rocksdb/utilities/ttl/ttl_test.cc
mrambacher 1973fcba11 Restore Regex support for ObjectLibrary::Register, rename new APIs to allow old one to be deprecated in the future (#9362)
Summary:
In order to support old-style regex function registration, restored the original "Register<T>(string, Factory)" method using regular expressions.  The PatternEntry methods were left in place but renamed to AddFactory.  The goal is to allow for the deprecation of the original regex Registry method in an upcoming release.

Added modes to the PatternEntry kMatchZeroOrMore and kMatchAtLeastOne to match * or +, respectively (kMatchAtLeastOne was the original behavior).

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9362

Reviewed By: pdillinger

Differential Revision: D33432562

Pulled By: mrambacher

fbshipit-source-id: ed88ab3f9a2ad0d525c7bd1692873f9bb3209d02
2022-01-11 06:33:48 -08:00

910 lines
30 KiB
C++

// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#ifndef ROCKSDB_LITE
#include <map>
#include <memory>
#include "rocksdb/compaction_filter.h"
#include "rocksdb/convenience.h"
#include "rocksdb/merge_operator.h"
#include "rocksdb/utilities/db_ttl.h"
#include "rocksdb/utilities/object_registry.h"
#include "test_util/testharness.h"
#include "util/string_util.h"
#include "utilities/merge_operators/bytesxor.h"
#include "utilities/ttl/db_ttl_impl.h"
#ifndef OS_WIN
#include <unistd.h>
#endif
namespace ROCKSDB_NAMESPACE {
namespace {
using KVMap = std::map<std::string, std::string>;
enum BatchOperation { OP_PUT = 0, OP_DELETE = 1 };
}
class SpecialTimeEnv : public EnvWrapper {
public:
explicit SpecialTimeEnv(Env* base) : EnvWrapper(base) {
EXPECT_OK(base->GetCurrentTime(&current_time_));
}
const char* Name() const override { return "SpecialTimeEnv"; }
void Sleep(int64_t sleep_time) { current_time_ += sleep_time; }
Status GetCurrentTime(int64_t* current_time) override {
*current_time = current_time_;
return Status::OK();
}
private:
int64_t current_time_ = 0;
};
class TtlTest : public testing::Test {
public:
TtlTest() {
env_.reset(new SpecialTimeEnv(Env::Default()));
dbname_ = test::PerThreadDBPath("db_ttl");
options_.create_if_missing = true;
options_.env = env_.get();
// ensure that compaction is kicked in to always strip timestamp from kvs
options_.max_compaction_bytes = 1;
// compaction should take place always from level0 for determinism
db_ttl_ = nullptr;
DestroyDB(dbname_, Options());
}
~TtlTest() override {
CloseTtl();
DestroyDB(dbname_, Options());
}
// Open database with TTL support when TTL not provided with db_ttl_ pointer
void OpenTtl() {
ASSERT_TRUE(db_ttl_ ==
nullptr); // db should be closed before opening again
ASSERT_OK(DBWithTTL::Open(options_, dbname_, &db_ttl_));
}
// Open database with TTL support when TTL provided with db_ttl_ pointer
void OpenTtl(int32_t ttl) {
ASSERT_TRUE(db_ttl_ == nullptr);
ASSERT_OK(DBWithTTL::Open(options_, dbname_, &db_ttl_, ttl));
}
// Open with TestFilter compaction filter
void OpenTtlWithTestCompaction(int32_t ttl) {
options_.compaction_filter_factory =
std::shared_ptr<CompactionFilterFactory>(
new TestFilterFactory(kSampleSize_, kNewValue_));
OpenTtl(ttl);
}
// Open database with TTL support in read_only mode
void OpenReadOnlyTtl(int32_t ttl) {
ASSERT_TRUE(db_ttl_ == nullptr);
ASSERT_OK(DBWithTTL::Open(options_, dbname_, &db_ttl_, ttl, true));
}
// Call db_ttl_->Close() before delete db_ttl_
void CloseTtl() { CloseTtlHelper(true); }
// No db_ttl_->Close() before delete db_ttl_
void CloseTtlNoDBClose() { CloseTtlHelper(false); }
void CloseTtlHelper(bool close_db) {
if (db_ttl_ != nullptr) {
if (close_db) {
EXPECT_OK(db_ttl_->Close());
}
delete db_ttl_;
db_ttl_ = nullptr;
}
}
// Populates and returns a kv-map
void MakeKVMap(int64_t num_entries) {
kvmap_.clear();
int digits = 1;
for (int64_t dummy = num_entries; dummy /= 10; ++digits) {
}
int digits_in_i = 1;
for (int64_t i = 0; i < num_entries; i++) {
std::string key = "key";
std::string value = "value";
if (i % 10 == 0) {
digits_in_i++;
}
for(int j = digits_in_i; j < digits; j++) {
key.append("0");
value.append("0");
}
AppendNumberTo(&key, i);
AppendNumberTo(&value, i);
kvmap_[key] = value;
}
ASSERT_EQ(static_cast<int64_t>(kvmap_.size()),
num_entries); // check all insertions done
}
// Makes a write-batch with key-vals from kvmap_ and 'Write''s it
void MakePutWriteBatch(const BatchOperation* batch_ops, int64_t num_ops) {
ASSERT_LE(num_ops, static_cast<int64_t>(kvmap_.size()));
static WriteOptions wopts;
static FlushOptions flush_opts;
WriteBatch batch;
kv_it_ = kvmap_.begin();
for (int64_t i = 0; i < num_ops && kv_it_ != kvmap_.end(); i++, ++kv_it_) {
switch (batch_ops[i]) {
case OP_PUT:
ASSERT_OK(batch.Put(kv_it_->first, kv_it_->second));
break;
case OP_DELETE:
ASSERT_OK(batch.Delete(kv_it_->first));
break;
default:
FAIL();
}
}
ASSERT_OK(db_ttl_->Write(wopts, &batch));
ASSERT_OK(db_ttl_->Flush(flush_opts));
}
// Puts num_entries starting from start_pos_map from kvmap_ into the database
void PutValues(int64_t start_pos_map, int64_t num_entries, bool flush = true,
ColumnFamilyHandle* cf = nullptr) {
ASSERT_TRUE(db_ttl_);
ASSERT_LE(start_pos_map + num_entries, static_cast<int64_t>(kvmap_.size()));
static WriteOptions wopts;
static FlushOptions flush_opts;
kv_it_ = kvmap_.begin();
advance(kv_it_, start_pos_map);
for (int64_t i = 0; kv_it_ != kvmap_.end() && i < num_entries;
i++, ++kv_it_) {
ASSERT_OK(cf == nullptr
? db_ttl_->Put(wopts, kv_it_->first, kv_it_->second)
: db_ttl_->Put(wopts, cf, kv_it_->first, kv_it_->second));
}
// Put a mock kv at the end because CompactionFilter doesn't delete last key
ASSERT_OK(cf == nullptr ? db_ttl_->Put(wopts, "keymock", "valuemock")
: db_ttl_->Put(wopts, cf, "keymock", "valuemock"));
if (flush) {
if (cf == nullptr) {
ASSERT_OK(db_ttl_->Flush(flush_opts));
} else {
ASSERT_OK(db_ttl_->Flush(flush_opts, cf));
}
}
}
// Runs a manual compaction
Status ManualCompact(ColumnFamilyHandle* cf = nullptr) {
if (cf == nullptr) {
return db_ttl_->CompactRange(CompactRangeOptions(), nullptr, nullptr);
} else {
return db_ttl_->CompactRange(CompactRangeOptions(), cf, nullptr, nullptr);
}
}
// Runs a DeleteRange
void MakeDeleteRange(std::string start, std::string end,
ColumnFamilyHandle* cf = nullptr) {
ASSERT_TRUE(db_ttl_);
static WriteOptions wops;
WriteBatch wb;
ASSERT_OK(cf == nullptr
? wb.DeleteRange(db_ttl_->DefaultColumnFamily(), start, end)
: wb.DeleteRange(cf, start, end));
ASSERT_OK(db_ttl_->Write(wops, &wb));
}
// checks the whole kvmap_ to return correct values using KeyMayExist
void SimpleKeyMayExistCheck() {
static ReadOptions ropts;
bool value_found;
std::string val;
for(auto &kv : kvmap_) {
bool ret = db_ttl_->KeyMayExist(ropts, kv.first, &val, &value_found);
if (ret == false || value_found == false) {
fprintf(stderr, "KeyMayExist could not find key=%s in the database but"
" should have\n", kv.first.c_str());
FAIL();
} else if (val.compare(kv.second) != 0) {
fprintf(stderr, " value for key=%s present in database is %s but"
" should be %s\n", kv.first.c_str(), val.c_str(),
kv.second.c_str());
FAIL();
}
}
}
// checks the whole kvmap_ to return correct values using MultiGet
void SimpleMultiGetTest() {
static ReadOptions ropts;
std::vector<Slice> keys;
std::vector<std::string> values;
for (auto& kv : kvmap_) {
keys.emplace_back(kv.first);
}
auto statuses = db_ttl_->MultiGet(ropts, keys, &values);
size_t i = 0;
for (auto& kv : kvmap_) {
ASSERT_OK(statuses[i]);
ASSERT_EQ(values[i], kv.second);
++i;
}
}
void CompactCheck(int64_t st_pos, int64_t span, bool check = true,
bool test_compaction_change = false,
ColumnFamilyHandle* cf = nullptr) {
static ReadOptions ropts;
kv_it_ = kvmap_.begin();
advance(kv_it_, st_pos);
std::string v;
for (int64_t i = 0; kv_it_ != kvmap_.end() && i < span; i++, ++kv_it_) {
Status s = (cf == nullptr) ? db_ttl_->Get(ropts, kv_it_->first, &v)
: db_ttl_->Get(ropts, cf, kv_it_->first, &v);
if (s.ok() != check) {
fprintf(stderr, "key=%s ", kv_it_->first.c_str());
if (!s.ok()) {
fprintf(stderr, "is absent from db but was expected to be present\n");
} else {
fprintf(stderr, "is present in db but was expected to be absent\n");
}
FAIL();
} else if (s.ok()) {
if (test_compaction_change && v.compare(kNewValue_) != 0) {
fprintf(stderr, " value for key=%s present in database is %s but "
" should be %s\n", kv_it_->first.c_str(), v.c_str(),
kNewValue_.c_str());
FAIL();
} else if (!test_compaction_change && v.compare(kv_it_->second) !=0) {
fprintf(stderr, " value for key=%s present in database is %s but "
" should be %s\n", kv_it_->first.c_str(), v.c_str(),
kv_it_->second.c_str());
FAIL();
}
}
}
}
// Sleeps for slp_tim then runs a manual compaction
// Checks span starting from st_pos from kvmap_ in the db and
// Gets should return true if check is true and false otherwise
// Also checks that value that we got is the same as inserted; and =kNewValue
// if test_compaction_change is true
void SleepCompactCheck(int slp_tim, int64_t st_pos, int64_t span,
bool check = true, bool test_compaction_change = false,
ColumnFamilyHandle* cf = nullptr) {
ASSERT_TRUE(db_ttl_);
env_->Sleep(slp_tim);
ASSERT_OK(ManualCompact(cf));
CompactCheck(st_pos, span, check, test_compaction_change, cf);
}
// Similar as SleepCompactCheck but uses TtlIterator to read from db
void SleepCompactCheckIter(int slp, int st_pos, int64_t span,
bool check = true) {
ASSERT_TRUE(db_ttl_);
env_->Sleep(slp);
ASSERT_OK(ManualCompact());
static ReadOptions ropts;
Iterator *dbiter = db_ttl_->NewIterator(ropts);
kv_it_ = kvmap_.begin();
advance(kv_it_, st_pos);
dbiter->Seek(kv_it_->first);
if (!check) {
if (dbiter->Valid()) {
ASSERT_NE(dbiter->value().compare(kv_it_->second), 0);
}
} else { // dbiter should have found out kvmap_[st_pos]
for (int64_t i = st_pos; kv_it_ != kvmap_.end() && i < st_pos + span;
i++, ++kv_it_) {
ASSERT_TRUE(dbiter->Valid());
ASSERT_EQ(dbiter->value().compare(kv_it_->second), 0);
dbiter->Next();
}
}
ASSERT_OK(dbiter->status());
delete dbiter;
}
// Set ttl on open db
void SetTtl(int32_t ttl, ColumnFamilyHandle* cf = nullptr) {
ASSERT_TRUE(db_ttl_);
cf == nullptr ? db_ttl_->SetTtl(ttl) : db_ttl_->SetTtl(cf, ttl);
}
class TestFilter : public CompactionFilter {
public:
TestFilter(const int64_t kSampleSize, const std::string& kNewValue)
: kSampleSize_(kSampleSize),
kNewValue_(kNewValue) {
}
// Works on keys of the form "key<number>"
// Drops key if number at the end of key is in [0, kSampleSize_/3),
// Keeps key if it is in [kSampleSize_/3, 2*kSampleSize_/3),
// Change value if it is in [2*kSampleSize_/3, kSampleSize_)
// Eg. kSampleSize_=6. Drop:key0-1...Keep:key2-3...Change:key4-5...
bool Filter(int /*level*/, const Slice& key, const Slice& /*value*/,
std::string* new_value, bool* value_changed) const override {
assert(new_value != nullptr);
std::string search_str = "0123456789";
std::string key_string = key.ToString();
size_t pos = key_string.find_first_of(search_str);
int num_key_end;
if (pos != std::string::npos) {
auto key_substr = key_string.substr(pos, key.size() - pos);
#ifndef CYGWIN
num_key_end = std::stoi(key_substr);
#else
num_key_end = std::strtol(key_substr.c_str(), 0, 10);
#endif
} else {
return false; // Keep keys not matching the format "key<NUMBER>"
}
int64_t partition = kSampleSize_ / 3;
if (num_key_end < partition) {
return true;
} else if (num_key_end < partition * 2) {
return false;
} else {
*new_value = kNewValue_;
*value_changed = true;
return false;
}
}
const char* Name() const override { return "TestFilter"; }
private:
const int64_t kSampleSize_;
const std::string kNewValue_;
};
class TestFilterFactory : public CompactionFilterFactory {
public:
TestFilterFactory(const int64_t kSampleSize, const std::string& kNewValue)
: kSampleSize_(kSampleSize),
kNewValue_(kNewValue) {
}
std::unique_ptr<CompactionFilter> CreateCompactionFilter(
const CompactionFilter::Context& /*context*/) override {
return std::unique_ptr<CompactionFilter>(
new TestFilter(kSampleSize_, kNewValue_));
}
const char* Name() const override { return "TestFilterFactory"; }
private:
const int64_t kSampleSize_;
const std::string kNewValue_;
};
// Choose carefully so that Put, Gets & Compaction complete in 1 second buffer
static const int64_t kSampleSize_ = 100;
std::string dbname_;
DBWithTTL* db_ttl_;
std::unique_ptr<SpecialTimeEnv> env_;
private:
Options options_;
KVMap kvmap_;
KVMap::iterator kv_it_;
const std::string kNewValue_ = "new_value";
std::unique_ptr<CompactionFilter> test_comp_filter_;
}; // class TtlTest
// If TTL is non positive or not provided, the behaviour is TTL = infinity
// This test opens the db 3 times with such default behavior and inserts a
// bunch of kvs each time. All kvs should accumulate in the db till the end
// Partitions the sample-size provided into 3 sets over boundary1 and boundary2
TEST_F(TtlTest, NoEffect) {
MakeKVMap(kSampleSize_);
int64_t boundary1 = kSampleSize_ / 3;
int64_t boundary2 = 2 * boundary1;
OpenTtl();
PutValues(0, boundary1); //T=0: Set1 never deleted
SleepCompactCheck(1, 0, boundary1); //T=1: Set1 still there
CloseTtl();
OpenTtl(0);
PutValues(boundary1, boundary2 - boundary1); //T=1: Set2 never deleted
SleepCompactCheck(1, 0, boundary2); //T=2: Sets1 & 2 still there
CloseTtl();
OpenTtl(-1);
PutValues(boundary2, kSampleSize_ - boundary2); //T=3: Set3 never deleted
SleepCompactCheck(1, 0, kSampleSize_, true); //T=4: Sets 1,2,3 still there
CloseTtl();
}
// Rerun the NoEffect test with a different version of CloseTtl
// function, where db is directly deleted without close.
TEST_F(TtlTest, DestructWithoutClose) {
MakeKVMap(kSampleSize_);
int64_t boundary1 = kSampleSize_ / 3;
int64_t boundary2 = 2 * boundary1;
OpenTtl();
PutValues(0, boundary1); // T=0: Set1 never deleted
SleepCompactCheck(1, 0, boundary1); // T=1: Set1 still there
CloseTtlNoDBClose();
OpenTtl(0);
PutValues(boundary1, boundary2 - boundary1); // T=1: Set2 never deleted
SleepCompactCheck(1, 0, boundary2); // T=2: Sets1 & 2 still there
CloseTtlNoDBClose();
OpenTtl(-1);
PutValues(boundary2, kSampleSize_ - boundary2); // T=3: Set3 never deleted
SleepCompactCheck(1, 0, kSampleSize_, true); // T=4: Sets 1,2,3 still there
CloseTtlNoDBClose();
}
// Puts a set of values and checks its presence using Get during ttl
TEST_F(TtlTest, PresentDuringTTL) {
MakeKVMap(kSampleSize_);
OpenTtl(2); // T=0:Open the db with ttl = 2
PutValues(0, kSampleSize_); // T=0:Insert Set1. Delete at t=2
SleepCompactCheck(1, 0, kSampleSize_, true); // T=1:Set1 should still be there
CloseTtl();
}
// Puts a set of values and checks its absence using Get after ttl
TEST_F(TtlTest, AbsentAfterTTL) {
MakeKVMap(kSampleSize_);
OpenTtl(1); // T=0:Open the db with ttl = 2
PutValues(0, kSampleSize_); // T=0:Insert Set1. Delete at t=2
SleepCompactCheck(2, 0, kSampleSize_, false); // T=2:Set1 should not be there
CloseTtl();
}
// Resets the timestamp of a set of kvs by updating them and checks that they
// are not deleted according to the old timestamp
TEST_F(TtlTest, ResetTimestamp) {
MakeKVMap(kSampleSize_);
OpenTtl(3);
PutValues(0, kSampleSize_); // T=0: Insert Set1. Delete at t=3
env_->Sleep(2); // T=2
PutValues(0, kSampleSize_); // T=2: Insert Set1. Delete at t=5
SleepCompactCheck(2, 0, kSampleSize_); // T=4: Set1 should still be there
CloseTtl();
}
// Similar to PresentDuringTTL but uses Iterator
TEST_F(TtlTest, IterPresentDuringTTL) {
MakeKVMap(kSampleSize_);
OpenTtl(2);
PutValues(0, kSampleSize_); // T=0: Insert. Delete at t=2
SleepCompactCheckIter(1, 0, kSampleSize_); // T=1: Set should be there
CloseTtl();
}
// Similar to AbsentAfterTTL but uses Iterator
TEST_F(TtlTest, IterAbsentAfterTTL) {
MakeKVMap(kSampleSize_);
OpenTtl(1);
PutValues(0, kSampleSize_); // T=0: Insert. Delete at t=1
SleepCompactCheckIter(2, 0, kSampleSize_, false); // T=2: Should not be there
CloseTtl();
}
// Checks presence while opening the same db more than once with the same ttl
// Note: The second open will open the same db
TEST_F(TtlTest, MultiOpenSamePresent) {
MakeKVMap(kSampleSize_);
OpenTtl(2);
PutValues(0, kSampleSize_); // T=0: Insert. Delete at t=2
CloseTtl();
OpenTtl(2); // T=0. Delete at t=2
SleepCompactCheck(1, 0, kSampleSize_); // T=1: Set should be there
CloseTtl();
}
// Checks absence while opening the same db more than once with the same ttl
// Note: The second open will open the same db
TEST_F(TtlTest, MultiOpenSameAbsent) {
MakeKVMap(kSampleSize_);
OpenTtl(1);
PutValues(0, kSampleSize_); // T=0: Insert. Delete at t=1
CloseTtl();
OpenTtl(1); // T=0.Delete at t=1
SleepCompactCheck(2, 0, kSampleSize_, false); // T=2: Set should not be there
CloseTtl();
}
// Checks presence while opening the same db more than once with bigger ttl
TEST_F(TtlTest, MultiOpenDifferent) {
MakeKVMap(kSampleSize_);
OpenTtl(1);
PutValues(0, kSampleSize_); // T=0: Insert. Delete at t=1
CloseTtl();
OpenTtl(3); // T=0: Set deleted at t=3
SleepCompactCheck(2, 0, kSampleSize_); // T=2: Set should be there
CloseTtl();
}
// Checks presence during ttl in read_only mode
TEST_F(TtlTest, ReadOnlyPresentForever) {
MakeKVMap(kSampleSize_);
OpenTtl(1); // T=0:Open the db normally
PutValues(0, kSampleSize_); // T=0:Insert Set1. Delete at t=1
CloseTtl();
OpenReadOnlyTtl(1);
ASSERT_TRUE(db_ttl_);
env_->Sleep(2);
Status s = ManualCompact(); // T=2:Set1 should still be there
ASSERT_TRUE(s.IsNotSupported());
CompactCheck(0, kSampleSize_);
CloseTtl();
}
// Checks whether WriteBatch works well with TTL
// Puts all kvs in kvmap_ in a batch and writes first, then deletes first half
TEST_F(TtlTest, WriteBatchTest) {
MakeKVMap(kSampleSize_);
BatchOperation batch_ops[kSampleSize_];
for (int i = 0; i < kSampleSize_; i++) {
batch_ops[i] = OP_PUT;
}
OpenTtl(2);
MakePutWriteBatch(batch_ops, kSampleSize_);
for (int i = 0; i < kSampleSize_ / 2; i++) {
batch_ops[i] = OP_DELETE;
}
MakePutWriteBatch(batch_ops, kSampleSize_ / 2);
SleepCompactCheck(0, 0, kSampleSize_ / 2, false);
SleepCompactCheck(0, kSampleSize_ / 2, kSampleSize_ - kSampleSize_ / 2);
CloseTtl();
}
// Checks user's compaction filter for correctness with TTL logic
TEST_F(TtlTest, CompactionFilter) {
MakeKVMap(kSampleSize_);
OpenTtlWithTestCompaction(1);
PutValues(0, kSampleSize_); // T=0:Insert Set1. Delete at t=1
// T=2: TTL logic takes precedence over TestFilter:-Set1 should not be there
SleepCompactCheck(2, 0, kSampleSize_, false);
CloseTtl();
OpenTtlWithTestCompaction(3);
PutValues(0, kSampleSize_); // T=0:Insert Set1.
int64_t partition = kSampleSize_ / 3;
SleepCompactCheck(1, 0, partition, false); // Part dropped
SleepCompactCheck(0, partition, partition); // Part kept
SleepCompactCheck(0, 2 * partition, partition, true, true); // Part changed
CloseTtl();
}
// Insert some key-values which KeyMayExist should be able to get and check that
// values returned are fine
TEST_F(TtlTest, KeyMayExist) {
MakeKVMap(kSampleSize_);
OpenTtl();
PutValues(0, kSampleSize_, false);
SimpleKeyMayExistCheck();
CloseTtl();
}
TEST_F(TtlTest, MultiGetTest) {
MakeKVMap(kSampleSize_);
OpenTtl();
PutValues(0, kSampleSize_, false);
SimpleMultiGetTest();
CloseTtl();
}
TEST_F(TtlTest, ColumnFamiliesTest) {
DB* db;
Options options;
options.create_if_missing = true;
options.env = env_.get();
DB::Open(options, dbname_, &db);
ColumnFamilyHandle* handle;
ASSERT_OK(db->CreateColumnFamily(ColumnFamilyOptions(options),
"ttl_column_family", &handle));
delete handle;
delete db;
std::vector<ColumnFamilyDescriptor> column_families;
column_families.push_back(ColumnFamilyDescriptor(
kDefaultColumnFamilyName, ColumnFamilyOptions(options)));
column_families.push_back(ColumnFamilyDescriptor(
"ttl_column_family", ColumnFamilyOptions(options)));
std::vector<ColumnFamilyHandle*> handles;
ASSERT_OK(DBWithTTL::Open(DBOptions(options), dbname_, column_families,
&handles, &db_ttl_, {3, 5}, false));
ASSERT_EQ(handles.size(), 2U);
ColumnFamilyHandle* new_handle;
ASSERT_OK(db_ttl_->CreateColumnFamilyWithTtl(options, "ttl_column_family_2",
&new_handle, 2));
handles.push_back(new_handle);
MakeKVMap(kSampleSize_);
PutValues(0, kSampleSize_, false, handles[0]);
PutValues(0, kSampleSize_, false, handles[1]);
PutValues(0, kSampleSize_, false, handles[2]);
// everything should be there after 1 second
SleepCompactCheck(1, 0, kSampleSize_, true, false, handles[0]);
SleepCompactCheck(0, 0, kSampleSize_, true, false, handles[1]);
SleepCompactCheck(0, 0, kSampleSize_, true, false, handles[2]);
// only column family 1 should be alive after 4 seconds
SleepCompactCheck(3, 0, kSampleSize_, false, false, handles[0]);
SleepCompactCheck(0, 0, kSampleSize_, true, false, handles[1]);
SleepCompactCheck(0, 0, kSampleSize_, false, false, handles[2]);
// nothing should be there after 6 seconds
SleepCompactCheck(2, 0, kSampleSize_, false, false, handles[0]);
SleepCompactCheck(0, 0, kSampleSize_, false, false, handles[1]);
SleepCompactCheck(0, 0, kSampleSize_, false, false, handles[2]);
for (auto h : handles) {
delete h;
}
delete db_ttl_;
db_ttl_ = nullptr;
}
// Puts a set of values and checks its absence using Get after ttl
TEST_F(TtlTest, ChangeTtlOnOpenDb) {
MakeKVMap(kSampleSize_);
OpenTtl(1); // T=0:Open the db with ttl = 2
SetTtl(3);
PutValues(0, kSampleSize_); // T=0:Insert Set1. Delete at t=2
SleepCompactCheck(2, 0, kSampleSize_, true); // T=2:Set1 should be there
CloseTtl();
}
// Test DeleteRange for DBWithTtl
TEST_F(TtlTest, DeleteRangeTest) {
OpenTtl();
ASSERT_OK(db_ttl_->Put(WriteOptions(), "a", "val"));
MakeDeleteRange("a", "b");
ASSERT_OK(db_ttl_->Put(WriteOptions(), "c", "val"));
MakeDeleteRange("b", "d");
ASSERT_OK(db_ttl_->Put(WriteOptions(), "e", "val"));
MakeDeleteRange("d", "e");
// first iteration verifies query correctness in memtable, second verifies
// query correctness for a single SST file
for (int i = 0; i < 2; i++) {
if (i > 0) {
ASSERT_OK(db_ttl_->Flush(FlushOptions()));
}
std::string value;
ASSERT_TRUE(db_ttl_->Get(ReadOptions(), "a", &value).IsNotFound());
ASSERT_TRUE(db_ttl_->Get(ReadOptions(), "c", &value).IsNotFound());
ASSERT_OK(db_ttl_->Get(ReadOptions(), "e", &value));
}
CloseTtl();
}
class DummyFilter : public CompactionFilter {
public:
bool Filter(int /*level*/, const Slice& /*key*/, const Slice& /*value*/,
std::string* /*new_value*/,
bool* /*value_changed*/) const override {
return false;
}
const char* Name() const override { return kClassName(); }
static const char* kClassName() { return "DummyFilter"; }
};
class DummyFilterFactory : public CompactionFilterFactory {
public:
const char* Name() const override { return kClassName(); }
static const char* kClassName() { return "DummyFilterFactory"; }
std::unique_ptr<CompactionFilter> CreateCompactionFilter(
const CompactionFilter::Context&) override {
std::unique_ptr<CompactionFilter> f(new DummyFilter());
return f;
}
};
static int RegisterTestObjects(ObjectLibrary& library,
const std::string& /*arg*/) {
library.AddFactory<CompactionFilter>(
"DummyFilter", [](const std::string& /*uri*/,
std::unique_ptr<CompactionFilter>* /*guard*/,
std::string* /* errmsg */) {
static DummyFilter dummy;
return &dummy;
});
library.AddFactory<CompactionFilterFactory>(
"DummyFilterFactory", [](const std::string& /*uri*/,
std::unique_ptr<CompactionFilterFactory>* guard,
std::string* /* errmsg */) {
guard->reset(new DummyFilterFactory());
return guard->get();
});
return 2;
}
class TtlOptionsTest : public testing::Test {
public:
TtlOptionsTest() {
config_options_.registry->AddLibrary("RegisterTtlObjects",
RegisterTtlObjects, "");
config_options_.registry->AddLibrary("RegisterTtlTestObjects",
RegisterTestObjects, "");
}
ConfigOptions config_options_;
};
TEST_F(TtlOptionsTest, LoadTtlCompactionFilter) {
const CompactionFilter* filter = nullptr;
ASSERT_OK(CompactionFilter::CreateFromString(
config_options_, TtlCompactionFilter::kClassName(), &filter));
ASSERT_NE(filter, nullptr);
ASSERT_STREQ(filter->Name(), TtlCompactionFilter::kClassName());
auto ttl = filter->GetOptions<int32_t>("TTL");
ASSERT_NE(ttl, nullptr);
ASSERT_EQ(*ttl, 0);
ASSERT_OK(filter->ValidateOptions(DBOptions(), ColumnFamilyOptions()));
delete filter;
filter = nullptr;
ASSERT_OK(CompactionFilter::CreateFromString(
config_options_, "id=TtlCompactionFilter; ttl=123", &filter));
ASSERT_NE(filter, nullptr);
ttl = filter->GetOptions<int32_t>("TTL");
ASSERT_NE(ttl, nullptr);
ASSERT_EQ(*ttl, 123);
ASSERT_OK(filter->ValidateOptions(DBOptions(), ColumnFamilyOptions()));
delete filter;
filter = nullptr;
ASSERT_OK(CompactionFilter::CreateFromString(
config_options_,
"id=TtlCompactionFilter; ttl=456; user_filter=DummyFilter;", &filter));
ASSERT_NE(filter, nullptr);
auto inner = filter->CheckedCast<DummyFilter>();
ASSERT_NE(inner, nullptr);
ASSERT_OK(filter->ValidateOptions(DBOptions(), ColumnFamilyOptions()));
std::string mismatch;
std::string opts_str = filter->ToString(config_options_);
const CompactionFilter* copy = nullptr;
ASSERT_OK(
CompactionFilter::CreateFromString(config_options_, opts_str, &copy));
ASSERT_TRUE(filter->AreEquivalent(config_options_, copy, &mismatch));
delete filter;
delete copy;
}
TEST_F(TtlOptionsTest, LoadTtlCompactionFilterFactory) {
std::shared_ptr<CompactionFilterFactory> cff;
ASSERT_OK(CompactionFilterFactory::CreateFromString(
config_options_, TtlCompactionFilterFactory::kClassName(), &cff));
ASSERT_NE(cff.get(), nullptr);
ASSERT_STREQ(cff->Name(), TtlCompactionFilterFactory::kClassName());
auto ttl = cff->GetOptions<int32_t>("TTL");
ASSERT_NE(ttl, nullptr);
ASSERT_EQ(*ttl, 0);
ASSERT_OK(cff->ValidateOptions(DBOptions(), ColumnFamilyOptions()));
ASSERT_OK(CompactionFilterFactory::CreateFromString(
config_options_, "id=TtlCompactionFilterFactory; ttl=123", &cff));
ASSERT_NE(cff.get(), nullptr);
ASSERT_STREQ(cff->Name(), TtlCompactionFilterFactory::kClassName());
ttl = cff->GetOptions<int32_t>("TTL");
ASSERT_NE(ttl, nullptr);
ASSERT_EQ(*ttl, 123);
ASSERT_OK(cff->ValidateOptions(DBOptions(), ColumnFamilyOptions()));
ASSERT_OK(CompactionFilterFactory::CreateFromString(
config_options_,
"id=TtlCompactionFilterFactory; ttl=456; "
"user_filter_factory=DummyFilterFactory;",
&cff));
ASSERT_NE(cff.get(), nullptr);
auto filter = cff->CreateCompactionFilter(CompactionFilter::Context());
ASSERT_NE(filter.get(), nullptr);
auto ttlf = filter->CheckedCast<TtlCompactionFilter>();
ASSERT_EQ(filter.get(), ttlf);
auto user = filter->CheckedCast<DummyFilter>();
ASSERT_NE(user, nullptr);
ASSERT_OK(cff->ValidateOptions(DBOptions(), ColumnFamilyOptions()));
std::string opts_str = cff->ToString(config_options_);
std::string mismatch;
std::shared_ptr<CompactionFilterFactory> copy;
ASSERT_OK(CompactionFilterFactory::CreateFromString(config_options_, opts_str,
&copy));
ASSERT_TRUE(cff->AreEquivalent(config_options_, copy.get(), &mismatch));
}
TEST_F(TtlOptionsTest, LoadTtlMergeOperator) {
std::shared_ptr<MergeOperator> mo;
config_options_.invoke_prepare_options = false;
ASSERT_OK(MergeOperator::CreateFromString(
config_options_, TtlMergeOperator::kClassName(), &mo));
ASSERT_NE(mo.get(), nullptr);
ASSERT_STREQ(mo->Name(), TtlMergeOperator::kClassName());
ASSERT_NOK(mo->ValidateOptions(DBOptions(), ColumnFamilyOptions()));
config_options_.invoke_prepare_options = true;
ASSERT_OK(MergeOperator::CreateFromString(
config_options_, "id=TtlMergeOperator; user_operator=bytesxor", &mo));
ASSERT_NE(mo.get(), nullptr);
ASSERT_STREQ(mo->Name(), TtlMergeOperator::kClassName());
ASSERT_OK(mo->ValidateOptions(DBOptions(), ColumnFamilyOptions()));
auto ttl_mo = mo->CheckedCast<TtlMergeOperator>();
ASSERT_EQ(mo.get(), ttl_mo);
auto user = ttl_mo->CheckedCast<BytesXOROperator>();
ASSERT_NE(user, nullptr);
std::string mismatch;
std::string opts_str = mo->ToString(config_options_);
std::shared_ptr<MergeOperator> copy;
ASSERT_OK(MergeOperator::CreateFromString(config_options_, opts_str, &copy));
ASSERT_TRUE(mo->AreEquivalent(config_options_, copy.get(), &mismatch));
}
} // namespace ROCKSDB_NAMESPACE
// A black-box test for the ttl wrapper around rocksdb
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
#else
#include <stdio.h>
int main(int /*argc*/, char** /*argv*/) {
fprintf(stderr, "SKIPPED as DBWithTTL is not supported in ROCKSDB_LITE\n");
return 0;
}
#endif // !ROCKSDB_LITE