ++k) {
ASSERT_OK(Put(ToString(key++), rnd.RandomString(kTestValueSize)));
}
Status s = env_->GetThreadList(&thread_list);
for (auto thread : thread_list) {
operation_count[thread.operation_type]++;
}
// Speed up the test
if (operation_count[ThreadStatus::OP_FLUSH] > 1 &&
operation_count[ThreadStatus::OP_COMPACTION] >
0.6 * options.max_background_compactions) {
break;
}
if (file == 15 * kNumL0Files) {
TEST_SYNC_POINT("DBTest::PreShutdownMultipleCompaction:Preshutdown");
}
}
TEST_SYNC_POINT("DBTest::PreShutdownMultipleCompaction:Preshutdown");
ASSERT_GE(operation_count[ThreadStatus::OP_COMPACTION], 1);
CancelAllBackgroundWork(db_);
TEST_SYNC_POINT("DBTest::PreShutdownMultipleCompaction:VerifyPreshutdown");
dbfull()->TEST_WaitForCompact();
// Record the number of compactions at a time.
for (int i = 0; i < ThreadStatus::NUM_OP_TYPES; ++i) {
operation_count[i] = 0;
}
Status s = env_->GetThreadList(&thread_list);
for (auto thread : thread_list) {
operation_count[thread.operation_type]++;
}
ASSERT_EQ(operation_count[ThreadStatus::OP_COMPACTION], 0);
}
TEST_P(DBTestWithParam, PreShutdownCompactionMiddle) {
const int kTestKeySize = 16;
const int kTestValueSize = 984;
const int kEntrySize = kTestKeySize + kTestValueSize;
const int kEntriesPerBuffer = 40;
const int kNumL0Files = 4;
const int kHighPriCount = 3;
const int kLowPriCount = 5;
env_->SetBackgroundThreads(kHighPriCount, Env::HIGH);
env_->SetBackgroundThreads(kLowPriCount, Env::LOW);
Options options;
options.create_if_missing = true;
options.write_buffer_size = kEntrySize * kEntriesPerBuffer;
options.compaction_style = kCompactionStyleLevel;
options.target_file_size_base = options.write_buffer_size;
options.max_bytes_for_level_base =
options.target_file_size_base * kNumL0Files;
options.compression = kNoCompression;
options = CurrentOptions(options);
options.env = env_;
options.enable_thread_tracking = true;
options.level0_file_num_compaction_trigger = kNumL0Files;
options.max_bytes_for_level_multiplier = 2;
options.max_background_compactions = kLowPriCount;
options.level0_stop_writes_trigger = 1 << 10;
options.level0_slowdown_writes_trigger = 1 << 10;
options.max_subcompactions = max_subcompactions_;
TryReopen(options);
Random rnd(301);
std::vector<ThreadStatus> thread_list;
// Delay both flush and compaction
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBTest::PreShutdownCompactionMiddle:Preshutdown",
"CompactionJob::Run():Inprogress"},
{"CompactionJob::Run():Start",
"DBTest::PreShutdownCompactionMiddle:VerifyCompaction"},
{"CompactionJob::Run():Inprogress", "CompactionJob::Run():End"},
{"CompactionJob::Run():End",
"DBTest::PreShutdownCompactionMiddle:VerifyPreshutdown"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Make rocksdb busy
int key = 0;
// check how many threads are doing compaction using GetThreadList
int operation_count[ThreadStatus::NUM_OP_TYPES] = {0};
for (int file = 0; file < 16 * kNumL0Files; ++file) {
for (int k = 0; k < kEntriesPerBuffer; ++k) {
ASSERT_OK(Put(ToString(key++), rnd.RandomString(kTestValueSize)));
}
Status s = env_->GetThreadList(&thread_list);
for (auto thread : thread_list) {
operation_count[thread.operation_type]++;
}
// Speed up the test
if (operation_count[ThreadStatus::OP_FLUSH] > 1 &&
operation_count[ThreadStatus::OP_COMPACTION] >
0.6 * options.max_background_compactions) {
break;
}
if (file == 15 * kNumL0Files) {
TEST_SYNC_POINT("DBTest::PreShutdownCompactionMiddle:VerifyCompaction");
}
}
ASSERT_GE(operation_count[ThreadStatus::OP_COMPACTION], 1);
CancelAllBackgroundWork(db_);
TEST_SYNC_POINT("DBTest::PreShutdownCompactionMiddle:Preshutdown");
TEST_SYNC_POINT("DBTest::PreShutdownCompactionMiddle:VerifyPreshutdown");
dbfull()->TEST_WaitForCompact();
// Record the number of compactions at a time.
for (int i = 0; i < ThreadStatus::NUM_OP_TYPES; ++i) {
operation_count[i] = 0;
}
Status s = env_->GetThreadList(&thread_list);
for (auto thread : thread_list) {
operation_count[thread.operation_type]++;
}
ASSERT_EQ(operation_count[ThreadStatus::OP_COMPACTION], 0);
}
#endif // ROCKSDB_USING_THREAD_STATUS
#ifndef ROCKSDB_LITE
TEST_F(DBTest, FlushOnDestroy) {
WriteOptions wo;
wo.disableWAL = true;
ASSERT_OK(Put("foo", "v1", wo));
CancelAllBackgroundWork(db_);
}
TEST_F(DBTest, DynamicLevelCompressionPerLevel) {
if (!Snappy_Supported()) {
return;
}
const int kNKeys = 120;
int keys[kNKeys];
for (int i = 0; i < kNKeys; i++) {
keys[i] = i;
}
RandomShuffle(std::begin(keys), std::end(keys));
Random rnd(301);
Options options;
options.create_if_missing = true;
options.db_write_buffer_size = 20480;
options.write_buffer_size = 20480;
options.max_write_buffer_number = 2;
options.level0_file_num_compaction_trigger = 2;
options.level0_slowdown_writes_trigger = 2;
options.level0_stop_writes_trigger = 2;
options.target_file_size_base = 20480;
options.level_compaction_dynamic_level_bytes = true;
options.max_bytes_for_level_base = 102400;
options.max_bytes_for_level_multiplier = 4;
options.max_background_compactions = 1;
options.num_levels = 5;
options.compression_per_level.resize(3);
options.compression_per_level[0] = kNoCompression;
options.compression_per_level[1] = kNoCompression;
options.compression_per_level[2] = kSnappyCompression;
OnFileDeletionListener* listener = new OnFileDeletionListener();
options.listeners.emplace_back(listener);
DestroyAndReopen(options);
// Insert more than 80K. L4 should be base level. Neither L0 nor L4 should
// be compressed, so total data size should be more than 80K.
for (int i = 0; i < 20; i++) {
ASSERT_OK(Put(Key(keys[i]), CompressibleString(&rnd, 4000)));
}
Flush();
dbfull()->TEST_WaitForCompact();
ASSERT_EQ(NumTableFilesAtLevel(1), 0);
ASSERT_EQ(NumTableFilesAtLevel(2), 0);
ASSERT_EQ(NumTableFilesAtLevel(3), 0);
// Assuming each files' metadata is at least 50 bytes/
ASSERT_GT(SizeAtLevel(0) + SizeAtLevel(4), 20U * 4000U + 50U * 4);
// Insert 400KB. Some data will be compressed
for (int i = 21; i < 120; i++) {
ASSERT_OK(Put(Key(keys[i]), CompressibleString(&rnd, 4000)));
}
Flush();
dbfull()->TEST_WaitForCompact();
ASSERT_EQ(NumTableFilesAtLevel(1), 0);
ASSERT_EQ(NumTableFilesAtLevel(2), 0);
ASSERT_LT(SizeAtLevel(0) + SizeAtLevel(3) + SizeAtLevel(4),
120U * 4000U + 50U * 24);
// Make sure data in files in L3 is not compacted by removing all files
// in L4 and calculate number of rows
ASSERT_OK(dbfull()->SetOptions({
{"disable_auto_compactions", "true"},
}));
ColumnFamilyMetaData cf_meta;
db_->GetColumnFamilyMetaData(&cf_meta);
for (auto file : cf_meta.levels[4].files) {
listener->SetExpectedFileName(dbname_ + file.name);
ASSERT_OK(dbfull()->DeleteFile(file.name));
}
listener->VerifyMatchedCount(cf_meta.levels[4].files.size());
int num_keys = 0;
std::unique_ptr<Iterator> iter(db_->NewIterator(ReadOptions()));
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
num_keys++;
}
ASSERT_OK(iter->status());
ASSERT_GT(SizeAtLevel(0) + SizeAtLevel(3), num_keys * 4000U + num_keys * 10U);
}
TEST_F(DBTest, DynamicLevelCompressionPerLevel2) {
if (!Snappy_Supported() || !LZ4_Supported() || !Zlib_Supported()) {
return;
}
const int kNKeys = 500;
int keys[kNKeys];
for (int i = 0; i < kNKeys; i++) {
keys[i] = i;
}
RandomShuffle(std::begin(keys), std::end(keys));
Random rnd(301);
Options options;
options.create_if_missing = true;
options.db_write_buffer_size = 6000000;
options.write_buffer_size = 600000;
options.max_write_buffer_number = 2;
options.level0_file_num_compaction_trigger = 2;
options.level0_slowdown_writes_trigger = 2;
options.level0_stop_writes_trigger = 2;
options.soft_pending_compaction_bytes_limit = 1024 * 1024;
options.target_file_size_base = 20;
options.level_compaction_dynamic_level_bytes = true;
options.max_bytes_for_level_base = 200;
options.max_bytes_for_level_multiplier = 8;
options.max_background_compactions = 1;
options.num_levels = 5;
std::shared_ptr<mock::MockTableFactory> mtf(new mock::MockTableFactory);
options.table_factory = mtf;
options.compression_per_level.resize(3);
options.compression_per_level[0] = kNoCompression;
options.compression_per_level[1] = kLZ4Compression;
options.compression_per_level[2] = kZlibCompression;
DestroyAndReopen(options);
// When base level is L4, L4 is LZ4.
std::atomic<int> num_zlib(0);
std::atomic<int> num_lz4(0);
std::atomic<int> num_no(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"LevelCompactionPicker::PickCompaction:Return", [&](void* arg) {
Compaction* compaction = reinterpret_cast<Compaction*>(arg);
if (compaction->output_level() == 4) {
ASSERT_TRUE(compaction->output_compression() == kLZ4Compression);
num_lz4.fetch_add(1);
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"FlushJob::WriteLevel0Table:output_compression", [&](void* arg) {
auto* compression = reinterpret_cast<CompressionType*>(arg);
ASSERT_TRUE(*compression == kNoCompression);
num_no.fetch_add(1);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
for (int i = 0; i < 100; i++) {
std::string value = rnd.RandomString(200);
ASSERT_OK(Put(Key(keys[i]), value));
if (i % 25 == 24) {
Flush();
dbfull()->TEST_WaitForCompact();
}
}
Flush();
dbfull()->TEST_WaitForFlushMemTable();
dbfull()->TEST_WaitForCompact();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks();
ASSERT_EQ(NumTableFilesAtLevel(1), 0);
ASSERT_EQ(NumTableFilesAtLevel(2), 0);
ASSERT_EQ(NumTableFilesAtLevel(3), 0);
ASSERT_GT(NumTableFilesAtLevel(4), 0);
ASSERT_GT(num_no.load(), 2);
ASSERT_GT(num_lz4.load(), 0);
int prev_num_files_l4 = NumTableFilesAtLevel(4);
// After base level turn L4->L3, L3 becomes LZ4 and L4 becomes Zlib
num_lz4.store(0);
num_no.store(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"LevelCompactionPicker::PickCompaction:Return", [&](void* arg) {
Compaction* compaction = reinterpret_cast<Compaction*>(arg);
if (compaction->output_level() == 4 && compaction->start_level() == 3) {
ASSERT_TRUE(compaction->output_compression() == kZlibCompression);
num_zlib.fetch_add(1);
} else {
ASSERT_TRUE(compaction->output_compression() == kLZ4Compression);
num_lz4.fetch_add(1);
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"FlushJob::WriteLevel0Table:output_compression", [&](void* arg) {
auto* compression = reinterpret_cast<CompressionType*>(arg);
ASSERT_TRUE(*compression == kNoCompression);
num_no.fetch_add(1);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
for (int i = 101; i < 500; i++) {
std::string value = rnd.RandomString(200);
ASSERT_OK(Put(Key(keys[i]), value));
if (i % 100 == 99) {
Flush();
dbfull()->TEST_WaitForCompact();
}
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ASSERT_EQ(NumTableFilesAtLevel(1), 0);
ASSERT_EQ(NumTableFilesAtLevel(2), 0);
ASSERT_GT(NumTableFilesAtLevel(3), 0);
ASSERT_GT(NumTableFilesAtLevel(4), prev_num_files_l4);
ASSERT_GT(num_no.load(), 2);
ASSERT_GT(num_lz4.load(), 0);
ASSERT_GT(num_zlib.load(), 0);
}
TEST_F(DBTest, DynamicCompactionOptions) {
// minimum write buffer size is enforced at 64KB
const uint64_t k32KB = 1 << 15;
const uint64_t k64KB = 1 << 16;
const uint64_t k128KB = 1 << 17;
const uint64_t k1MB = 1 << 20;
const uint64_t k4KB = 1 << 12;
Options options;
options.env = env_;
options.create_if_missing = true;
options.compression = kNoCompression;
options.soft_pending_compaction_bytes_limit = 1024 * 1024;
options.write_buffer_size = k64KB;
options.arena_block_size = 4 * k4KB;
options.max_write_buffer_number = 2;
// Compaction related options
options.level0_file_num_compaction_trigger = 3;
options.level0_slowdown_writes_trigger = 4;
options.level0_stop_writes_trigger = 8;
options.target_file_size_base = k64KB;
options.max_compaction_bytes = options.target_file_size_base * 10;
options.target_file_size_multiplier = 1;
options.max_bytes_for_level_base = k128KB;
options.max_bytes_for_level_multiplier = 4;
// Block flush thread and disable compaction thread
env_->SetBackgroundThreads(1, Env::LOW);
env_->SetBackgroundThreads(1, Env::HIGH);
DestroyAndReopen(options);
auto gen_l0_kb = [this](int start, int size, int stride) {
Random rnd(301);
for (int i = 0; i < size; i++) {
ASSERT_OK(Put(Key(start + stride * i), rnd.RandomString(1024)));
}
dbfull()->TEST_WaitForFlushMemTable();
};
// Write 3 files that have the same key range.
// Since level0_file_num_compaction_trigger is 3, compaction should be
// triggered. The compaction should result in one L1 file
gen_l0_kb(0, 64, 1);
ASSERT_EQ(NumTableFilesAtLevel(0), 1);
gen_l0_kb(0, 64, 1);
ASSERT_EQ(NumTableFilesAtLevel(0), 2);
gen_l0_kb(0, 64, 1);
dbfull()->TEST_WaitForCompact();
ASSERT_EQ("0,1", FilesPerLevel());
std::vector<LiveFileMetaData> metadata;
db_->GetLiveFilesMetaData(&metadata);
ASSERT_EQ(1U, metadata.size());
ASSERT_LE(metadata[0].size, k64KB + k4KB);
ASSERT_GE(metadata[0].size, k64KB - k4KB);
// Test compaction trigger and target_file_size_base
// Reduce compaction trigger to 2, and reduce L1 file size to 32KB.
// Writing to 64KB L0 files should trigger a compaction. Since these
// 2 L0 files have the same key range, compaction merge them and should
// result in 2 32KB L1 files.
ASSERT_OK(dbfull()->SetOptions({{"level0_file_num_compaction_trigger", "2"},
{"target_file_size_base", ToString(k32KB)}}));
gen_l0_kb(0, 64, 1);
ASSERT_EQ("1,1", FilesPerLevel());
gen_l0_kb(0, 64, 1);
dbfull()->TEST_WaitForCompact();
ASSERT_EQ("0,2", FilesPerLevel());
metadata.clear();
db_->GetLiveFilesMetaData(&metadata);
ASSERT_EQ(2U, metadata.size());
ASSERT_LE(metadata[0].size, k32KB + k4KB);
ASSERT_GE(metadata[0].size, k32KB - k4KB);
ASSERT_LE(metadata[1].size, k32KB + k4KB);
ASSERT_GE(metadata[1].size, k32KB - k4KB);
// Test max_bytes_for_level_base
// Increase level base size to 256KB and write enough data that will
// fill L1 and L2. L1 size should be around 256KB while L2 size should be
// around 256KB x 4.
ASSERT_OK(
dbfull()->SetOptions({{"max_bytes_for_level_base", ToString(k1MB)}}));
// writing 96 x 64KB => 6 * 1024KB
// (L1 + L2) = (1 + 4) * 1024KB
for (int i = 0; i < 96; ++i) {
gen_l0_kb(i, 64, 96);
}
dbfull()->TEST_WaitForCompact();
ASSERT_GT(SizeAtLevel(1), k1MB / 2);
ASSERT_LT(SizeAtLevel(1), k1MB + k1MB / 2);
// Within (0.5, 1.5) of 4MB.
ASSERT_GT(SizeAtLevel(2), 2 * k1MB);
ASSERT_LT(SizeAtLevel(2), 6 * k1MB);
// Test max_bytes_for_level_multiplier and
// max_bytes_for_level_base. Now, reduce both mulitplier and level base,
// After filling enough data that can fit in L1 - L3, we should see L1 size
// reduces to 128KB from 256KB which was asserted previously. Same for L2.
ASSERT_OK(
dbfull()->SetOptions({{"max_bytes_for_level_multiplier", "2"},
{"max_bytes_for_level_base", ToString(k128KB)}}));
// writing 20 x 64KB = 10 x 128KB
// (L1 + L2 + L3) = (1 + 2 + 4) * 128KB
for (int i = 0; i < 20; ++i) {
gen_l0_kb(i, 64, 32);
}
dbfull()->TEST_WaitForCompact();
uint64_t total_size = SizeAtLevel(1) + SizeAtLevel(2) + SizeAtLevel(3);
ASSERT_TRUE(total_size < k128KB * 7 * 1.5);
// Test level0_stop_writes_trigger.
// Clean up memtable and L0. Block compaction threads. If continue to write
// and flush memtables. We should see put stop after 8 memtable flushes
// since level0_stop_writes_trigger = 8
dbfull()->TEST_FlushMemTable(true, true);
dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr);
// Block compaction
test::SleepingBackgroundTask sleeping_task_low;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
sleeping_task_low.WaitUntilSleeping();
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
int count = 0;
Random rnd(301);
WriteOptions wo;
while (count < 64) {
ASSERT_OK(Put(Key(count), rnd.RandomString(1024), wo));
dbfull()->TEST_FlushMemTable(true, true);
count++;
if (dbfull()->TEST_write_controler().IsStopped()) {
sleeping_task_low.WakeUp();
break;
}
}
// Stop trigger = 8
ASSERT_EQ(count, 8);
// Unblock
sleeping_task_low.WaitUntilDone();
// Now reduce level0_stop_writes_trigger to 6. Clear up memtables and L0.
// Block compaction thread again. Perform the put and memtable flushes
// until we see the stop after 6 memtable flushes.
ASSERT_OK(dbfull()->SetOptions({{"level0_stop_writes_trigger", "6"}}));
dbfull()->TEST_FlushMemTable(true);
dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr);
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
// Block compaction again
sleeping_task_low.Reset();
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
sleeping_task_low.WaitUntilSleeping();
count = 0;
while (count < 64) {
ASSERT_OK(Put(Key(count), rnd.RandomString(1024), wo));
dbfull()->TEST_FlushMemTable(true, true);
count++;
if (dbfull()->TEST_write_controler().IsStopped()) {
sleeping_task_low.WakeUp();
break;
}
}
ASSERT_EQ(count, 6);
// Unblock
sleeping_task_low.WaitUntilDone();
// Test disable_auto_compactions
// Compaction thread is unblocked but auto compaction is disabled. Write
// 4 L0 files and compaction should be triggered. If auto compaction is
// disabled, then TEST_WaitForCompact will be waiting for nothing. Number of
// L0 files do not change after the call.
ASSERT_OK(dbfull()->SetOptions({{"disable_auto_compactions", "true"}}));
dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr);
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
for (int i = 0; i < 4; ++i) {
ASSERT_OK(Put(Key(i), rnd.RandomString(1024)));
// Wait for compaction so that put won't stop
dbfull()->TEST_FlushMemTable(true);
}
dbfull()->TEST_WaitForCompact();
ASSERT_EQ(NumTableFilesAtLevel(0), 4);
// Enable auto compaction and perform the same test, # of L0 files should be
// reduced after compaction.
ASSERT_OK(dbfull()->SetOptions({{"disable_auto_compactions", "false"}}));
dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr);
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
for (int i = 0; i < 4; ++i) {
ASSERT_OK(Put(Key(i), rnd.RandomString(1024)));
// Wait for compaction so that put won't stop
dbfull()->TEST_FlushMemTable(true);
}
dbfull()->TEST_WaitForCompact();
ASSERT_LT(NumTableFilesAtLevel(0), 4);
}
// Test dynamic FIFO compaction options.
// This test covers just option parsing and makes sure that the options are
// correctly assigned. Also look at DBOptionsTest.SetFIFOCompactionOptions
// test which makes sure that the FIFO compaction funcionality is working
// as expected on dynamically changing the options.
// Even more FIFOCompactionTests are at DBTest.FIFOCompaction* .
TEST_F(DBTest, DynamicFIFOCompactionOptions) {
Options options;
options.ttl = 0;
options.create_if_missing = true;
DestroyAndReopen(options);
// Initial defaults
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.max_table_files_size,
1024 * 1024 * 1024);
ASSERT_EQ(dbfull()->GetOptions().ttl, 0);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.allow_compaction,
false);
ASSERT_OK(dbfull()->SetOptions(
{{"compaction_options_fifo", "{max_table_files_size=23;}"}}));
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.max_table_files_size,
23);
ASSERT_EQ(dbfull()->GetOptions().ttl, 0);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.allow_compaction,
false);
ASSERT_OK(dbfull()->SetOptions({{"ttl", "97"}}));
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.max_table_files_size,
23);
ASSERT_EQ(dbfull()->GetOptions().ttl, 97);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.allow_compaction,
false);
ASSERT_OK(dbfull()->SetOptions({{"ttl", "203"}}));
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.max_table_files_size,
23);
ASSERT_EQ(dbfull()->GetOptions().ttl, 203);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.allow_compaction,
false);
ASSERT_OK(dbfull()->SetOptions(
{{"compaction_options_fifo", "{allow_compaction=true;}"}}));
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.max_table_files_size,
23);
ASSERT_EQ(dbfull()->GetOptions().ttl, 203);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.allow_compaction,
true);
ASSERT_OK(dbfull()->SetOptions(
{{"compaction_options_fifo", "{max_table_files_size=31;}"}}));
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.max_table_files_size,
31);
ASSERT_EQ(dbfull()->GetOptions().ttl, 203);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.allow_compaction,
true);
ASSERT_OK(dbfull()->SetOptions(
{{"compaction_options_fifo",
"{max_table_files_size=51;allow_compaction=true;}"}}));
ASSERT_OK(dbfull()->SetOptions({{"ttl", "49"}}));
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.max_table_files_size,
51);
ASSERT_EQ(dbfull()->GetOptions().ttl, 49);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.allow_compaction,
true);
}
TEST_F(DBTest, DynamicUniversalCompactionOptions) {
Options options;
options.create_if_missing = true;
DestroyAndReopen(options);
// Initial defaults
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.size_ratio, 1U);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.min_merge_width,
2u);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.max_merge_width,
UINT_MAX);
ASSERT_EQ(dbfull()
->GetOptions()
.compaction_options_universal.max_size_amplification_percent,
200u);
ASSERT_EQ(dbfull()
->GetOptions()
.compaction_options_universal.compression_size_percent,
-1);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.stop_style,
kCompactionStopStyleTotalSize);
ASSERT_EQ(
dbfull()->GetOptions().compaction_options_universal.allow_trivial_move,
false);
ASSERT_OK(dbfull()->SetOptions(
{{"compaction_options_universal", "{size_ratio=7;}"}}));
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.size_ratio, 7u);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.min_merge_width,
2u);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.max_merge_width,
UINT_MAX);
ASSERT_EQ(dbfull()
->GetOptions()
.compaction_options_universal.max_size_amplification_percent,
200u);
ASSERT_EQ(dbfull()
->GetOptions()
.compaction_options_universal.compression_size_percent,
-1);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.stop_style,
kCompactionStopStyleTotalSize);
ASSERT_EQ(
dbfull()->GetOptions().compaction_options_universal.allow_trivial_move,
false);
ASSERT_OK(dbfull()->SetOptions(
{{"compaction_options_universal", "{min_merge_width=11;}"}}));
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.size_ratio, 7u);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.min_merge_width,
11u);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.max_merge_width,
UINT_MAX);
ASSERT_EQ(dbfull()
->GetOptions()
.compaction_options_universal.max_size_amplification_percent,
200u);
ASSERT_EQ(dbfull()
->GetOptions()
.compaction_options_universal.compression_size_percent,
-1);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.stop_style,
kCompactionStopStyleTotalSize);
ASSERT_EQ(
dbfull()->GetOptions().compaction_options_universal.allow_trivial_move,
false);
}
#endif // ROCKSDB_LITE
TEST_F(DBTest, FileCreationRandomFailure) {
Options options;
options.env = env_;
options.create_if_missing = true;
options.write_buffer_size = 100000; // Small write buffer
options.target_file_size_base = 200000;
options.max_bytes_for_level_base = 1000000;
options.max_bytes_for_level_multiplier = 2;
DestroyAndReopen(options);
Random rnd(301);
const int kCDTKeysPerBuffer = 4;
const int kTestSize = kCDTKeysPerBuffer * 4096;
const int kTotalIteration = 100;
// the second half of the test involves in random failure
// of file creation.
const int kRandomFailureTest = kTotalIteration / 2;
std::vector<std::string> values;
for (int i = 0; i < kTestSize; ++i) {
values.push_back("NOT_FOUND");
}
for (int j = 0; j < kTotalIteration; ++j) {
if (j == kRandomFailureTest) {
env_->non_writeable_rate_.store(90);
}
for (int k = 0; k < kTestSize; ++k) {
// here we expect some of the Put fails.
std::string value = rnd.RandomString(100);
Status s = Put(Key(k), Slice(value));
if (s.ok()) {
// update the latest successful put
values[k] = value;
}
// But everything before we simulate the failure-test should succeed.
if (j < kRandomFailureTest) {
ASSERT_OK(s);
}
}
}
// If rocksdb does not do the correct job, internal assert will fail here.
dbfull()->TEST_WaitForFlushMemTable();
dbfull()->TEST_WaitForCompact();
// verify we have the latest successful update
for (int k = 0; k < kTestSize; ++k) {
auto v = Get(Key(k));
ASSERT_EQ(v, values[k]);
}
// reopen and reverify we have the latest successful update
env_->non_writeable_rate_.store(0);
Reopen(options);
for (int k = 0; k < kTestSize; ++k) {
auto v = Get(Key(k));
ASSERT_EQ(v, values[k]);
}
}
#ifndef ROCKSDB_LITE
TEST_F(DBTest, DynamicMiscOptions) {
// Test max_sequential_skip_in_iterations
Options options;
options.env = env_;
options.create_if_missing = true;
options.max_sequential_skip_in_iterations = 16;
options.compression = kNoCompression;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
DestroyAndReopen(options);
auto assert_reseek_count = [this, &options](int key_start, int num_reseek) {
int key0 = key_start;
int key1 = key_start + 1;
int key2 = key_start + 2;
Random rnd(301);
ASSERT_OK(Put(Key(key0), rnd.RandomString(8)));
for (int i = 0; i < 10; ++i) {
ASSERT_OK(Put(Key(key1), rnd.RandomString(8)));
}
ASSERT_OK(Put(Key(key2), rnd.RandomString(8)));
std::unique_ptr<Iterator> iter(db_->NewIterator(ReadOptions()));
iter->Seek(Key(key1));
ASSERT_TRUE(iter->Valid());
ASSERT_EQ(iter->key().compare(Key(key1)), 0);
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ(iter->key().compare(Key(key2)), 0);
ASSERT_EQ(num_reseek,
TestGetTickerCount(options, NUMBER_OF_RESEEKS_IN_ITERATION));
};
// No reseek
assert_reseek_count(100, 0);
ASSERT_OK(dbfull()->SetOptions({{"max_sequential_skip_in_iterations", "4"}}));
// Clear memtable and make new option effective
dbfull()->TEST_FlushMemTable(true);
// Trigger reseek
assert_reseek_count(200, 1);
ASSERT_OK(
dbfull()->SetOptions({{"max_sequential_skip_in_iterations", "16"}}));
// Clear memtable and make new option effective
dbfull()->TEST_FlushMemTable(true);
// No reseek
assert_reseek_count(300, 1);
MutableCFOptions mutable_cf_options;
CreateAndReopenWithCF({"pikachu"}, options);
// Test soft_pending_compaction_bytes_limit,
// hard_pending_compaction_bytes_limit
ASSERT_OK(dbfull()->SetOptions(
handles_[1], {{"soft_pending_compaction_bytes_limit", "200"},
{"hard_pending_compaction_bytes_limit", "300"}}));
ASSERT_OK(dbfull()->TEST_GetLatestMutableCFOptions(handles_[1],
&mutable_cf_options));
ASSERT_EQ(200, mutable_cf_options.soft_pending_compaction_bytes_limit);
ASSERT_EQ(300, mutable_cf_options.hard_pending_compaction_bytes_limit);
// Test report_bg_io_stats
ASSERT_OK(
dbfull()->SetOptions(handles_[1], {{"report_bg_io_stats", "true"}}));
// sanity check
ASSERT_OK(dbfull()->TEST_GetLatestMutableCFOptions(handles_[1],
&mutable_cf_options));
ASSERT_TRUE(mutable_cf_options.report_bg_io_stats);
// Test compression
// sanity check
ASSERT_OK(dbfull()->SetOptions({{"compression", "kNoCompression"}}));
ASSERT_OK(dbfull()->TEST_GetLatestMutableCFOptions(handles_[0],
&mutable_cf_options));
ASSERT_EQ(CompressionType::kNoCompression, mutable_cf_options.compression);
if (Snappy_Supported()) {
ASSERT_OK(dbfull()->SetOptions({{"compression", "kSnappyCompression"}}));
ASSERT_OK(dbfull()->TEST_GetLatestMutableCFOptions(handles_[0],
&mutable_cf_options));
ASSERT_EQ(CompressionType::kSnappyCompression,
mutable_cf_options.compression);
}
// Test paranoid_file_checks already done in db_block_cache_test
ASSERT_OK(
dbfull()->SetOptions(handles_[1], {{"paranoid_file_checks", "true"}}));
ASSERT_OK(dbfull()->TEST_GetLatestMutableCFOptions(handles_[1],
&mutable_cf_options));
ASSERT_TRUE(mutable_cf_options.report_bg_io_stats);
ASSERT_TRUE(mutable_cf_options.check_flush_compaction_key_order);
ASSERT_OK(dbfull()->SetOptions(
handles_[1], {{"check_flush_compaction_key_order", "false"}}));
ASSERT_OK(dbfull()->TEST_GetLatestMutableCFOptions(handles_[1],
&mutable_cf_options));
ASSERT_FALSE(mutable_cf_options.check_flush_compaction_key_order);
}
#endif // ROCKSDB_LITE
TEST_F(DBTest, L0L1L2AndUpHitCounter) {
Options options = CurrentOptions();
options.write_buffer_size = 32 * 1024;
options.target_file_size_base = 32 * 1024;
options.level0_file_num_compaction_trigger = 2;
options.level0_slowdown_writes_trigger = 2;
options.level0_stop_writes_trigger = 4;
options.max_bytes_for_level_base = 64 * 1024;
options.max_write_buffer_number = 2;
options.max_background_compactions = 8;
options.max_background_flushes = 8;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
CreateAndReopenWithCF({"mypikachu"}, options);
int numkeys = 20000;
for (int i = 0; i < numkeys; i++) {
ASSERT_OK(Put(1, Key(i), "val"));
}
ASSERT_EQ(0, TestGetTickerCount(options, GET_HIT_L0));
ASSERT_EQ(0, TestGetTickerCount(options, GET_HIT_L1));
ASSERT_EQ(0, TestGetTickerCount(options, GET_HIT_L2_AND_UP));
ASSERT_OK(Flush(1));
dbfull()->TEST_WaitForCompact();
for (int i = 0; i < numkeys; i++) {
ASSERT_EQ(Get(1, Key(i)), "val");
}
ASSERT_GT(TestGetTickerCount(options, GET_HIT_L0), 100);
ASSERT_GT(TestGetTickerCount(options, GET_HIT_L1), 100);
ASSERT_GT(TestGetTickerCount(options, GET_HIT_L2_AND_UP), 100);
ASSERT_EQ(numkeys, TestGetTickerCount(options, GET_HIT_L0) +
TestGetTickerCount(options, GET_HIT_L1) +
TestGetTickerCount(options, GET_HIT_L2_AND_UP));
}
TEST_F(DBTest, EncodeDecompressedBlockSizeTest) {
// iter 0 -- zlib
// iter 1 -- bzip2
// iter 2 -- lz4
// iter 3 -- lz4HC
// iter 4 -- xpress
CompressionType compressions[] = {kZlibCompression, kBZip2Compression,
kLZ4Compression, kLZ4HCCompression,
kXpressCompression};
for (auto comp : compressions) {
if (!CompressionTypeSupported(comp)) {
continue;
}
// first_table_version 1 -- generate with table_version == 1, read with
// table_version == 2
// first_table_version 2 -- generate with table_version == 2, read with
// table_version == 1
for (int first_table_version = 1; first_table_version <= 2;
++first_table_version) {
BlockBasedTableOptions table_options;
table_options.format_version = first_table_version;
table_options.filter_policy.reset(NewBloomFilterPolicy(10));
Options options = CurrentOptions();
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.create_if_missing = true;
options.compression = comp;
DestroyAndReopen(options);
int kNumKeysWritten = 1000;
Random rnd(301);
for (int i = 0; i < kNumKeysWritten; ++i) {
// compressible string
ASSERT_OK(Put(Key(i), rnd.RandomString(128) + std::string(128, 'a')));
}
table_options.format_version = first_table_version == 1 ? 2 : 1;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
Reopen(options);
for (int i = 0; i < kNumKeysWritten; ++i) {
auto r = Get(Key(i));
ASSERT_EQ(r.substr(128), std::string(128, 'a'));
}
}
}
}
TEST_F(DBTest, CloseSpeedup) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleLevel;
options.write_buffer_size = 110 << 10; // 110KB
options.arena_block_size = 4 << 10;
options.level0_file_num_compaction_trigger = 2;
options.num_levels = 4;
options.max_bytes_for_level_base = 400 * 1024;
options.max_write_buffer_number = 16;
// Block background threads
env_->SetBackgroundThreads(1, Env::LOW);
env_->SetBackgroundThreads(1, Env::HIGH);
test::SleepingBackgroundTask sleeping_task_low;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
test::SleepingBackgroundTask sleeping_task_high;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask,
&sleeping_task_high, Env::Priority::HIGH);
std::vector<std::string> filenames;
env_->GetChildren(dbname_, &filenames);
// Delete archival files.
for (size_t i = 0; i < filenames.size(); ++i) {
env_->DeleteFile(dbname_ + "/" + filenames[i]);
}
env_->DeleteDir(dbname_);
DestroyAndReopen(options);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
env_->SetBackgroundThreads(1, Env::LOW);
env_->SetBackgroundThreads(1, Env::HIGH);
Random rnd(301);
int key_idx = 0;
// First three 110KB files are not going to level 2
// After that, (100K, 200K)
for (int num = 0; num < 5; num++) {
GenerateNewFile(&rnd, &key_idx, true);
}
ASSERT_EQ(0, GetSstFileCount(dbname_));
Close();
ASSERT_EQ(0, GetSstFileCount(dbname_));
// Unblock background threads
sleeping_task_high.WakeUp();
sleeping_task_high.WaitUntilDone();
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilDone();
Destroy(options);
}
class DelayedMergeOperator : public MergeOperator {
private:
DBTest* db_test_;
public:
explicit DelayedMergeOperator(DBTest* d) : db_test_(d) {}
bool FullMergeV2(const MergeOperationInput& merge_in,
MergeOperationOutput* merge_out) const override {
db_test_->env_->MockSleepForMicroseconds(1000 *
merge_in.operand_list.size());
merge_out->new_value = "";
return true;
}
const char* Name() const override { return "DelayedMergeOperator"; }
};
TEST_F(DBTest, MergeTestTime) {
std::string one, two, three;
PutFixed64(&one, 1);
PutFixed64(&two, 2);
PutFixed64(&three, 3);
// Enable time profiling
SetPerfLevel(kEnableTime);
Options options = CurrentOptions();
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.merge_operator.reset(new DelayedMergeOperator(this));
SetTimeElapseOnlySleepOnReopen(&options);
DestroyAndReopen(options);
// NOTE: Presumed unnecessary and removed: resetting mock time in env
ASSERT_EQ(TestGetTickerCount(options, MERGE_OPERATION_TOTAL_TIME), 0);
db_->Put(WriteOptions(), "foo", one);
ASSERT_OK(Flush());
ASSERT_OK(db_->Merge(WriteOptions(), "foo", two));
ASSERT_OK(Flush());
ASSERT_OK(db_->Merge(WriteOptions(), "foo", three));
ASSERT_OK(Flush());
ReadOptions opt;
opt.verify_checksums = true;
opt.snapshot = nullptr;
std::string result;
db_->Get(opt, "foo", &result);
ASSERT_EQ(2000000, TestGetTickerCount(options, MERGE_OPERATION_TOTAL_TIME));
ReadOptions read_options;
std::unique_ptr<Iterator> iter(db_->NewIterator(read_options));
int count = 0;
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ASSERT_OK(iter->status());
++count;
}
ASSERT_EQ(1, count);
ASSERT_EQ(4000000, TestGetTickerCount(options, MERGE_OPERATION_TOTAL_TIME));
#ifdef ROCKSDB_USING_THREAD_STATUS
ASSERT_GT(TestGetTickerCount(options, FLUSH_WRITE_BYTES), 0);
#endif // ROCKSDB_USING_THREAD_STATUS
}
#ifndef ROCKSDB_LITE
TEST_P(DBTestWithParam, MergeCompactionTimeTest) {
SetPerfLevel(kEnableTime);
Options options = CurrentOptions();
options.compaction_filter_factory = std::make_shared<KeepFilterFactory>();
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.merge_operator.reset(new DelayedMergeOperator(this));
options.disable_auto_compactions = true;
options.max_subcompactions = max_subcompactions_;
SetTimeElapseOnlySleepOnReopen(&options);
DestroyAndReopen(options);
constexpr unsigned n = 1000;
for (unsigned i = 0; i < n; i++) {
ASSERT_OK(db_->Merge(WriteOptions(), "foo", "TEST"));
ASSERT_OK(Flush());
}
dbfull()->TEST_WaitForFlushMemTable();
CompactRangeOptions cro;
cro.exclusive_manual_compaction = exclusive_manual_compaction_;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
ASSERT_EQ(uint64_t{n} * 1000000U,
TestGetTickerCount(options, MERGE_OPERATION_TOTAL_TIME));
}
TEST_P(DBTestWithParam, FilterCompactionTimeTest) {
Options options = CurrentOptions();
options.compaction_filter_factory =
std::make_shared<DelayFilterFactory>(this);
options.disable_auto_compactions = true;
options.create_if_missing = true;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.statistics->set_stats_level(kExceptTimeForMutex);
options.max_subcompactions = max_subcompactions_;
SetTimeElapseOnlySleepOnReopen(&options);
DestroyAndReopen(options);
unsigned n = 0;
// put some data
for (int table = 0; table < 4; ++table) {
for (int i = 0; i < 10 + table; ++i) {
Put(ToString(table * 100 + i), "val");
++n;
}
Flush();
}
CompactRangeOptions cro;
cro.exclusive_manual_compaction = exclusive_manual_compaction_;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
ASSERT_EQ(0U, CountLiveFiles());
Reopen(options);
Iterator* itr = db_->NewIterator(ReadOptions());
itr->SeekToFirst();
ASSERT_EQ(uint64_t{n} * 1000000U,
TestGetTickerCount(options, FILTER_OPERATION_TOTAL_TIME));
delete itr;
}
#endif // ROCKSDB_LITE
TEST_F(DBTest, TestLogCleanup) {
Options options = CurrentOptions();
options.write_buffer_size = 64 * 1024; // very small
// only two memtables allowed ==> only two log files
options.max_write_buffer_number = 2;
Reopen(options);
for (int i = 0; i < 100000; ++i) {
Put(Key(i), "val");
// only 2 memtables will be alive, so logs_to_free needs to always be below
// 2
ASSERT_LT(dbfull()->TEST_LogsToFreeSize(), static_cast<size_t>(3));
}
}
#ifndef ROCKSDB_LITE
TEST_F(DBTest, EmptyCompactedDB) {
Options options = CurrentOptions();
options.max_open_files = -1;
Close();
ASSERT_OK(ReadOnlyReopen(options));
Status s = Put("new", "value");
ASSERT_TRUE(s.IsNotSupported());
Close();
}
#endif // ROCKSDB_LITE
#ifndef ROCKSDB_LITE
TEST_F(DBTest, DISABLED_SuggestCompactRangeTest) {
class CompactionFilterFactoryGetContext : public CompactionFilterFactory {
public:
std::unique_ptr<CompactionFilter> CreateCompactionFilter(
const CompactionFilter::Context& context) override {
saved_context = context;
std::unique_ptr<CompactionFilter> empty_filter;
return empty_filter;
}
const char* Name() const override {
return "CompactionFilterFactoryGetContext";
}
static bool IsManual(CompactionFilterFactory* compaction_filter_factory) {
return reinterpret_cast<CompactionFilterFactoryGetContext*>(
compaction_filter_factory)
->saved_context.is_manual_compaction;
}
CompactionFilter::Context saved_context;
};
Options options = CurrentOptions();
options.memtable_factory.reset(
new SpecialSkipListFactory(DBTestBase::kNumKeysByGenerateNewRandomFile));
options.compaction_style = kCompactionStyleLevel;
options.compaction_filter_factory.reset(
new CompactionFilterFactoryGetContext());
options.write_buffer_size = 200 << 10;
options.arena_block_size = 4 << 10;
options.level0_file_num_compaction_trigger = 4;
options.num_levels = 4;
options.compression = kNoCompression;
options.max_bytes_for_level_base = 450 << 10;
options.target_file_size_base = 98 << 10;
options.max_compaction_bytes = static_cast<uint64_t>(1) << 60; // inf
Reopen(options);
Random rnd(301);
for (int num = 0; num < 3; num++) {
GenerateNewRandomFile(&rnd);
}
GenerateNewRandomFile(&rnd);
ASSERT_EQ("0,4", FilesPerLevel(0));
ASSERT_TRUE(!CompactionFilterFactoryGetContext::IsManual(
options.compaction_filter_factory.get()));
GenerateNewRandomFile(&rnd);
ASSERT_EQ("1,4", FilesPerLevel(0));
GenerateNewRandomFile(&rnd);
ASSERT_EQ("2,4", FilesPerLevel(0));
GenerateNewRandomFile(&rnd);
ASSERT_EQ("3,4", FilesPerLevel(0));
GenerateNewRandomFile(&rnd);
ASSERT_EQ("0,4,4", FilesPerLevel(0));
GenerateNewRandomFile(&rnd);
ASSERT_EQ("1,4,4", FilesPerLevel(0));
GenerateNewRandomFile(&rnd);
ASSERT_EQ("2,4,4", FilesPerLevel(0));
GenerateNewRandomFile(&rnd);
ASSERT_EQ("3,4,4", FilesPerLevel(0));
GenerateNewRandomFile(&rnd);
ASSERT_EQ("0,4,8", FilesPerLevel(0));
GenerateNewRandomFile(&rnd);
ASSERT_EQ("1,4,8", FilesPerLevel(0));
// compact it three times
for (int i = 0; i < 3; ++i) {
ASSERT_OK(experimental::SuggestCompactRange(db_, nullptr, nullptr));
dbfull()->TEST_WaitForCompact();
}
// All files are compacted
ASSERT_EQ(0, NumTableFilesAtLevel(0));
ASSERT_EQ(0, NumTableFilesAtLevel(1));
GenerateNewRandomFile(&rnd);
ASSERT_EQ(1, NumTableFilesAtLevel(0));
// nonoverlapping with the file on level 0
Slice start("a"), end("b");
ASSERT_OK(experimental::SuggestCompactRange(db_, &start, &end));
dbfull()->TEST_WaitForCompact();
// should not compact the level 0 file
ASSERT_EQ(1, NumTableFilesAtLevel(0));
start = Slice("j");
end = Slice("m");
ASSERT_OK(experimental::SuggestCompactRange(db_, &start, &end));
dbfull()->TEST_WaitForCompact();
ASSERT_TRUE(CompactionFilterFactoryGetContext::IsManual(
options.compaction_filter_factory.get()));
// now it should compact the level 0 file
ASSERT_EQ(0, NumTableFilesAtLevel(0));
ASSERT_EQ(1, NumTableFilesAtLevel(1));
}
TEST_F(DBTest, PromoteL0) {
Options options = CurrentOptions();
options.disable_auto_compactions = true;
options.write_buffer_size = 10 * 1024 * 1024;
DestroyAndReopen(options);
// non overlapping ranges
std::vector<std::pair<int32_t, int32_t>> ranges = {
{81, 160}, {0, 80}, {161, 240}, {241, 320}};
int32_t value_size = 10 * 1024; // 10 KB
Random rnd(301);
std::map<int32_t, std::string> values;
for (const auto& range : ranges) {
for (int32_t j = range.first; j < range.second; j++) {
values[j] = rnd.RandomString(value_size);
ASSERT_OK(Put(Key(j), values[j]));
}
ASSERT_OK(Flush());
}
int32_t level0_files = NumTableFilesAtLevel(0, 0);
ASSERT_EQ(level0_files, ranges.size());
ASSERT_EQ(NumTableFilesAtLevel(1, 0), 0); // No files in L1
// Promote L0 level to L2.
ASSERT_OK(experimental::PromoteL0(db_, db_->DefaultColumnFamily(), 2));
// We expect that all the files were trivially moved from L0 to L2
ASSERT_EQ(NumTableFilesAtLevel(0, 0), 0);
ASSERT_EQ(NumTableFilesAtLevel(2, 0), level0_files);
for (const auto& kv : values) {
ASSERT_EQ(Get(Key(kv.first)), kv.second);
}
}
TEST_F(DBTest, PromoteL0Failure) {
Options options = CurrentOptions();
options.disable_auto_compactions = true;
options.write_buffer_size = 10 * 1024 * 1024;
DestroyAndReopen(options);
// Produce two L0 files with overlapping ranges.
ASSERT_OK(Put(Key(0), ""));
ASSERT_OK(Put(Key(3), ""));
ASSERT_OK(Flush());
ASSERT_OK(Put(Key(1), ""));
ASSERT_OK(Flush());
Status status;
// Fails because L0 has overlapping files.
status = experimental::PromoteL0(db_, db_->DefaultColumnFamily());
ASSERT_TRUE(status.IsInvalidArgument());
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
// Now there is a file in L1.
ASSERT_GE(NumTableFilesAtLevel(1, 0), 1);
ASSERT_OK(Put(Key(5), ""));
ASSERT_OK(Flush());
// Fails because L1 is non-empty.
status = experimental::PromoteL0(db_, db_->DefaultColumnFamily());
ASSERT_TRUE(status.IsInvalidArgument());
}
// Github issue #596
TEST_F(DBTest, CompactRangeWithEmptyBottomLevel) {
const int kNumLevels = 2;
const int kNumL0Files = 2;
Options options = CurrentOptions();
options.disable_auto_compactions = true;
options.num_levels = kNumLevels;
DestroyAndReopen(options);
Random rnd(301);
for (int i = 0; i < kNumL0Files; ++i) {
ASSERT_OK(Put(Key(0), rnd.RandomString(1024)));
Flush();
}
ASSERT_EQ(NumTableFilesAtLevel(0), kNumL0Files);
ASSERT_EQ(NumTableFilesAtLevel(1), 0);
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
ASSERT_EQ(NumTableFilesAtLevel(1), kNumL0Files);
}
#endif // ROCKSDB_LITE
TEST_F(DBTest, AutomaticConflictsWithManualCompaction) {
const int kNumL0Files = 50;
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = 4;
// never slowdown / stop
options.level0_slowdown_writes_trigger = 999999;
options.level0_stop_writes_trigger = 999999;
options.max_background_compactions = 10;
DestroyAndReopen(options);
// schedule automatic compactions after the manual one starts, but before it
// finishes to ensure conflict.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::BackgroundCompaction:Start",
"DBTest::AutomaticConflictsWithManualCompaction:PrePuts"},
{"DBTest::AutomaticConflictsWithManualCompaction:PostPuts",
"DBImpl::BackgroundCompaction:NonTrivial:AfterRun"}});
std::atomic<int> callback_count(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::MaybeScheduleFlushOrCompaction:Conflict",
[&](void* /*arg*/) { callback_count.fetch_add(1); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Random rnd(301);
for (int i = 0; i < 2; ++i) {
// put two keys to ensure no trivial move
for (int j = 0; j < 2; ++j) {
ASSERT_OK(Put(Key(j), rnd.RandomString(1024)));
}
ASSERT_OK(Flush());
}
port::Thread manual_compaction_thread([this]() {
CompactRangeOptions croptions;
croptions.exclusive_manual_compaction = true;
ASSERT_OK(db_->CompactRange(croptions, nullptr, nullptr));
});
TEST_SYNC_POINT("DBTest::AutomaticConflictsWithManualCompaction:PrePuts");
for (int i = 0; i < kNumL0Files; ++i) {
// put two keys to ensure no trivial move
for (int j = 0; j < 2; ++j) {
ASSERT_OK(Put(Key(j), rnd.RandomString(1024)));
}
ASSERT_OK(Flush());
}
TEST_SYNC_POINT("DBTest::AutomaticConflictsWithManualCompaction:PostPuts");
ASSERT_GE(callback_count.load(), 1);
for (int i = 0; i < 2; ++i) {
ASSERT_NE("NOT_FOUND", Get(Key(i)));
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
manual_compaction_thread.join();
dbfull()->TEST_WaitForCompact();
}
#ifndef ROCKSDB_LITE
TEST_F(DBTest, CompactFilesShouldTriggerAutoCompaction) {
Options options = CurrentOptions();
options.max_background_compactions = 1;
options.level0_file_num_compaction_trigger = 4;
options.level0_slowdown_writes_trigger = 36;
options.level0_stop_writes_trigger = 36;
DestroyAndReopen(options);
// generate files for manual compaction
Random rnd(301);
for (int i = 0; i < 2; ++i) {
// put two keys to ensure no trivial move
for (int j = 0; j < 2; ++j) {
ASSERT_OK(Put(Key(j), rnd.RandomString(1024)));
}
ASSERT_OK(Flush());
}
ROCKSDB_NAMESPACE::ColumnFamilyMetaData cf_meta_data;
db_->GetColumnFamilyMetaData(db_->DefaultColumnFamily(), &cf_meta_data);
std::vector<std::string> input_files;
input_files.push_back(cf_meta_data.levels[0].files[0].name);
SyncPoint::GetInstance()->LoadDependency({
{"CompactFilesImpl:0",
"DBTest::CompactFilesShouldTriggerAutoCompaction:Begin"},
{"DBTest::CompactFilesShouldTriggerAutoCompaction:End",
"CompactFilesImpl:1"},
});
SyncPoint::GetInstance()->EnableProcessing();
port::Thread manual_compaction_thread([&]() {
auto s = db_->CompactFiles(CompactionOptions(),
db_->DefaultColumnFamily(), input_files, 0);
});
TEST_SYNC_POINT(
"DBTest::CompactFilesShouldTriggerAutoCompaction:Begin");
// generate enough files to trigger compaction
for (int i = 0; i < 20; ++i) {
for (int j = 0; j < 2; ++j) {
ASSERT_OK(Put(Key(j), rnd.RandomString(1024)));
}
ASSERT_OK(Flush());
}
db_->GetColumnFamilyMetaData(db_->DefaultColumnFamily(), &cf_meta_data);
ASSERT_GT(cf_meta_data.levels[0].files.size(),
options.level0_file_num_compaction_trigger);
TEST_SYNC_POINT(
"DBTest::CompactFilesShouldTriggerAutoCompaction:End");
manual_compaction_thread.join();
dbfull()->TEST_WaitForCompact();
db_->GetColumnFamilyMetaData(db_->DefaultColumnFamily(), &cf_meta_data);
ASSERT_LE(cf_meta_data.levels[0].files.size(),
options.level0_file_num_compaction_trigger);
}
#endif // ROCKSDB_LITE
// Github issue #595
// Large write batch with column families
TEST_F(DBTest, LargeBatchWithColumnFamilies) {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000; // Small write buffer
CreateAndReopenWithCF({"pikachu"}, options);
int64_t j = 0;
for (int i = 0; i < 5; i++) {
for (int pass = 1; pass <= 3; pass++) {
WriteBatch batch;
size_t write_size = 1024 * 1024 * (5 + i);
fprintf(stderr, "prepare: %" ROCKSDB_PRIszt " MB, pass:%d\n",
(write_size / 1024 / 1024), pass);
for (;;) {
std::string data(3000, j++ % 127 + 20);
data += ToString(j);
batch.Put(handles_[0], Slice(data), Slice(data));
if (batch.GetDataSize() > write_size) {
break;
}
}
fprintf(stderr, "write: %" ROCKSDB_PRIszt " MB\n",
(batch.GetDataSize() / 1024 / 1024));
ASSERT_OK(dbfull()->Write(WriteOptions(), &batch));
fprintf(stderr, "done\n");
}
}
// make sure we can re-open it.
ASSERT_OK(TryReopenWithColumnFamilies({"default", "pikachu"}, options));
}
// Make sure that Flushes can proceed in parallel with CompactRange()
TEST_F(DBTest, FlushesInParallelWithCompactRange) {
// iter == 0 -- leveled
// iter == 1 -- leveled, but throw in a flush between two levels compacting
// iter == 2 -- universal
for (int iter = 0; iter < 3; ++iter) {
Options options = CurrentOptions();
if (iter < 2) {
options.compaction_style = kCompactionStyleLevel;
} else {
options.compaction_style = kCompactionStyleUniversal;
}
options.write_buffer_size = 110 << 10;
options.level0_file_num_compaction_trigger = 4;
options.num_levels = 4;
options.compression = kNoCompression;
options.max_bytes_for_level_base = 450 << 10;
options.target_file_size_base = 98 << 10;
options.max_write_buffer_number = 2;
DestroyAndReopen(options);
Random rnd(301);
for (int num = 0; num < 14; num++) {
GenerateNewRandomFile(&rnd);
}
if (iter == 1) {
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::RunManualCompaction()::1",
"DBTest::FlushesInParallelWithCompactRange:1"},
{"DBTest::FlushesInParallelWithCompactRange:2",
"DBImpl::RunManualCompaction()::2"}});
} else {
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"CompactionJob::Run():Start",
"DBTest::FlushesInParallelWithCompactRange:1"},
{"DBTest::FlushesInParallelWithCompactRange:2",
"CompactionJob::Run():End"}});
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
std::vector<port::Thread> threads;
threads.emplace_back([&]() { Compact("a", "z"); });
TEST_SYNC_POINT("DBTest::FlushesInParallelWithCompactRange:1");
// this has to start a flush. if flushes are blocked, this will try to
// create
// 3 memtables, and that will fail because max_write_buffer_number is 2
for (int num = 0; num < 3; num++) {
GenerateNewRandomFile(&rnd, /* nowait */ true);
}
TEST_SYNC_POINT("DBTest::FlushesInParallelWithCompactRange:2");
for (auto& t : threads) {
t.join();
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
}
TEST_F(DBTest, DelayedWriteRate) {
const int kEntriesPerMemTable = 100;
const int kTotalFlushes = 12;
Options options = CurrentOptions();
env_->SetBackgroundThreads(1, Env::LOW);
options.env = env_;
options.write_buffer_size = 100000000;
options.max_write_buffer_number = 256;
options.max_background_compactions = 1;
options.level0_file_num_compaction_trigger = 3;
options.level0_slowdown_writes_trigger = 3;
options.level0_stop_writes_trigger = 999999;
options.delayed_write_rate = 20000000; // Start with 200MB/s
options.memtable_factory.reset(
new SpecialSkipListFactory(kEntriesPerMemTable));
SetTimeElapseOnlySleepOnReopen(&options);
CreateAndReopenWithCF({"pikachu"}, options);
// Block compactions
test::SleepingBackgroundTask sleeping_task_low;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
for (int i = 0; i < 3; i++) {
Put(Key(i), std::string(10000, 'x'));
Flush();
}
// These writes will be slowed down to 1KB/s
uint64_t estimated_sleep_time = 0;
Random rnd(301);
Put("", "");
uint64_t cur_rate = options.delayed_write_rate;
for (int i = 0; i < kTotalFlushes; i++) {
uint64_t size_memtable = 0;
for (int j = 0; j < kEntriesPerMemTable; j++) {
auto rand_num = rnd.Uniform(20);
// Spread the size range to more.
size_t entry_size = rand_num * rand_num * rand_num;
WriteOptions wo;
Put(Key(i), std::string(entry_size, 'x'), wo);
size_memtable += entry_size + 18;
// Occasionally sleep a while
if (rnd.Uniform(20) == 6) {
env_->SleepForMicroseconds(2666);
}
}
dbfull()->TEST_WaitForFlushMemTable();
estimated_sleep_time += size_memtable * 1000000u / cur_rate;
// Slow down twice. One for memtable switch and one for flush finishes.
cur_rate = static_cast<uint64_t>(static_cast<double>(cur_rate) *
kIncSlowdownRatio * kIncSlowdownRatio);
}
// Estimate the total sleep time fall into the rough range.
ASSERT_GT(env_->NowMicros(), estimated_sleep_time / 2);
ASSERT_LT(env_->NowMicros(), estimated_sleep_time * 2);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilDone();
}
TEST_F(DBTest, HardLimit) {
Options options = CurrentOptions();
options.env = env_;
env_->SetBackgroundThreads(1, Env::LOW);
options.max_write_buffer_number = 256;
options.write_buffer_size = 110 << 10; // 110KB
options.arena_block_size = 4 * 1024;
options.level0_file_num_compaction_trigger = 4;
options.level0_slowdown_writes_trigger = 999999;
options.level0_stop_writes_trigger = 999999;
options.hard_pending_compaction_bytes_limit = 800 << 10;
options.max_bytes_for_level_base = 10000000000u;
options.max_background_compactions = 1;
options.memtable_factory.reset(
new SpecialSkipListFactory(KNumKeysByGenerateNewFile - 1));
env_->SetBackgroundThreads(1, Env::LOW);
test::SleepingBackgroundTask sleeping_task_low;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
CreateAndReopenWithCF({"pikachu"}, options);
std::atomic<int> callback_count(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::DelayWrite:Wait", [&](void* /*arg*/) {
callback_count.fetch_add(1);
sleeping_task_low.WakeUp();
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Random rnd(301);
int key_idx = 0;
for (int num = 0; num < 5; num++) {
GenerateNewFile(&rnd, &key_idx, true);
dbfull()->TEST_WaitForFlushMemTable();
}
ASSERT_EQ(0, callback_count.load());
for (int num = 0; num < 5; num++) {
GenerateNewFile(&rnd, &key_idx, true);
dbfull()->TEST_WaitForFlushMemTable();
}
ASSERT_GE(callback_count.load(), 1);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
sleeping_task_low.WaitUntilDone();
}
#if !defined(ROCKSDB_LITE) && !defined(ROCKSDB_DISABLE_STALL_NOTIFICATION)
class WriteStallListener : public EventListener {
public:
WriteStallListener() : condition_(WriteStallCondition::kNormal) {}
void OnStallConditionsChanged(const WriteStallInfo& info) override {
MutexLock l(&mutex_);
condition_ = info.condition.cur;
}
bool CheckCondition(WriteStallCondition expected) {
MutexLock l(&mutex_);
return expected == condition_;
}
private:
port::Mutex mutex_;
WriteStallCondition condition_;
};
TEST_F(DBTest, SoftLimit) {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000; // Small write buffer
options.max_write_buffer_number = 256;
options.level0_file_num_compaction_trigger = 1;
options.level0_slowdown_writes_trigger = 3;
options.level0_stop_writes_trigger = 999999;
options.delayed_write_rate = 20000; // About 200KB/s limited rate
options.soft_pending_compaction_bytes_limit = 160000;
options.target_file_size_base = 99999999; // All into one file
options.max_bytes_for_level_base = 50000;
options.max_bytes_for_level_multiplier = 10;
options.max_background_compactions = 1;
options.compression = kNoCompression;
WriteStallListener* listener = new WriteStallListener();
options.listeners.emplace_back(listener);
// FlushMemtable with opt.wait=true does not wait for
// `OnStallConditionsChanged` being called. The event listener is triggered
// on `JobContext::Clean`, which happens after flush result is installed.
// We use sync point to create a custom WaitForFlush that waits for
// context cleanup.
port::Mutex flush_mutex;
port::CondVar flush_cv(&flush_mutex);
bool flush_finished = false;
auto InstallFlushCallback = [&]() {
{
MutexLock l(&flush_mutex);
flush_finished = false;
}
SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCallFlush:ContextCleanedUp", [&](void*) {
{
MutexLock l(&flush_mutex);
flush_finished = true;
}
flush_cv.SignalAll();
});
};
auto WaitForFlush = [&]() {
{
MutexLock l(&flush_mutex);
while (!flush_finished) {
flush_cv.Wait();
}
}
SyncPoint::GetInstance()->ClearCallBack(
"DBImpl::BackgroundCallFlush:ContextCleanedUp");
};
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Reopen(options);
// Generating 360KB in Level 3
for (int i = 0; i < 72; i++) {
Put(Key(i), std::string(5000, 'x'));
if (i % 10 == 0) {
dbfull()->TEST_FlushMemTable(true, true);
}
}
dbfull()->TEST_WaitForCompact();
MoveFilesToLevel(3);
// Generating 360KB in Level 2
for (int i = 0; i < 72; i++) {
Put(Key(i), std::string(5000, 'x'));
if (i % 10 == 0) {
dbfull()->TEST_FlushMemTable(true, true);
}
}
dbfull()->TEST_WaitForCompact();
MoveFilesToLevel(2);
Put(Key(0), "");
test::SleepingBackgroundTask sleeping_task_low;
// Block compactions
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
sleeping_task_low.WaitUntilSleeping();
// Create 3 L0 files, making score of L0 to be 3.
for (int i = 0; i < 3; i++) {
Put(Key(i), std::string(5000, 'x'));
Put(Key(100 - i), std::string(5000, 'x'));
// Flush the file. File size is around 30KB.
InstallFlushCallback();
dbfull()->TEST_FlushMemTable(true, true);
WaitForFlush();
}
ASSERT_TRUE(dbfull()->TEST_write_controler().NeedsDelay());
ASSERT_TRUE(listener->CheckCondition(WriteStallCondition::kDelayed));
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilDone();
sleeping_task_low.Reset();
dbfull()->TEST_WaitForCompact();
// Now there is one L1 file but doesn't trigger soft_rate_limit
// The L1 file size is around 30KB.
ASSERT_EQ(NumTableFilesAtLevel(1), 1);
ASSERT_TRUE(!dbfull()->TEST_write_controler().NeedsDelay());
ASSERT_TRUE(listener->CheckCondition(WriteStallCondition::kNormal));
// Only allow one compactin going through.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"BackgroundCallCompaction:0", [&](void* /*arg*/) {
// Schedule a sleeping task.
sleeping_task_low.Reset();
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask,
&sleeping_task_low, Env::Priority::LOW);
});
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
sleeping_task_low.WaitUntilSleeping();
// Create 3 L0 files, making score of L0 to be 3
for (int i = 0; i < 3; i++) {
Put(Key(10 + i), std::string(5000, 'x'));
Put(Key(90 - i), std::string(5000, 'x'));
// Flush the file. File size is around 30KB.
InstallFlushCallback();
dbfull()->TEST_FlushMemTable(true, true);
WaitForFlush();
}
// Wake up sleep task to enable compaction to run and waits
// for it to go to sleep state again to make sure one compaction
// goes through.
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilSleeping();
// Now there is one L1 file (around 60KB) which exceeds 50KB base by 10KB
// Given level multiplier 10, estimated pending compaction is around 100KB
// doesn't trigger soft_pending_compaction_bytes_limit
ASSERT_EQ(NumTableFilesAtLevel(1), 1);
ASSERT_TRUE(!dbfull()->TEST_write_controler().NeedsDelay());
ASSERT_TRUE(listener->CheckCondition(WriteStallCondition::kNormal));
// Create 3 L0 files, making score of L0 to be 3, higher than L0.
for (int i = 0; i < 3; i++) {
Put(Key(20 + i), std::string(5000, 'x'));
Put(Key(80 - i), std::string(5000, 'x'));
// Flush the file. File size is around 30KB.
InstallFlushCallback();
dbfull()->TEST_FlushMemTable(true, true);
WaitForFlush();
}
// Wake up sleep task to enable compaction to run and waits
// for it to go to sleep state again to make sure one compaction
// goes through.
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilSleeping();
// Now there is one L1 file (around 90KB) which exceeds 50KB base by 40KB
// L2 size is 360KB, so the estimated level fanout 4, estimated pending
// compaction is around 200KB
// triggerring soft_pending_compaction_bytes_limit
ASSERT_EQ(NumTableFilesAtLevel(1), 1);
ASSERT_TRUE(dbfull()->TEST_write_controler().NeedsDelay());
ASSERT_TRUE(listener->CheckCondition(WriteStallCondition::kDelayed));
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilSleeping();
ASSERT_TRUE(!dbfull()->TEST_write_controler().NeedsDelay());
ASSERT_TRUE(listener->CheckCondition(WriteStallCondition::kNormal));
// shrink level base so L2 will hit soft limit easier.
ASSERT_OK(dbfull()->SetOptions({
{"max_bytes_for_level_base", "5000"},
}));
Put("", "");
Flush();
ASSERT_TRUE(dbfull()->TEST_write_controler().NeedsDelay());
ASSERT_TRUE(listener->CheckCondition(WriteStallCondition::kDelayed));
sleeping_task_low.WaitUntilSleeping();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilDone();
}
TEST_F(DBTest, LastWriteBufferDelay) {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000;
options.max_write_buffer_number = 4;
options.delayed_write_rate = 20000;
options.compression = kNoCompression;
options.disable_auto_compactions = true;
int kNumKeysPerMemtable = 3;
options.memtable_factory.reset(
new SpecialSkipListFactory(kNumKeysPerMemtable));
Reopen(options);
test::SleepingBackgroundTask sleeping_task;
// Block flushes
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task,
Env::Priority::HIGH);
sleeping_task.WaitUntilSleeping();
// Create 3 L0 files, making score of L0 to be 3.
for (int i = 0; i < 3; i++) {
// Fill one mem table
for (int j = 0; j < kNumKeysPerMemtable; j++) {
Put(Key(j), "");
}
ASSERT_TRUE(!dbfull()->TEST_write_controler().NeedsDelay());
}
// Inserting a new entry would create a new mem table, triggering slow down.
Put(Key(0), "");
ASSERT_TRUE(dbfull()->TEST_write_controler().NeedsDelay());
sleeping_task.WakeUp();
sleeping_task.WaitUntilDone();
}
#endif // !defined(ROCKSDB_LITE) && !defined(ROCKSDB_DISABLE_STALL_NOTIFICATION)
TEST_F(DBTest, FailWhenCompressionNotSupportedTest) {
CompressionType compressions[] = {kZlibCompression, kBZip2Compression,
kLZ4Compression, kLZ4HCCompression,
kXpressCompression};
for (auto comp : compressions) {
if (!CompressionTypeSupported(comp)) {
// not supported, we should fail the Open()
Options options = CurrentOptions();
options.compression = comp;
ASSERT_TRUE(!TryReopen(options).ok());
// Try if CreateColumnFamily also fails
options.compression = kNoCompression;
ASSERT_OK(TryReopen(options));
ColumnFamilyOptions cf_options(options);
cf_options.compression = comp;
ColumnFamilyHandle* handle;
ASSERT_TRUE(!db_->CreateColumnFamily(cf_options, "name", &handle).ok());
}
}
}
TEST_F(DBTest, CreateColumnFamilyShouldFailOnIncompatibleOptions) {
Options options = CurrentOptions();
options.max_open_files = 100;
Reopen(options);
ColumnFamilyOptions cf_options(options);
// ttl is now supported when max_open_files is -1.
cf_options.ttl = 3600;
ColumnFamilyHandle* handle;
ASSERT_OK(db_->CreateColumnFamily(cf_options, "pikachu", &handle));
delete handle;
}
#ifndef ROCKSDB_LITE
TEST_F(DBTest, RowCache) {
Options options = CurrentOptions();
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.row_cache = NewLRUCache(8192);
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "bar"));
ASSERT_OK(Flush());
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_HIT), 0);
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_MISS), 0);
ASSERT_EQ(Get("foo"), "bar");
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_HIT), 0);
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_MISS), 1);
ASSERT_EQ(Get("foo"), "bar");
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_HIT), 1);
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_MISS), 1);
}
TEST_F(DBTest, PinnableSliceAndRowCache) {
Options options = CurrentOptions();
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.row_cache = NewLRUCache(8192);
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "bar"));
ASSERT_OK(Flush());
ASSERT_EQ(Get("foo"), "bar");
ASSERT_EQ(
reinterpret_cast<LRUCache*>(options.row_cache.get())->TEST_GetLRUSize(),
1);
{
PinnableSlice pin_slice;
ASSERT_EQ(Get("foo", &pin_slice), Status::OK());
ASSERT_EQ(pin_slice.ToString(), "bar");
// Entry is already in cache, lookup will remove the element from lru
ASSERT_EQ(
reinterpret_cast<LRUCache*>(options.row_cache.get())->TEST_GetLRUSize(),
0);
}
// After PinnableSlice destruction element is added back in LRU
ASSERT_EQ(
reinterpret_cast<LRUCache*>(options.row_cache.get())->TEST_GetLRUSize(),
1);
}
#endif // ROCKSDB_LITE
TEST_F(DBTest, DeletingOldWalAfterDrop) {
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"Test:AllowFlushes", "DBImpl::BGWorkFlush"},
{"DBImpl::BGWorkFlush:done", "Test:WaitForFlush"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearTrace();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
Options options = CurrentOptions();
options.max_total_wal_size = 8192;
options.compression = kNoCompression;
options.write_buffer_size = 1 << 20;
options.level0_file_num_compaction_trigger = (1 << 30);
options.level0_slowdown_writes_trigger = (1 << 30);
options.level0_stop_writes_trigger = (1 << 30);
options.disable_auto_compactions = true;
DestroyAndReopen(options);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
CreateColumnFamilies({"cf1", "cf2"}, options);
ASSERT_OK(Put(0, "key1", DummyString(8192)));
ASSERT_OK(Put(0, "key2", DummyString(8192)));
// the oldest wal should now be getting_flushed
ASSERT_OK(db_->DropColumnFamily(handles_[0]));
// all flushes should now do nothing because their CF is dropped
TEST_SYNC_POINT("Test:AllowFlushes");
TEST_SYNC_POINT("Test:WaitForFlush");
uint64_t lognum1 = dbfull()->TEST_LogfileNumber();
ASSERT_OK(Put(1, "key3", DummyString(8192)));
ASSERT_OK(Put(1, "key4", DummyString(8192)));
// new wal should have been created
uint64_t lognum2 = dbfull()->TEST_LogfileNumber();
EXPECT_GT(lognum2, lognum1);
}
TEST_F(DBTest, UnsupportedManualSync) {
DestroyAndReopen(CurrentOptions());
env_->is_wal_sync_thread_safe_.store(false);
Status s = db_->SyncWAL();
ASSERT_TRUE(s.IsNotSupported());
}
INSTANTIATE_TEST_CASE_P(DBTestWithParam, DBTestWithParam,
::testing::Combine(::testing::Values(1, 4),
::testing::Bool()));
TEST_F(DBTest, PauseBackgroundWorkTest) {
Options options = CurrentOptions();
options.write_buffer_size = 100000; // Small write buffer
Reopen(options);
std::vector<port::Thread> threads;
std::atomic<bool> done(false);
db_->PauseBackgroundWork();
threads.emplace_back([&]() {
Random rnd(301);
for (int i = 0; i < 10000; ++i) {
Put(rnd.RandomString(10), rnd.RandomString(10));
}
done.store(true);
});
env_->SleepForMicroseconds(200000);
// make sure the thread is not done
ASSERT_FALSE(done.load());
db_->ContinueBackgroundWork();
for (auto& t : threads) {
t.join();
}
// now it's done
ASSERT_TRUE(done.load());
}
// Keep spawning short-living threads that create an iterator and quit.
// Meanwhile in another thread keep flushing memtables.
// This used to cause a deadlock.
TEST_F(DBTest, ThreadLocalPtrDeadlock) {
std::atomic<int> flushes_done{0};
std::atomic<int> threads_destroyed{0};
auto done = [&] {
return flushes_done.load() > 10;
};
port::Thread flushing_thread([&] {
for (int i = 0; !done(); ++i) {
ASSERT_OK(db_->Put(WriteOptions(), Slice("hi"),
Slice(std::to_string(i).c_str())));
ASSERT_OK(db_->Flush(FlushOptions()));
int cnt = ++flushes_done;
fprintf(stderr, "Flushed %d times\n", cnt);
}
});
std::vector<port::Thread> thread_spawning_threads(10);
for (auto& t: thread_spawning_threads) {
t = port::Thread([&] {
while (!done()) {
{
port::Thread tmp_thread([&] {
auto it = db_->NewIterator(ReadOptions());
delete it;
});
tmp_thread.join();
}
++threads_destroyed;
}
});
}
for (auto& t: thread_spawning_threads) {
t.join();
}
flushing_thread.join();
fprintf(stderr, "Done. Flushed %d times, destroyed %d threads\n",
flushes_done.load(), threads_destroyed.load());
}
TEST_F(DBTest, LargeBlockSizeTest) {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(0, "foo", "bar"));
BlockBasedTableOptions table_options;
table_options.block_size = 8LL * 1024 * 1024 * 1024LL;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
ASSERT_NOK(TryReopenWithColumnFamilies({"default", "pikachu"}, options));
}
#ifndef ROCKSDB_LITE
TEST_F(DBTest, CreationTimeOfOldestFile) {
const int kNumKeysPerFile = 32;
const int kNumLevelFiles = 2;
const int kValueSize = 100;
Options options = CurrentOptions();
options.max_open_files = -1;
env_->SetMockSleep();
options.env = env_;
// NOTE: Presumed unnecessary and removed: resetting mock time in env
DestroyAndReopen(options);
bool set_file_creation_time_to_zero = true;
int idx = 0;
int64_t time_1 = 0;
env_->GetCurrentTime(&time_1);
const uint64_t uint_time_1 = static_cast<uint64_t>(time_1);
// Add 50 hours
env_->MockSleepForSeconds(50 * 60 * 60);
int64_t time_2 = 0;
env_->GetCurrentTime(&time_2);
const uint64_t uint_time_2 = static_cast<uint64_t>(time_2);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"PropertyBlockBuilder::AddTableProperty:Start", [&](void* arg) {
TableProperties* props = reinterpret_cast<TableProperties*>(arg);
if (set_file_creation_time_to_zero) {
if (idx == 0) {
props->file_creation_time = 0;
idx++;
} else if (idx == 1) {
props->file_creation_time = uint_time_1;
idx = 0;
}
} else {
if (idx == 0) {
props->file_creation_time = uint_time_1;
idx++;
} else if (idx == 1) {
props->file_creation_time = uint_time_2;
}
}
});
// Set file creation time in manifest all to 0.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"FileMetaData::FileMetaData", [&](void* arg) {
FileMetaData* meta = static_cast<FileMetaData*>(arg);
meta->file_creation_time = 0;
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Random rnd(301);
for (int i = 0; i < kNumLevelFiles; ++i) {
for (int j = 0; j < kNumKeysPerFile; ++j) {
ASSERT_OK(
Put(Key(i * kNumKeysPerFile + j), rnd.RandomString(kValueSize)));
}
Flush();
}
// At this point there should be 2 files, one with file_creation_time = 0 and
// the other non-zero. GetCreationTimeOfOldestFile API should return 0.
uint64_t creation_time;
Status s1 = dbfull()->GetCreationTimeOfOldestFile(&creation_time);
ASSERT_EQ(0, creation_time);
ASSERT_EQ(s1, Status::OK());
// Testing with non-zero file creation time.
set_file_creation_time_to_zero = false;
options = CurrentOptions();
options.max_open_files = -1;
options.env = env_;
// NOTE: Presumed unnecessary and removed: resetting mock time in env
DestroyAndReopen(options);
for (int i = 0; i < kNumLevelFiles; ++i) {
for (int j = 0; j < kNumKeysPerFile; ++j) {
ASSERT_OK(
Put(Key(i * kNumKeysPerFile + j), rnd.RandomString(kValueSize)));
}
Flush();
}
// At this point there should be 2 files with non-zero file creation time.
// GetCreationTimeOfOldestFile API should return non-zero value.
uint64_t ctime;
Status s2 = dbfull()->GetCreationTimeOfOldestFile(&ctime);
ASSERT_EQ(uint_time_1, ctime);
ASSERT_EQ(s2, Status::OK());
// Testing with max_open_files != -1
options = CurrentOptions();
options.max_open_files = 10;
DestroyAndReopen(options);
Status s3 = dbfull()->GetCreationTimeOfOldestFile(&ctime);
ASSERT_EQ(s3, Status::NotSupported());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBTest, MemoryUsageWithMaxWriteBufferSizeToMaintain) {
Options options = CurrentOptions();
options.max_write_buffer_size_to_maintain = 10000;
options.write_buffer_size = 160000;
Reopen(options);
Random rnd(301);
bool memory_limit_exceeded = false;
uint64_t size_all_mem_table = 0;
uint64_t cur_active_mem = 0;
for (int i = 0; i < 1000; i++) {
std::string value = rnd.RandomString(1000);
ASSERT_OK(Put("keykey_" + std::to_string(i), value));
dbfull()->TEST_WaitForFlushMemTable();
ASSERT_TRUE(db_->GetIntProperty(db_->DefaultColumnFamily(),
DB::Properties::kSizeAllMemTables,
&size_all_mem_table));
ASSERT_TRUE(db_->GetIntProperty(db_->DefaultColumnFamily(),
DB::Properties::kCurSizeActiveMemTable,
&cur_active_mem));
// Errors out if memory usage keeps on increasing beyond the limit.
// Once memory limit exceeds, memory_limit_exceeded is set and if
// size_all_mem_table doesn't drop out in the next write then it errors out
// (not expected behaviour). If memory usage drops then
// memory_limit_exceeded is set to false.
if ((size_all_mem_table > cur_active_mem) &&
(cur_active_mem >=
static_cast<uint64_t>(options.max_write_buffer_size_to_maintain)) &&
(size_all_mem_table > options.max_write_buffer_size_to_maintain +
options.write_buffer_size)) {
ASSERT_FALSE(memory_limit_exceeded);
memory_limit_exceeded = true;
} else {
memory_limit_exceeded = false;
}
}
}
#endif
} // namespace ROCKSDB_NAMESPACE
#ifdef ROCKSDB_UNITTESTS_WITH_CUSTOM_OBJECTS_FROM_STATIC_LIBS
extern "C" {
void RegisterCustomObjects(int argc, char** argv);
}
#else
void RegisterCustomObjects(int /*argc*/, char** /*argv*/) {}
#endif // !ROCKSDB_UNITTESTS_WITH_CUSTOM_OBJECTS_FROM_STATIC_LIBS
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
RegisterCustomObjects(argc, argv);
return RUN_ALL_TESTS();
}