rocksdb/db/db_flush_test.cc
mrambacher 12f1137355 Add a SystemClock class to capture the time functions of an Env (#7858)
Summary:
Introduces and uses a SystemClock class to RocksDB.  This class contains the time-related functions of an Env and these functions can be redirected from the Env to the SystemClock.

Many of the places that used an Env (Timer, PerfStepTimer, RepeatableThread, RateLimiter, WriteController) for time-related functions have been changed to use SystemClock instead.  There are likely more places that can be changed, but this is a start to show what can/should be done.  Over time it would be nice to migrate most (if not all) of the uses of the time functions from the Env to the SystemClock.

There are several Env classes that implement these functions.  Most of these have not been converted yet to SystemClock implementations; that will come in a subsequent PR.  It would be good to unify many of the Mock Timer implementations, so that they behave similarly and be tested similarly (some override Sleep, some use a MockSleep, etc).

Additionally, this change will allow new methods to be introduced to the SystemClock (like https://github.com/facebook/rocksdb/issues/7101 WaitFor) in a consistent manner across a smaller number of classes.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/7858

Reviewed By: pdillinger

Differential Revision: D26006406

Pulled By: mrambacher

fbshipit-source-id: ed10a8abbdab7ff2e23d69d85bd25b3e7e899e90
2021-01-25 22:09:11 -08:00

1115 lines
39 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <atomic>
#include "db/db_impl/db_impl.h"
#include "db/db_test_util.h"
#include "env/mock_env.h"
#include "file/filename.h"
#include "port/port.h"
#include "port/stack_trace.h"
#include "rocksdb/utilities/transaction_db.h"
#include "test_util/sync_point.h"
#include "util/cast_util.h"
#include "util/mutexlock.h"
#include "utilities/fault_injection_env.h"
namespace ROCKSDB_NAMESPACE {
class DBFlushTest : public DBTestBase {
public:
DBFlushTest() : DBTestBase("/db_flush_test", /*env_do_fsync=*/true) {}
};
class DBFlushDirectIOTest : public DBFlushTest,
public ::testing::WithParamInterface<bool> {
public:
DBFlushDirectIOTest() : DBFlushTest() {}
};
class DBAtomicFlushTest : public DBFlushTest,
public ::testing::WithParamInterface<bool> {
public:
DBAtomicFlushTest() : DBFlushTest() {}
};
// We had issue when two background threads trying to flush at the same time,
// only one of them get committed. The test verifies the issue is fixed.
TEST_F(DBFlushTest, FlushWhileWritingManifest) {
Options options;
options.disable_auto_compactions = true;
options.max_background_flushes = 2;
options.env = env_;
Reopen(options);
FlushOptions no_wait;
no_wait.wait = false;
no_wait.allow_write_stall=true;
SyncPoint::GetInstance()->LoadDependency(
{{"VersionSet::LogAndApply:WriteManifest",
"DBFlushTest::FlushWhileWritingManifest:1"},
{"MemTableList::TryInstallMemtableFlushResults:InProgress",
"VersionSet::LogAndApply:WriteManifestDone"}});
SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(Put("foo", "v"));
ASSERT_OK(dbfull()->Flush(no_wait));
TEST_SYNC_POINT("DBFlushTest::FlushWhileWritingManifest:1");
ASSERT_OK(Put("bar", "v"));
ASSERT_OK(dbfull()->Flush(no_wait));
// If the issue is hit we will wait here forever.
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
#ifndef ROCKSDB_LITE
ASSERT_EQ(2, TotalTableFiles());
#endif // ROCKSDB_LITE
}
// Disable this test temporarily on Travis as it fails intermittently.
// Github issue: #4151
TEST_F(DBFlushTest, SyncFail) {
std::unique_ptr<FaultInjectionTestEnv> fault_injection_env(
new FaultInjectionTestEnv(env_));
Options options;
options.disable_auto_compactions = true;
options.env = fault_injection_env.get();
SyncPoint::GetInstance()->LoadDependency(
{{"DBFlushTest::SyncFail:GetVersionRefCount:1",
"DBImpl::FlushMemTableToOutputFile:BeforePickMemtables"},
{"DBImpl::FlushMemTableToOutputFile:AfterPickMemtables",
"DBFlushTest::SyncFail:GetVersionRefCount:2"},
{"DBFlushTest::SyncFail:1", "DBImpl::SyncClosedLogs:Start"},
{"DBImpl::SyncClosedLogs:Failed", "DBFlushTest::SyncFail:2"}});
SyncPoint::GetInstance()->EnableProcessing();
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put("key", "value"));
auto* cfd =
static_cast_with_check<ColumnFamilyHandleImpl>(db_->DefaultColumnFamily())
->cfd();
FlushOptions flush_options;
flush_options.wait = false;
ASSERT_OK(dbfull()->Flush(flush_options));
// Flush installs a new super-version. Get the ref count after that.
auto current_before = cfd->current();
int refs_before = cfd->current()->TEST_refs();
TEST_SYNC_POINT("DBFlushTest::SyncFail:GetVersionRefCount:1");
TEST_SYNC_POINT("DBFlushTest::SyncFail:GetVersionRefCount:2");
int refs_after_picking_memtables = cfd->current()->TEST_refs();
ASSERT_EQ(refs_before + 1, refs_after_picking_memtables);
fault_injection_env->SetFilesystemActive(false);
TEST_SYNC_POINT("DBFlushTest::SyncFail:1");
TEST_SYNC_POINT("DBFlushTest::SyncFail:2");
fault_injection_env->SetFilesystemActive(true);
// Now the background job will do the flush; wait for it.
// Returns the IO error happend during flush.
ASSERT_NOK(dbfull()->TEST_WaitForFlushMemTable());
#ifndef ROCKSDB_LITE
ASSERT_EQ("", FilesPerLevel()); // flush failed.
#endif // ROCKSDB_LITE
// Backgroun flush job should release ref count to current version.
ASSERT_EQ(current_before, cfd->current());
ASSERT_EQ(refs_before, cfd->current()->TEST_refs());
Destroy(options);
}
TEST_F(DBFlushTest, SyncSkip) {
Options options = CurrentOptions();
SyncPoint::GetInstance()->LoadDependency(
{{"DBFlushTest::SyncSkip:1", "DBImpl::SyncClosedLogs:Skip"},
{"DBImpl::SyncClosedLogs:Skip", "DBFlushTest::SyncSkip:2"}});
SyncPoint::GetInstance()->EnableProcessing();
Reopen(options);
ASSERT_OK(Put("key", "value"));
FlushOptions flush_options;
flush_options.wait = false;
ASSERT_OK(dbfull()->Flush(flush_options));
TEST_SYNC_POINT("DBFlushTest::SyncSkip:1");
TEST_SYNC_POINT("DBFlushTest::SyncSkip:2");
// Now the background job will do the flush; wait for it.
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
Destroy(options);
}
TEST_F(DBFlushTest, FlushInLowPriThreadPool) {
// Verify setting an empty high-pri (flush) thread pool causes flushes to be
// scheduled in the low-pri (compaction) thread pool.
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = 4;
options.memtable_factory.reset(new SpecialSkipListFactory(1));
Reopen(options);
env_->SetBackgroundThreads(0, Env::HIGH);
std::thread::id tid;
int num_flushes = 0, num_compactions = 0;
SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BGWorkFlush", [&](void* /*arg*/) {
if (tid == std::thread::id()) {
tid = std::this_thread::get_id();
} else {
ASSERT_EQ(tid, std::this_thread::get_id());
}
++num_flushes;
});
SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BGWorkCompaction", [&](void* /*arg*/) {
ASSERT_EQ(tid, std::this_thread::get_id());
++num_compactions;
});
SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(Put("key", "val"));
for (int i = 0; i < 4; ++i) {
ASSERT_OK(Put("key", "val"));
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(4, num_flushes);
ASSERT_EQ(1, num_compactions);
}
TEST_F(DBFlushTest, ManualFlushWithMinWriteBufferNumberToMerge) {
Options options = CurrentOptions();
options.write_buffer_size = 100;
options.max_write_buffer_number = 4;
options.min_write_buffer_number_to_merge = 3;
Reopen(options);
SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::BGWorkFlush",
"DBFlushTest::ManualFlushWithMinWriteBufferNumberToMerge:1"},
{"DBFlushTest::ManualFlushWithMinWriteBufferNumberToMerge:2",
"FlushJob::WriteLevel0Table"}});
SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(Put("key1", "value1"));
port::Thread t([&]() {
// The call wait for flush to finish, i.e. with flush_options.wait = true.
ASSERT_OK(Flush());
});
// Wait for flush start.
TEST_SYNC_POINT("DBFlushTest::ManualFlushWithMinWriteBufferNumberToMerge:1");
// Insert a second memtable before the manual flush finish.
// At the end of the manual flush job, it will check if further flush
// is needed, but it will not trigger flush of the second memtable because
// min_write_buffer_number_to_merge is not reached.
ASSERT_OK(Put("key2", "value2"));
ASSERT_OK(dbfull()->TEST_SwitchMemtable());
TEST_SYNC_POINT("DBFlushTest::ManualFlushWithMinWriteBufferNumberToMerge:2");
// Manual flush should return, without waiting for flush indefinitely.
t.join();
}
TEST_F(DBFlushTest, ScheduleOnlyOneBgThread) {
Options options = CurrentOptions();
Reopen(options);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
int called = 0;
SyncPoint::GetInstance()->SetCallBack(
"DBImpl::MaybeScheduleFlushOrCompaction:AfterSchedule:0", [&](void* arg) {
ASSERT_NE(nullptr, arg);
auto unscheduled_flushes = *reinterpret_cast<int*>(arg);
ASSERT_EQ(0, unscheduled_flushes);
++called;
});
SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(Put("a", "foo"));
FlushOptions flush_opts;
ASSERT_OK(dbfull()->Flush(flush_opts));
ASSERT_EQ(1, called);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
}
TEST_P(DBFlushDirectIOTest, DirectIO) {
Options options;
options.create_if_missing = true;
options.disable_auto_compactions = true;
options.max_background_flushes = 2;
options.use_direct_io_for_flush_and_compaction = GetParam();
options.env = new MockEnv(Env::Default());
SyncPoint::GetInstance()->SetCallBack(
"BuildTable:create_file", [&](void* arg) {
bool* use_direct_writes = static_cast<bool*>(arg);
ASSERT_EQ(*use_direct_writes,
options.use_direct_io_for_flush_and_compaction);
});
SyncPoint::GetInstance()->EnableProcessing();
Reopen(options);
ASSERT_OK(Put("foo", "v"));
FlushOptions flush_options;
flush_options.wait = true;
ASSERT_OK(dbfull()->Flush(flush_options));
Destroy(options);
delete options.env;
}
TEST_F(DBFlushTest, FlushError) {
Options options;
std::unique_ptr<FaultInjectionTestEnv> fault_injection_env(
new FaultInjectionTestEnv(env_));
options.write_buffer_size = 100;
options.max_write_buffer_number = 4;
options.min_write_buffer_number_to_merge = 3;
options.disable_auto_compactions = true;
options.env = fault_injection_env.get();
Reopen(options);
ASSERT_OK(Put("key1", "value1"));
ASSERT_OK(Put("key2", "value2"));
fault_injection_env->SetFilesystemActive(false);
Status s = dbfull()->TEST_SwitchMemtable();
fault_injection_env->SetFilesystemActive(true);
Destroy(options);
ASSERT_NE(s, Status::OK());
}
TEST_F(DBFlushTest, ManualFlushFailsInReadOnlyMode) {
// Regression test for bug where manual flush hangs forever when the DB
// is in read-only mode. Verify it now at least returns, despite failing.
Options options;
std::unique_ptr<FaultInjectionTestEnv> fault_injection_env(
new FaultInjectionTestEnv(env_));
options.env = fault_injection_env.get();
options.max_write_buffer_number = 2;
Reopen(options);
// Trigger a first flush but don't let it run
ASSERT_OK(db_->PauseBackgroundWork());
ASSERT_OK(Put("key1", "value1"));
FlushOptions flush_opts;
flush_opts.wait = false;
ASSERT_OK(db_->Flush(flush_opts));
// Write a key to the second memtable so we have something to flush later
// after the DB is in read-only mode.
ASSERT_OK(Put("key2", "value2"));
// Let the first flush continue, hit an error, and put the DB in read-only
// mode.
fault_injection_env->SetFilesystemActive(false);
ASSERT_OK(db_->ContinueBackgroundWork());
// We ingested the error to env, so the returned status is not OK.
ASSERT_NOK(dbfull()->TEST_WaitForFlushMemTable());
#ifndef ROCKSDB_LITE
uint64_t num_bg_errors;
ASSERT_TRUE(db_->GetIntProperty(DB::Properties::kBackgroundErrors,
&num_bg_errors));
ASSERT_GT(num_bg_errors, 0);
#endif // ROCKSDB_LITE
// In the bug scenario, triggering another flush would cause the second flush
// to hang forever. After the fix we expect it to return an error.
ASSERT_NOK(db_->Flush(FlushOptions()));
Close();
}
TEST_F(DBFlushTest, CFDropRaceWithWaitForFlushMemTables) {
Options options = CurrentOptions();
options.create_if_missing = true;
CreateAndReopenWithCF({"pikachu"}, options);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::FlushMemTable:AfterScheduleFlush",
"DBFlushTest::CFDropRaceWithWaitForFlushMemTables:BeforeDrop"},
{"DBFlushTest::CFDropRaceWithWaitForFlushMemTables:AfterFree",
"DBImpl::BackgroundCallFlush:start"},
{"DBImpl::BackgroundCallFlush:start",
"DBImpl::FlushMemTable:BeforeWaitForBgFlush"}});
SyncPoint::GetInstance()->EnableProcessing();
ASSERT_EQ(2, handles_.size());
ASSERT_OK(Put(1, "key", "value"));
auto* cfd = static_cast<ColumnFamilyHandleImpl*>(handles_[1])->cfd();
port::Thread drop_cf_thr([&]() {
TEST_SYNC_POINT(
"DBFlushTest::CFDropRaceWithWaitForFlushMemTables:BeforeDrop");
ASSERT_OK(dbfull()->DropColumnFamily(handles_[1]));
ASSERT_OK(dbfull()->DestroyColumnFamilyHandle(handles_[1]));
handles_.resize(1);
TEST_SYNC_POINT(
"DBFlushTest::CFDropRaceWithWaitForFlushMemTables:AfterFree");
});
FlushOptions flush_opts;
flush_opts.allow_write_stall = true;
ASSERT_NOK(dbfull()->TEST_FlushMemTable(cfd, flush_opts));
drop_cf_thr.join();
Close();
SyncPoint::GetInstance()->DisableProcessing();
}
#ifndef ROCKSDB_LITE
TEST_F(DBFlushTest, FireOnFlushCompletedAfterCommittedResult) {
class TestListener : public EventListener {
public:
void OnFlushCompleted(DB* db, const FlushJobInfo& info) override {
// There's only one key in each flush.
ASSERT_EQ(info.smallest_seqno, info.largest_seqno);
ASSERT_NE(0, info.smallest_seqno);
if (info.smallest_seqno == seq1) {
// First flush completed
ASSERT_FALSE(completed1);
completed1 = true;
CheckFlushResultCommitted(db, seq1);
} else {
// Second flush completed
ASSERT_FALSE(completed2);
completed2 = true;
ASSERT_EQ(info.smallest_seqno, seq2);
CheckFlushResultCommitted(db, seq2);
}
}
void CheckFlushResultCommitted(DB* db, SequenceNumber seq) {
DBImpl* db_impl = static_cast_with_check<DBImpl>(db);
InstrumentedMutex* mutex = db_impl->mutex();
mutex->Lock();
auto* cfd = static_cast_with_check<ColumnFamilyHandleImpl>(
db->DefaultColumnFamily())
->cfd();
ASSERT_LT(seq, cfd->imm()->current()->GetEarliestSequenceNumber());
mutex->Unlock();
}
std::atomic<SequenceNumber> seq1{0};
std::atomic<SequenceNumber> seq2{0};
std::atomic<bool> completed1{false};
std::atomic<bool> completed2{false};
};
std::shared_ptr<TestListener> listener = std::make_shared<TestListener>();
SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::BackgroundCallFlush:start",
"DBFlushTest::FireOnFlushCompletedAfterCommittedResult:WaitFirst"},
{"DBImpl::FlushMemTableToOutputFile:Finish",
"DBFlushTest::FireOnFlushCompletedAfterCommittedResult:WaitSecond"}});
SyncPoint::GetInstance()->SetCallBack(
"FlushJob::WriteLevel0Table", [&listener](void* arg) {
// Wait for the second flush finished, out of mutex.
auto* mems = reinterpret_cast<autovector<MemTable*>*>(arg);
if (mems->front()->GetEarliestSequenceNumber() == listener->seq1 - 1) {
TEST_SYNC_POINT(
"DBFlushTest::FireOnFlushCompletedAfterCommittedResult:"
"WaitSecond");
}
});
Options options = CurrentOptions();
options.create_if_missing = true;
options.listeners.push_back(listener);
// Setting max_flush_jobs = max_background_jobs / 4 = 2.
options.max_background_jobs = 8;
// Allow 2 immutable memtables.
options.max_write_buffer_number = 3;
Reopen(options);
SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(Put("foo", "v"));
listener->seq1 = db_->GetLatestSequenceNumber();
// t1 will wait for the second flush complete before committing flush result.
auto t1 = port::Thread([&]() {
// flush_opts.wait = true
ASSERT_OK(db_->Flush(FlushOptions()));
});
// Wait for first flush started.
TEST_SYNC_POINT(
"DBFlushTest::FireOnFlushCompletedAfterCommittedResult:WaitFirst");
// The second flush will exit early without commit its result. The work
// is delegated to the first flush.
ASSERT_OK(Put("bar", "v"));
listener->seq2 = db_->GetLatestSequenceNumber();
FlushOptions flush_opts;
flush_opts.wait = false;
ASSERT_OK(db_->Flush(flush_opts));
t1.join();
ASSERT_TRUE(listener->completed1);
ASSERT_TRUE(listener->completed2);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
}
#endif // !ROCKSDB_LITE
TEST_F(DBFlushTest, FlushWithBlob) {
constexpr uint64_t min_blob_size = 10;
Options options;
options.enable_blob_files = true;
options.min_blob_size = min_blob_size;
options.disable_auto_compactions = true;
options.env = env_;
Reopen(options);
constexpr char short_value[] = "short";
static_assert(sizeof(short_value) - 1 < min_blob_size,
"short_value too long");
constexpr char long_value[] = "long_value";
static_assert(sizeof(long_value) - 1 >= min_blob_size,
"long_value too short");
ASSERT_OK(Put("key1", short_value));
ASSERT_OK(Put("key2", long_value));
ASSERT_OK(Flush());
ASSERT_EQ(Get("key1"), short_value);
ASSERT_EQ(Get("key2"), long_value);
VersionSet* const versions = dbfull()->TEST_GetVersionSet();
assert(versions);
ColumnFamilyData* const cfd = versions->GetColumnFamilySet()->GetDefault();
assert(cfd);
Version* const current = cfd->current();
assert(current);
const VersionStorageInfo* const storage_info = current->storage_info();
assert(storage_info);
const auto& l0_files = storage_info->LevelFiles(0);
ASSERT_EQ(l0_files.size(), 1);
const FileMetaData* const table_file = l0_files[0];
assert(table_file);
const auto& blob_files = storage_info->GetBlobFiles();
ASSERT_EQ(blob_files.size(), 1);
const auto& blob_file = blob_files.begin()->second;
assert(blob_file);
ASSERT_EQ(table_file->smallest.user_key(), "key1");
ASSERT_EQ(table_file->largest.user_key(), "key2");
ASSERT_EQ(table_file->fd.smallest_seqno, 1);
ASSERT_EQ(table_file->fd.largest_seqno, 2);
ASSERT_EQ(table_file->oldest_blob_file_number,
blob_file->GetBlobFileNumber());
ASSERT_EQ(blob_file->GetTotalBlobCount(), 1);
#ifndef ROCKSDB_LITE
const InternalStats* const internal_stats = cfd->internal_stats();
assert(internal_stats);
const uint64_t expected_bytes =
table_file->fd.GetFileSize() + blob_file->GetTotalBlobBytes();
const auto& compaction_stats = internal_stats->TEST_GetCompactionStats();
ASSERT_FALSE(compaction_stats.empty());
ASSERT_EQ(compaction_stats[0].bytes_written, expected_bytes);
ASSERT_EQ(compaction_stats[0].num_output_files, 2);
const uint64_t* const cf_stats_value = internal_stats->TEST_GetCFStatsValue();
ASSERT_EQ(cf_stats_value[InternalStats::BYTES_FLUSHED], expected_bytes);
#endif // ROCKSDB_LITE
}
class DBFlushTestBlobError : public DBFlushTest,
public testing::WithParamInterface<std::string> {
public:
DBFlushTestBlobError() : sync_point_(GetParam()) {}
std::string sync_point_;
};
INSTANTIATE_TEST_CASE_P(DBFlushTestBlobError, DBFlushTestBlobError,
::testing::ValuesIn(std::vector<std::string>{
"BlobFileBuilder::WriteBlobToFile:AddRecord",
"BlobFileBuilder::WriteBlobToFile:AppendFooter"}));
TEST_P(DBFlushTestBlobError, FlushError) {
Options options;
options.enable_blob_files = true;
options.disable_auto_compactions = true;
options.env = env_;
Reopen(options);
ASSERT_OK(Put("key", "blob"));
SyncPoint::GetInstance()->SetCallBack(sync_point_, [this](void* arg) {
Status* const s = static_cast<Status*>(arg);
assert(s);
(*s) = Status::IOError(sync_point_);
});
SyncPoint::GetInstance()->EnableProcessing();
ASSERT_NOK(Flush());
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
VersionSet* const versions = dbfull()->TEST_GetVersionSet();
assert(versions);
ColumnFamilyData* const cfd = versions->GetColumnFamilySet()->GetDefault();
assert(cfd);
Version* const current = cfd->current();
assert(current);
const VersionStorageInfo* const storage_info = current->storage_info();
assert(storage_info);
const auto& l0_files = storage_info->LevelFiles(0);
ASSERT_TRUE(l0_files.empty());
const auto& blob_files = storage_info->GetBlobFiles();
ASSERT_TRUE(blob_files.empty());
// Make sure the files generated by the failed job have been deleted
std::vector<std::string> files;
ASSERT_OK(env_->GetChildren(dbname_, &files));
for (const auto& file : files) {
uint64_t number = 0;
FileType type = kTableFile;
if (!ParseFileName(file, &number, &type)) {
continue;
}
ASSERT_NE(type, kTableFile);
ASSERT_NE(type, kBlobFile);
}
#ifndef ROCKSDB_LITE
const InternalStats* const internal_stats = cfd->internal_stats();
assert(internal_stats);
const auto& compaction_stats = internal_stats->TEST_GetCompactionStats();
ASSERT_FALSE(compaction_stats.empty());
if (sync_point_ == "BlobFileBuilder::WriteBlobToFile:AddRecord") {
ASSERT_EQ(compaction_stats[0].bytes_written, 0);
ASSERT_EQ(compaction_stats[0].num_output_files, 0);
} else {
// SST file writing succeeded; blob file writing failed (during Finish)
ASSERT_GT(compaction_stats[0].bytes_written, 0);
ASSERT_EQ(compaction_stats[0].num_output_files, 1);
}
const uint64_t* const cf_stats_value = internal_stats->TEST_GetCFStatsValue();
ASSERT_EQ(cf_stats_value[InternalStats::BYTES_FLUSHED],
compaction_stats[0].bytes_written);
#endif // ROCKSDB_LITE
}
#ifndef ROCKSDB_LITE
TEST_P(DBAtomicFlushTest, ManualFlushUnder2PC) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.allow_2pc = true;
options.atomic_flush = GetParam();
// 64MB so that memtable flush won't be trigger by the small writes.
options.write_buffer_size = (static_cast<size_t>(64) << 20);
// Destroy the DB to recreate as a TransactionDB.
Close();
Destroy(options, true);
// Create a TransactionDB.
TransactionDB* txn_db = nullptr;
TransactionDBOptions txn_db_opts;
txn_db_opts.write_policy = TxnDBWritePolicy::WRITE_COMMITTED;
ASSERT_OK(TransactionDB::Open(options, txn_db_opts, dbname_, &txn_db));
ASSERT_NE(txn_db, nullptr);
db_ = txn_db;
// Create two more columns other than default CF.
std::vector<std::string> cfs = {"puppy", "kitty"};
CreateColumnFamilies(cfs, options);
ASSERT_EQ(handles_.size(), 2);
ASSERT_EQ(handles_[0]->GetName(), cfs[0]);
ASSERT_EQ(handles_[1]->GetName(), cfs[1]);
const size_t kNumCfToFlush = options.atomic_flush ? 2 : 1;
WriteOptions wopts;
TransactionOptions txn_opts;
// txn1 only prepare, but does not commit.
// The WAL containing the prepared but uncommitted data must be kept.
Transaction* txn1 = txn_db->BeginTransaction(wopts, txn_opts, nullptr);
// txn2 not only prepare, but also commit.
Transaction* txn2 = txn_db->BeginTransaction(wopts, txn_opts, nullptr);
ASSERT_NE(txn1, nullptr);
ASSERT_NE(txn2, nullptr);
for (size_t i = 0; i < kNumCfToFlush; i++) {
ASSERT_OK(txn1->Put(handles_[i], "k1", "v1"));
ASSERT_OK(txn2->Put(handles_[i], "k2", "v2"));
}
// A txn must be named before prepare.
ASSERT_OK(txn1->SetName("txn1"));
ASSERT_OK(txn2->SetName("txn2"));
// Prepare writes to WAL, but not to memtable. (WriteCommitted)
ASSERT_OK(txn1->Prepare());
ASSERT_OK(txn2->Prepare());
// Commit writes to memtable.
ASSERT_OK(txn2->Commit());
delete txn1;
delete txn2;
// There are still data in memtable not flushed.
// But since data is small enough to reside in the active memtable,
// there are no immutable memtable.
for (size_t i = 0; i < kNumCfToFlush; i++) {
auto cfh = static_cast<ColumnFamilyHandleImpl*>(handles_[i]);
ASSERT_EQ(0, cfh->cfd()->imm()->NumNotFlushed());
ASSERT_FALSE(cfh->cfd()->mem()->IsEmpty());
}
// Atomic flush memtables,
// the min log with prepared data should be written to MANIFEST.
std::vector<ColumnFamilyHandle*> cfs_to_flush(kNumCfToFlush);
for (size_t i = 0; i < kNumCfToFlush; i++) {
cfs_to_flush[i] = handles_[i];
}
ASSERT_OK(txn_db->Flush(FlushOptions(), cfs_to_flush));
// There are no remaining data in memtable after flush.
for (size_t i = 0; i < kNumCfToFlush; i++) {
auto cfh = static_cast<ColumnFamilyHandleImpl*>(handles_[i]);
ASSERT_EQ(0, cfh->cfd()->imm()->NumNotFlushed());
ASSERT_TRUE(cfh->cfd()->mem()->IsEmpty());
ASSERT_EQ(cfh->cfd()->GetFlushReason(), FlushReason::kManualFlush);
}
// The recovered min log number with prepared data should be non-zero.
// In 2pc mode, MinLogNumberToKeep returns the
// VersionSet::min_log_number_to_keep_2pc recovered from MANIFEST, if it's 0,
// it means atomic flush didn't write the min_log_number_to_keep to MANIFEST.
cfs.push_back(kDefaultColumnFamilyName);
ASSERT_OK(TryReopenWithColumnFamilies(cfs, options));
DBImpl* db_impl = reinterpret_cast<DBImpl*>(db_);
ASSERT_TRUE(db_impl->allow_2pc());
ASSERT_NE(db_impl->MinLogNumberToKeep(), 0);
}
#endif // ROCKSDB_LITE
TEST_P(DBAtomicFlushTest, ManualAtomicFlush) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.atomic_flush = GetParam();
options.write_buffer_size = (static_cast<size_t>(64) << 20);
CreateAndReopenWithCF({"pikachu", "eevee"}, options);
size_t num_cfs = handles_.size();
ASSERT_EQ(3, num_cfs);
WriteOptions wopts;
wopts.disableWAL = true;
for (size_t i = 0; i != num_cfs; ++i) {
ASSERT_OK(Put(static_cast<int>(i) /*cf*/, "key", "value", wopts));
}
for (size_t i = 0; i != num_cfs; ++i) {
auto cfh = static_cast<ColumnFamilyHandleImpl*>(handles_[i]);
ASSERT_EQ(0, cfh->cfd()->imm()->NumNotFlushed());
ASSERT_FALSE(cfh->cfd()->mem()->IsEmpty());
}
std::vector<int> cf_ids;
for (size_t i = 0; i != num_cfs; ++i) {
cf_ids.emplace_back(static_cast<int>(i));
}
ASSERT_OK(Flush(cf_ids));
for (size_t i = 0; i != num_cfs; ++i) {
auto cfh = static_cast<ColumnFamilyHandleImpl*>(handles_[i]);
ASSERT_EQ(cfh->cfd()->GetFlushReason(), FlushReason::kManualFlush);
ASSERT_EQ(0, cfh->cfd()->imm()->NumNotFlushed());
ASSERT_TRUE(cfh->cfd()->mem()->IsEmpty());
}
}
TEST_P(DBAtomicFlushTest, PrecomputeMinLogNumberToKeepNon2PC) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.atomic_flush = GetParam();
options.write_buffer_size = (static_cast<size_t>(64) << 20);
CreateAndReopenWithCF({"pikachu"}, options);
const size_t num_cfs = handles_.size();
ASSERT_EQ(num_cfs, 2);
WriteOptions wopts;
for (size_t i = 0; i != num_cfs; ++i) {
ASSERT_OK(Put(static_cast<int>(i) /*cf*/, "key", "value", wopts));
}
{
// Flush the default CF only.
std::vector<int> cf_ids{0};
ASSERT_OK(Flush(cf_ids));
autovector<ColumnFamilyData*> flushed_cfds;
autovector<autovector<VersionEdit*>> flush_edits;
auto flushed_cfh = static_cast<ColumnFamilyHandleImpl*>(handles_[0]);
flushed_cfds.push_back(flushed_cfh->cfd());
flush_edits.push_back({});
auto unflushed_cfh = static_cast<ColumnFamilyHandleImpl*>(handles_[1]);
ASSERT_EQ(PrecomputeMinLogNumberToKeepNon2PC(dbfull()->TEST_GetVersionSet(),
flushed_cfds, flush_edits),
unflushed_cfh->cfd()->GetLogNumber());
}
{
// Flush all CFs.
std::vector<int> cf_ids;
for (size_t i = 0; i != num_cfs; ++i) {
cf_ids.emplace_back(static_cast<int>(i));
}
ASSERT_OK(Flush(cf_ids));
uint64_t log_num_after_flush = dbfull()->TEST_GetCurrentLogNumber();
uint64_t min_log_number_to_keep = port::kMaxUint64;
autovector<ColumnFamilyData*> flushed_cfds;
autovector<autovector<VersionEdit*>> flush_edits;
for (size_t i = 0; i != num_cfs; ++i) {
auto cfh = static_cast<ColumnFamilyHandleImpl*>(handles_[i]);
flushed_cfds.push_back(cfh->cfd());
flush_edits.push_back({});
min_log_number_to_keep =
std::min(min_log_number_to_keep, cfh->cfd()->GetLogNumber());
}
ASSERT_EQ(min_log_number_to_keep, log_num_after_flush);
ASSERT_EQ(PrecomputeMinLogNumberToKeepNon2PC(dbfull()->TEST_GetVersionSet(),
flushed_cfds, flush_edits),
min_log_number_to_keep);
}
}
TEST_P(DBAtomicFlushTest, AtomicFlushTriggeredByMemTableFull) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.atomic_flush = GetParam();
// 4KB so that we can easily trigger auto flush.
options.write_buffer_size = 4096;
SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::BackgroundCallFlush:FlushFinish:0",
"DBAtomicFlushTest::AtomicFlushTriggeredByMemTableFull:BeforeCheck"}});
SyncPoint::GetInstance()->EnableProcessing();
CreateAndReopenWithCF({"pikachu", "eevee"}, options);
size_t num_cfs = handles_.size();
ASSERT_EQ(3, num_cfs);
WriteOptions wopts;
wopts.disableWAL = true;
for (size_t i = 0; i != num_cfs; ++i) {
ASSERT_OK(Put(static_cast<int>(i) /*cf*/, "key", "value", wopts));
}
// Keep writing to one of them column families to trigger auto flush.
for (int i = 0; i != 4000; ++i) {
ASSERT_OK(Put(static_cast<int>(num_cfs) - 1 /*cf*/,
"key" + std::to_string(i), "value" + std::to_string(i),
wopts));
}
TEST_SYNC_POINT(
"DBAtomicFlushTest::AtomicFlushTriggeredByMemTableFull:BeforeCheck");
if (options.atomic_flush) {
for (size_t i = 0; i + 1 != num_cfs; ++i) {
auto cfh = static_cast<ColumnFamilyHandleImpl*>(handles_[i]);
ASSERT_EQ(0, cfh->cfd()->imm()->NumNotFlushed());
ASSERT_TRUE(cfh->cfd()->mem()->IsEmpty());
}
} else {
for (size_t i = 0; i + 1 != num_cfs; ++i) {
auto cfh = static_cast<ColumnFamilyHandleImpl*>(handles_[i]);
ASSERT_EQ(0, cfh->cfd()->imm()->NumNotFlushed());
ASSERT_FALSE(cfh->cfd()->mem()->IsEmpty());
}
}
SyncPoint::GetInstance()->DisableProcessing();
}
TEST_P(DBAtomicFlushTest, AtomicFlushRollbackSomeJobs) {
bool atomic_flush = GetParam();
if (!atomic_flush) {
return;
}
std::unique_ptr<FaultInjectionTestEnv> fault_injection_env(
new FaultInjectionTestEnv(env_));
Options options = CurrentOptions();
options.create_if_missing = true;
options.atomic_flush = atomic_flush;
options.env = fault_injection_env.get();
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::AtomicFlushMemTablesToOutputFiles:SomeFlushJobsComplete:1",
"DBAtomicFlushTest::AtomicFlushRollbackSomeJobs:1"},
{"DBAtomicFlushTest::AtomicFlushRollbackSomeJobs:2",
"DBImpl::AtomicFlushMemTablesToOutputFiles:SomeFlushJobsComplete:2"}});
SyncPoint::GetInstance()->EnableProcessing();
CreateAndReopenWithCF({"pikachu", "eevee"}, options);
size_t num_cfs = handles_.size();
ASSERT_EQ(3, num_cfs);
WriteOptions wopts;
wopts.disableWAL = true;
for (size_t i = 0; i != num_cfs; ++i) {
int cf_id = static_cast<int>(i);
ASSERT_OK(Put(cf_id, "key", "value", wopts));
}
FlushOptions flush_opts;
flush_opts.wait = false;
ASSERT_OK(dbfull()->Flush(flush_opts, handles_));
TEST_SYNC_POINT("DBAtomicFlushTest::AtomicFlushRollbackSomeJobs:1");
fault_injection_env->SetFilesystemActive(false);
TEST_SYNC_POINT("DBAtomicFlushTest::AtomicFlushRollbackSomeJobs:2");
for (auto* cfh : handles_) {
// Returns the IO error happend during flush.
ASSERT_NOK(dbfull()->TEST_WaitForFlushMemTable(cfh));
}
for (size_t i = 0; i != num_cfs; ++i) {
auto cfh = static_cast<ColumnFamilyHandleImpl*>(handles_[i]);
ASSERT_EQ(1, cfh->cfd()->imm()->NumNotFlushed());
ASSERT_TRUE(cfh->cfd()->mem()->IsEmpty());
}
fault_injection_env->SetFilesystemActive(true);
Destroy(options);
}
TEST_P(DBAtomicFlushTest, FlushMultipleCFs_DropSomeBeforeRequestFlush) {
bool atomic_flush = GetParam();
if (!atomic_flush) {
return;
}
Options options = CurrentOptions();
options.create_if_missing = true;
options.atomic_flush = atomic_flush;
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->EnableProcessing();
CreateAndReopenWithCF({"pikachu", "eevee"}, options);
size_t num_cfs = handles_.size();
ASSERT_EQ(3, num_cfs);
WriteOptions wopts;
wopts.disableWAL = true;
std::vector<int> cf_ids;
for (size_t i = 0; i != num_cfs; ++i) {
int cf_id = static_cast<int>(i);
ASSERT_OK(Put(cf_id, "key", "value", wopts));
cf_ids.push_back(cf_id);
}
ASSERT_OK(dbfull()->DropColumnFamily(handles_[1]));
ASSERT_TRUE(Flush(cf_ids).IsColumnFamilyDropped());
Destroy(options);
}
TEST_P(DBAtomicFlushTest,
FlushMultipleCFs_DropSomeAfterScheduleFlushBeforeFlushJobRun) {
bool atomic_flush = GetParam();
if (!atomic_flush) {
return;
}
Options options = CurrentOptions();
options.create_if_missing = true;
options.atomic_flush = atomic_flush;
CreateAndReopenWithCF({"pikachu", "eevee"}, options);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::AtomicFlushMemTables:AfterScheduleFlush",
"DBAtomicFlushTest::BeforeDropCF"},
{"DBAtomicFlushTest::AfterDropCF",
"DBImpl::BackgroundCallFlush:start"}});
SyncPoint::GetInstance()->EnableProcessing();
size_t num_cfs = handles_.size();
ASSERT_EQ(3, num_cfs);
WriteOptions wopts;
wopts.disableWAL = true;
for (size_t i = 0; i != num_cfs; ++i) {
int cf_id = static_cast<int>(i);
ASSERT_OK(Put(cf_id, "key", "value", wopts));
}
port::Thread user_thread([&]() {
TEST_SYNC_POINT("DBAtomicFlushTest::BeforeDropCF");
ASSERT_OK(dbfull()->DropColumnFamily(handles_[1]));
TEST_SYNC_POINT("DBAtomicFlushTest::AfterDropCF");
});
FlushOptions flush_opts;
flush_opts.wait = true;
ASSERT_OK(dbfull()->Flush(flush_opts, handles_));
user_thread.join();
for (size_t i = 0; i != num_cfs; ++i) {
int cf_id = static_cast<int>(i);
ASSERT_EQ("value", Get(cf_id, "key"));
}
ReopenWithColumnFamilies({kDefaultColumnFamilyName, "eevee"}, options);
num_cfs = handles_.size();
ASSERT_EQ(2, num_cfs);
for (size_t i = 0; i != num_cfs; ++i) {
int cf_id = static_cast<int>(i);
ASSERT_EQ("value", Get(cf_id, "key"));
}
Destroy(options);
}
TEST_P(DBAtomicFlushTest, TriggerFlushAndClose) {
bool atomic_flush = GetParam();
if (!atomic_flush) {
return;
}
const int kNumKeysTriggerFlush = 4;
Options options = CurrentOptions();
options.create_if_missing = true;
options.atomic_flush = atomic_flush;
options.memtable_factory.reset(
new SpecialSkipListFactory(kNumKeysTriggerFlush));
CreateAndReopenWithCF({"pikachu"}, options);
for (int i = 0; i != kNumKeysTriggerFlush; ++i) {
ASSERT_OK(Put(0, "key" + std::to_string(i), "value" + std::to_string(i)));
}
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(Put(0, "key", "value"));
Close();
ReopenWithColumnFamilies({kDefaultColumnFamilyName, "pikachu"}, options);
ASSERT_EQ("value", Get(0, "key"));
}
TEST_P(DBAtomicFlushTest, PickMemtablesRaceWithBackgroundFlush) {
bool atomic_flush = GetParam();
Options options = CurrentOptions();
options.create_if_missing = true;
options.atomic_flush = atomic_flush;
options.max_write_buffer_number = 4;
// Set min_write_buffer_number_to_merge to be greater than 1, so that
// a column family with one memtable in the imm will not cause IsFlushPending
// to return true when flush_requested_ is false.
options.min_write_buffer_number_to_merge = 2;
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_EQ(2, handles_.size());
ASSERT_OK(dbfull()->PauseBackgroundWork());
ASSERT_OK(Put(0, "key00", "value00"));
ASSERT_OK(Put(1, "key10", "value10"));
FlushOptions flush_opts;
flush_opts.wait = false;
ASSERT_OK(dbfull()->Flush(flush_opts, handles_));
ASSERT_OK(Put(0, "key01", "value01"));
// Since max_write_buffer_number is 4, the following flush won't cause write
// stall.
ASSERT_OK(dbfull()->Flush(flush_opts));
ASSERT_OK(dbfull()->DropColumnFamily(handles_[1]));
ASSERT_OK(dbfull()->DestroyColumnFamilyHandle(handles_[1]));
handles_[1] = nullptr;
ASSERT_OK(dbfull()->ContinueBackgroundWork());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable(handles_[0]));
delete handles_[0];
handles_.clear();
}
TEST_P(DBAtomicFlushTest, CFDropRaceWithWaitForFlushMemTables) {
bool atomic_flush = GetParam();
if (!atomic_flush) {
return;
}
Options options = CurrentOptions();
options.create_if_missing = true;
options.atomic_flush = atomic_flush;
CreateAndReopenWithCF({"pikachu"}, options);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::AtomicFlushMemTables:AfterScheduleFlush",
"DBAtomicFlushTest::CFDropRaceWithWaitForFlushMemTables:BeforeDrop"},
{"DBAtomicFlushTest::CFDropRaceWithWaitForFlushMemTables:AfterFree",
"DBImpl::BackgroundCallFlush:start"},
{"DBImpl::BackgroundCallFlush:start",
"DBImpl::AtomicFlushMemTables:BeforeWaitForBgFlush"}});
SyncPoint::GetInstance()->EnableProcessing();
ASSERT_EQ(2, handles_.size());
ASSERT_OK(Put(0, "key", "value"));
ASSERT_OK(Put(1, "key", "value"));
auto* cfd_default =
static_cast<ColumnFamilyHandleImpl*>(dbfull()->DefaultColumnFamily())
->cfd();
auto* cfd_pikachu = static_cast<ColumnFamilyHandleImpl*>(handles_[1])->cfd();
port::Thread drop_cf_thr([&]() {
TEST_SYNC_POINT(
"DBAtomicFlushTest::CFDropRaceWithWaitForFlushMemTables:BeforeDrop");
ASSERT_OK(dbfull()->DropColumnFamily(handles_[1]));
delete handles_[1];
handles_.resize(1);
TEST_SYNC_POINT(
"DBAtomicFlushTest::CFDropRaceWithWaitForFlushMemTables:AfterFree");
});
FlushOptions flush_opts;
flush_opts.allow_write_stall = true;
ASSERT_OK(dbfull()->TEST_AtomicFlushMemTables({cfd_default, cfd_pikachu},
flush_opts));
drop_cf_thr.join();
Close();
SyncPoint::GetInstance()->DisableProcessing();
}
TEST_P(DBAtomicFlushTest, RollbackAfterFailToInstallResults) {
bool atomic_flush = GetParam();
if (!atomic_flush) {
return;
}
auto fault_injection_env = std::make_shared<FaultInjectionTestEnv>(env_);
Options options = CurrentOptions();
options.env = fault_injection_env.get();
options.create_if_missing = true;
options.atomic_flush = atomic_flush;
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_EQ(2, handles_.size());
for (size_t cf = 0; cf < handles_.size(); ++cf) {
ASSERT_OK(Put(static_cast<int>(cf), "a", "value"));
}
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->SetCallBack(
"VersionSet::ProcessManifestWrites:BeforeWriteLastVersionEdit:0",
[&](void* /*arg*/) { fault_injection_env->SetFilesystemActive(false); });
SyncPoint::GetInstance()->EnableProcessing();
FlushOptions flush_opts;
Status s = db_->Flush(flush_opts, handles_);
ASSERT_NOK(s);
fault_injection_env->SetFilesystemActive(true);
Close();
SyncPoint::GetInstance()->ClearAllCallBacks();
}
INSTANTIATE_TEST_CASE_P(DBFlushDirectIOTest, DBFlushDirectIOTest,
testing::Bool());
INSTANTIATE_TEST_CASE_P(DBAtomicFlushTest, DBAtomicFlushTest, testing::Bool());
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}