rocksdb/db/db_impl/db_impl_secondary.h
Maysam Yabandeh 2f973ca96e Double Crash in kPointInTimeRecovery with TransactionDB (#6313)
Summary:
In WritePrepared there could be gap in sequence numbers. This breaks the trick we use in kPointInTimeRecovery which assume the first seq in the log right after the corrupted log is one larger than the last seq we read from the logs. To let this trick keep working, we add a dummy entry with the expected sequence to the first log right after recovery.
Also in WriteCommitted, if the log right after the corrupted log is empty, since it has no sequence number to let the sequential trick work, it is assumed as unexpected behavior. This is however expected to happen if we close the db after recovering from a corruption and before writing anything new to it. To remedy that, we apply the same technique by writing a dummy entry to the log that is created after the corrupted log.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6313

Differential Revision: D19458291

Pulled By: maysamyabandeh

fbshipit-source-id: 09bc49e574690085df45b034ca863ff315937e2d
2020-01-29 11:40:55 -08:00

334 lines
12 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#pragma once
#ifndef ROCKSDB_LITE
#include <string>
#include <vector>
#include "db/db_impl/db_impl.h"
namespace rocksdb {
// A wrapper class to hold log reader, log reporter, log status.
class LogReaderContainer {
public:
LogReaderContainer()
: reader_(nullptr), reporter_(nullptr), status_(nullptr) {}
LogReaderContainer(Env* env, std::shared_ptr<Logger> info_log,
std::string fname,
std::unique_ptr<SequentialFileReader>&& file_reader,
uint64_t log_number) {
LogReporter* reporter = new LogReporter();
status_ = new Status();
reporter->env = env;
reporter->info_log = info_log.get();
reporter->fname = std::move(fname);
reporter->status = status_;
reporter_ = reporter;
// We intentially make log::Reader do checksumming even if
// paranoid_checks==false so that corruptions cause entire commits
// to be skipped instead of propagating bad information (like overly
// large sequence numbers).
reader_ = new log::FragmentBufferedReader(info_log, std::move(file_reader),
reporter, true /*checksum*/,
log_number);
}
log::FragmentBufferedReader* reader_;
log::Reader::Reporter* reporter_;
Status* status_;
~LogReaderContainer() {
delete reader_;
delete reporter_;
delete status_;
}
private:
struct LogReporter : public log::Reader::Reporter {
Env* env;
Logger* info_log;
std::string fname;
Status* status; // nullptr if immutable_db_options_.paranoid_checks==false
void Corruption(size_t bytes, const Status& s) override {
ROCKS_LOG_WARN(info_log, "%s%s: dropping %d bytes; %s",
(this->status == nullptr ? "(ignoring error) " : ""),
fname.c_str(), static_cast<int>(bytes),
s.ToString().c_str());
if (this->status != nullptr && this->status->ok()) {
*this->status = s;
}
}
};
};
// The secondary instance shares access to the storage as the primary.
// The secondary is able to read and replay changes described in both the
// MANIFEST and the WAL files without coordination with the primary.
// The secondary instance can be opened using `DB::OpenAsSecondary`. After
// that, it can call `DBImplSecondary::TryCatchUpWithPrimary` to make best
// effort attempts to catch up with the primary.
class DBImplSecondary : public DBImpl {
public:
DBImplSecondary(const DBOptions& options, const std::string& dbname);
~DBImplSecondary() override;
// Recover by replaying MANIFEST and WAL. Also initialize manifest_reader_
// and log_readers_ to facilitate future operations.
Status Recover(const std::vector<ColumnFamilyDescriptor>& column_families,
bool read_only, bool error_if_log_file_exist,
bool error_if_data_exists_in_logs,
uint64_t* = nullptr) override;
// Implementations of the DB interface
using DB::Get;
Status Get(const ReadOptions& options, ColumnFamilyHandle* column_family,
const Slice& key, PinnableSlice* value) override;
Status GetImpl(const ReadOptions& options, ColumnFamilyHandle* column_family,
const Slice& key, PinnableSlice* value);
using DBImpl::NewIterator;
Iterator* NewIterator(const ReadOptions&,
ColumnFamilyHandle* column_family) override;
ArenaWrappedDBIter* NewIteratorImpl(const ReadOptions& read_options,
ColumnFamilyData* cfd,
SequenceNumber snapshot,
ReadCallback* read_callback);
Status NewIterators(const ReadOptions& options,
const std::vector<ColumnFamilyHandle*>& column_families,
std::vector<Iterator*>* iterators) override;
using DBImpl::Put;
Status Put(const WriteOptions& /*options*/,
ColumnFamilyHandle* /*column_family*/, const Slice& /*key*/,
const Slice& /*value*/) override {
return Status::NotSupported("Not supported operation in secondary mode.");
}
using DBImpl::Merge;
Status Merge(const WriteOptions& /*options*/,
ColumnFamilyHandle* /*column_family*/, const Slice& /*key*/,
const Slice& /*value*/) override {
return Status::NotSupported("Not supported operation in secondary mode.");
}
using DBImpl::Delete;
Status Delete(const WriteOptions& /*options*/,
ColumnFamilyHandle* /*column_family*/,
const Slice& /*key*/) override {
return Status::NotSupported("Not supported operation in secondary mode.");
}
using DBImpl::SingleDelete;
Status SingleDelete(const WriteOptions& /*options*/,
ColumnFamilyHandle* /*column_family*/,
const Slice& /*key*/) override {
return Status::NotSupported("Not supported operation in secondary mode.");
}
Status Write(const WriteOptions& /*options*/,
WriteBatch* /*updates*/) override {
return Status::NotSupported("Not supported operation in secondary mode.");
}
using DBImpl::CompactRange;
Status CompactRange(const CompactRangeOptions& /*options*/,
ColumnFamilyHandle* /*column_family*/,
const Slice* /*begin*/, const Slice* /*end*/) override {
return Status::NotSupported("Not supported operation in secondary mode.");
}
using DBImpl::CompactFiles;
Status CompactFiles(
const CompactionOptions& /*compact_options*/,
ColumnFamilyHandle* /*column_family*/,
const std::vector<std::string>& /*input_file_names*/,
const int /*output_level*/, const int /*output_path_id*/ = -1,
std::vector<std::string>* const /*output_file_names*/ = nullptr,
CompactionJobInfo* /*compaction_job_info*/ = nullptr) override {
return Status::NotSupported("Not supported operation in secondary mode.");
}
Status DisableFileDeletions() override {
return Status::NotSupported("Not supported operation in secondary mode.");
}
Status EnableFileDeletions(bool /*force*/) override {
return Status::NotSupported("Not supported operation in secondary mode.");
}
Status GetLiveFiles(std::vector<std::string>&,
uint64_t* /*manifest_file_size*/,
bool /*flush_memtable*/ = true) override {
return Status::NotSupported("Not supported operation in secondary mode.");
}
using DBImpl::Flush;
Status Flush(const FlushOptions& /*options*/,
ColumnFamilyHandle* /*column_family*/) override {
return Status::NotSupported("Not supported operation in secondary mode.");
}
using DBImpl::SetDBOptions;
Status SetDBOptions(const std::unordered_map<std::string, std::string>&
/*options_map*/) override {
// Currently not supported because changing certain options may cause
// flush/compaction.
return Status::NotSupported("Not supported operation in secondary mode.");
}
using DBImpl::SetOptions;
Status SetOptions(
ColumnFamilyHandle* /*cfd*/,
const std::unordered_map<std::string, std::string>& /*options_map*/)
override {
// Currently not supported because changing certain options may cause
// flush/compaction and/or write to MANIFEST.
return Status::NotSupported("Not supported operation in secondary mode.");
}
using DBImpl::SyncWAL;
Status SyncWAL() override {
return Status::NotSupported("Not supported operation in secondary mode.");
}
using DB::IngestExternalFile;
Status IngestExternalFile(
ColumnFamilyHandle* /*column_family*/,
const std::vector<std::string>& /*external_files*/,
const IngestExternalFileOptions& /*ingestion_options*/) override {
return Status::NotSupported("Not supported operation in secondary mode.");
}
// Try to catch up with the primary by reading as much as possible from the
// log files until there is nothing more to read or encounters an error. If
// the amount of information in the log files to process is huge, this
// method can take long time due to all the I/O and CPU costs.
Status TryCatchUpWithPrimary() override;
// Try to find log reader using log_number from log_readers_ map, initialize
// if it doesn't exist
Status MaybeInitLogReader(uint64_t log_number,
log::FragmentBufferedReader** log_reader);
// Check if all live files exist on file system and that their file sizes
// matche to the in-memory records. It is possible that some live files may
// have been deleted by the primary. In this case, CheckConsistency() does
// not flag the missing file as inconsistency.
Status CheckConsistency() override;
protected:
// ColumnFamilyCollector is a write batch handler which does nothing
// except recording unique column family IDs
class ColumnFamilyCollector : public WriteBatch::Handler {
std::unordered_set<uint32_t> column_family_ids_;
Status AddColumnFamilyId(uint32_t column_family_id) {
if (column_family_ids_.find(column_family_id) ==
column_family_ids_.end()) {
column_family_ids_.insert(column_family_id);
}
return Status::OK();
}
public:
explicit ColumnFamilyCollector() {}
~ColumnFamilyCollector() override {}
Status PutCF(uint32_t column_family_id, const Slice&,
const Slice&) override {
return AddColumnFamilyId(column_family_id);
}
Status DeleteCF(uint32_t column_family_id, const Slice&) override {
return AddColumnFamilyId(column_family_id);
}
Status SingleDeleteCF(uint32_t column_family_id, const Slice&) override {
return AddColumnFamilyId(column_family_id);
}
Status DeleteRangeCF(uint32_t column_family_id, const Slice&,
const Slice&) override {
return AddColumnFamilyId(column_family_id);
}
Status MergeCF(uint32_t column_family_id, const Slice&,
const Slice&) override {
return AddColumnFamilyId(column_family_id);
}
Status PutBlobIndexCF(uint32_t column_family_id, const Slice&,
const Slice&) override {
return AddColumnFamilyId(column_family_id);
}
const std::unordered_set<uint32_t>& column_families() const {
return column_family_ids_;
}
};
Status CollectColumnFamilyIdsFromWriteBatch(
const WriteBatch& batch, std::vector<uint32_t>* column_family_ids) {
assert(column_family_ids != nullptr);
column_family_ids->clear();
ColumnFamilyCollector handler;
Status s = batch.Iterate(&handler);
if (s.ok()) {
for (const auto& cf : handler.column_families()) {
column_family_ids->push_back(cf);
}
}
return s;
}
bool OwnTablesAndLogs() const override {
// Currently, the secondary instance does not own the database files. It
// simply opens the files of the primary instance and tracks their file
// descriptors until they become obsolete. In the future, the secondary may
// create links to database files. OwnTablesAndLogs will return true then.
return false;
}
private:
friend class DB;
// No copying allowed
DBImplSecondary(const DBImplSecondary&);
void operator=(const DBImplSecondary&);
using DBImpl::Recover;
Status FindAndRecoverLogFiles(
std::unordered_set<ColumnFamilyData*>* cfds_changed,
JobContext* job_context);
Status FindNewLogNumbers(std::vector<uint64_t>* logs);
// After manifest recovery, replay WALs and refresh log_readers_ if necessary
// REQUIRES: log_numbers are sorted in ascending order
Status RecoverLogFiles(const std::vector<uint64_t>& log_numbers,
SequenceNumber* next_sequence,
std::unordered_set<ColumnFamilyData*>* cfds_changed,
JobContext* job_context);
std::unique_ptr<log::FragmentBufferedReader> manifest_reader_;
std::unique_ptr<log::Reader::Reporter> manifest_reporter_;
std::unique_ptr<Status> manifest_reader_status_;
// Cache log readers for each log number, used for continue WAL replay
// after recovery
std::map<uint64_t, std::unique_ptr<LogReaderContainer>> log_readers_;
// Current WAL number replayed for each column family.
std::unordered_map<ColumnFamilyData*, uint64_t> cfd_to_current_log_;
};
} // namespace rocksdb
#endif // !ROCKSDB_LITE