rocksdb/db/db_impl/db_impl_open.cc
Maysam Yabandeh 2f973ca96e Double Crash in kPointInTimeRecovery with TransactionDB (#6313)
Summary:
In WritePrepared there could be gap in sequence numbers. This breaks the trick we use in kPointInTimeRecovery which assume the first seq in the log right after the corrupted log is one larger than the last seq we read from the logs. To let this trick keep working, we add a dummy entry with the expected sequence to the first log right after recovery.
Also in WriteCommitted, if the log right after the corrupted log is empty, since it has no sequence number to let the sequential trick work, it is assumed as unexpected behavior. This is however expected to happen if we close the db after recovering from a corruption and before writing anything new to it. To remedy that, we apply the same technique by writing a dummy entry to the log that is created after the corrupted log.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6313

Differential Revision: D19458291

Pulled By: maysamyabandeh

fbshipit-source-id: 09bc49e574690085df45b034ca863ff315937e2d
2020-01-29 11:40:55 -08:00

1610 lines
60 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/db_impl/db_impl.h"
#include <cinttypes>
#include "db/builder.h"
#include "db/error_handler.h"
#include "env/composite_env_wrapper.h"
#include "file/read_write_util.h"
#include "file/sst_file_manager_impl.h"
#include "file/writable_file_writer.h"
#include "monitoring/persistent_stats_history.h"
#include "options/options_helper.h"
#include "rocksdb/wal_filter.h"
#include "table/block_based/block_based_table_factory.h"
#include "test_util/sync_point.h"
#include "util/rate_limiter.h"
namespace rocksdb {
Options SanitizeOptions(const std::string& dbname, const Options& src) {
auto db_options = SanitizeOptions(dbname, DBOptions(src));
ImmutableDBOptions immutable_db_options(db_options);
auto cf_options =
SanitizeOptions(immutable_db_options, ColumnFamilyOptions(src));
return Options(db_options, cf_options);
}
DBOptions SanitizeOptions(const std::string& dbname, const DBOptions& src) {
DBOptions result(src);
if (result.file_system == nullptr) {
if (result.env == Env::Default()) {
result.file_system = FileSystem::Default();
} else {
result.file_system.reset(new LegacyFileSystemWrapper(result.env));
}
} else {
if (result.env == nullptr) {
result.env = Env::Default();
}
}
// result.max_open_files means an "infinite" open files.
if (result.max_open_files != -1) {
int max_max_open_files = port::GetMaxOpenFiles();
if (max_max_open_files == -1) {
max_max_open_files = 0x400000;
}
ClipToRange(&result.max_open_files, 20, max_max_open_files);
TEST_SYNC_POINT_CALLBACK("SanitizeOptions::AfterChangeMaxOpenFiles",
&result.max_open_files);
}
if (result.info_log == nullptr) {
Status s = CreateLoggerFromOptions(dbname, result, &result.info_log);
if (!s.ok()) {
// No place suitable for logging
result.info_log = nullptr;
}
}
if (!result.write_buffer_manager) {
result.write_buffer_manager.reset(
new WriteBufferManager(result.db_write_buffer_size));
}
auto bg_job_limits = DBImpl::GetBGJobLimits(
result.max_background_flushes, result.max_background_compactions,
result.max_background_jobs, true /* parallelize_compactions */);
result.env->IncBackgroundThreadsIfNeeded(bg_job_limits.max_compactions,
Env::Priority::LOW);
result.env->IncBackgroundThreadsIfNeeded(bg_job_limits.max_flushes,
Env::Priority::HIGH);
if (result.rate_limiter.get() != nullptr) {
if (result.bytes_per_sync == 0) {
result.bytes_per_sync = 1024 * 1024;
}
}
if (result.delayed_write_rate == 0) {
if (result.rate_limiter.get() != nullptr) {
result.delayed_write_rate = result.rate_limiter->GetBytesPerSecond();
}
if (result.delayed_write_rate == 0) {
result.delayed_write_rate = 16 * 1024 * 1024;
}
}
if (result.WAL_ttl_seconds > 0 || result.WAL_size_limit_MB > 0) {
result.recycle_log_file_num = false;
}
if (result.recycle_log_file_num &&
(result.wal_recovery_mode == WALRecoveryMode::kPointInTimeRecovery ||
result.wal_recovery_mode == WALRecoveryMode::kAbsoluteConsistency)) {
// kPointInTimeRecovery is indistinguishable from
// kTolerateCorruptedTailRecords in recycle mode since we define
// the "end" of the log as the first corrupt record we encounter.
// kAbsoluteConsistency doesn't make sense because even a clean
// shutdown leaves old junk at the end of the log file.
result.wal_recovery_mode = WALRecoveryMode::kTolerateCorruptedTailRecords;
}
if (result.wal_dir.empty()) {
// Use dbname as default
result.wal_dir = dbname;
}
if (result.wal_dir.back() == '/') {
result.wal_dir = result.wal_dir.substr(0, result.wal_dir.size() - 1);
}
if (result.db_paths.size() == 0) {
result.db_paths.emplace_back(dbname, std::numeric_limits<uint64_t>::max());
}
if (result.use_direct_reads && result.compaction_readahead_size == 0) {
TEST_SYNC_POINT_CALLBACK("SanitizeOptions:direct_io", nullptr);
result.compaction_readahead_size = 1024 * 1024 * 2;
}
if (result.compaction_readahead_size > 0 || result.use_direct_reads) {
result.new_table_reader_for_compaction_inputs = true;
}
// Force flush on DB open if 2PC is enabled, since with 2PC we have no
// guarantee that consecutive log files have consecutive sequence id, which
// make recovery complicated.
if (result.allow_2pc) {
result.avoid_flush_during_recovery = false;
}
#ifndef ROCKSDB_LITE
ImmutableDBOptions immutable_db_options(result);
if (!IsWalDirSameAsDBPath(&immutable_db_options)) {
// Either the WAL dir and db_paths[0]/db_name are not the same, or we
// cannot tell for sure. In either case, assume they're different and
// explicitly cleanup the trash log files (bypass DeleteScheduler)
// Do this first so even if we end up calling
// DeleteScheduler::CleanupDirectory on the same dir later, it will be
// safe
std::vector<std::string> filenames;
result.env->GetChildren(result.wal_dir, &filenames);
for (std::string& filename : filenames) {
if (filename.find(".log.trash", filename.length() -
std::string(".log.trash").length()) !=
std::string::npos) {
std::string trash_file = result.wal_dir + "/" + filename;
result.env->DeleteFile(trash_file);
}
}
}
// When the DB is stopped, it's possible that there are some .trash files that
// were not deleted yet, when we open the DB we will find these .trash files
// and schedule them to be deleted (or delete immediately if SstFileManager
// was not used)
auto sfm = static_cast<SstFileManagerImpl*>(result.sst_file_manager.get());
for (size_t i = 0; i < result.db_paths.size(); i++) {
DeleteScheduler::CleanupDirectory(result.env, sfm, result.db_paths[i].path);
}
// Create a default SstFileManager for purposes of tracking compaction size
// and facilitating recovery from out of space errors.
if (result.sst_file_manager.get() == nullptr) {
std::shared_ptr<SstFileManager> sst_file_manager(
NewSstFileManager(result.env, result.info_log));
result.sst_file_manager = sst_file_manager;
}
#endif
return result;
}
namespace {
Status SanitizeOptionsByTable(
const DBOptions& db_opts,
const std::vector<ColumnFamilyDescriptor>& column_families) {
Status s;
for (auto cf : column_families) {
s = cf.options.table_factory->SanitizeOptions(db_opts, cf.options);
if (!s.ok()) {
return s;
}
}
return Status::OK();
}
} // namespace
Status DBImpl::ValidateOptions(
const DBOptions& db_options,
const std::vector<ColumnFamilyDescriptor>& column_families) {
Status s;
for (auto& cfd : column_families) {
s = ColumnFamilyData::ValidateOptions(db_options, cfd.options);
if (!s.ok()) {
return s;
}
}
s = ValidateOptions(db_options);
return s;
}
Status DBImpl::ValidateOptions(const DBOptions& db_options) {
if (db_options.db_paths.size() > 4) {
return Status::NotSupported(
"More than four DB paths are not supported yet. ");
}
if (db_options.allow_mmap_reads && db_options.use_direct_reads) {
// Protect against assert in PosixMMapReadableFile constructor
return Status::NotSupported(
"If memory mapped reads (allow_mmap_reads) are enabled "
"then direct I/O reads (use_direct_reads) must be disabled. ");
}
if (db_options.allow_mmap_writes &&
db_options.use_direct_io_for_flush_and_compaction) {
return Status::NotSupported(
"If memory mapped writes (allow_mmap_writes) are enabled "
"then direct I/O writes (use_direct_io_for_flush_and_compaction) must "
"be disabled. ");
}
if (db_options.keep_log_file_num == 0) {
return Status::InvalidArgument("keep_log_file_num must be greater than 0");
}
if (db_options.unordered_write &&
!db_options.allow_concurrent_memtable_write) {
return Status::InvalidArgument(
"unordered_write is incompatible with !allow_concurrent_memtable_write");
}
if (db_options.unordered_write && db_options.enable_pipelined_write) {
return Status::InvalidArgument(
"unordered_write is incompatible with enable_pipelined_write");
}
if (db_options.atomic_flush && db_options.enable_pipelined_write) {
return Status::InvalidArgument(
"atomic_flush is incompatible with enable_pipelined_write");
}
return Status::OK();
}
Status DBImpl::NewDB() {
VersionEdit new_db;
Status s = SetIdentityFile(env_, dbname_);
if (!s.ok()) {
return s;
}
if (immutable_db_options_.write_dbid_to_manifest) {
std::string temp_db_id;
GetDbIdentityFromIdentityFile(&temp_db_id);
new_db.SetDBId(temp_db_id);
}
new_db.SetLogNumber(0);
new_db.SetNextFile(2);
new_db.SetLastSequence(0);
ROCKS_LOG_INFO(immutable_db_options_.info_log, "Creating manifest 1 \n");
const std::string manifest = DescriptorFileName(dbname_, 1);
{
std::unique_ptr<FSWritableFile> file;
FileOptions file_options = fs_->OptimizeForManifestWrite(file_options_);
s = NewWritableFile(fs_.get(), manifest, &file, file_options);
if (!s.ok()) {
return s;
}
file->SetPreallocationBlockSize(
immutable_db_options_.manifest_preallocation_size);
std::unique_ptr<WritableFileWriter> file_writer(new WritableFileWriter(
std::move(file), manifest, file_options, env_, nullptr /* stats */,
immutable_db_options_.listeners));
log::Writer log(std::move(file_writer), 0, false);
std::string record;
new_db.EncodeTo(&record);
s = log.AddRecord(record);
if (s.ok()) {
s = SyncManifest(env_, &immutable_db_options_, log.file());
}
}
if (s.ok()) {
// Make "CURRENT" file that points to the new manifest file.
s = SetCurrentFile(env_, dbname_, 1, directories_.GetDbDir());
} else {
fs_->DeleteFile(manifest, IOOptions(), nullptr);
}
return s;
}
Status DBImpl::CreateAndNewDirectory(Env* env, const std::string& dirname,
std::unique_ptr<Directory>* directory) {
// We call CreateDirIfMissing() as the directory may already exist (if we
// are reopening a DB), when this happens we don't want creating the
// directory to cause an error. However, we need to check if creating the
// directory fails or else we may get an obscure message about the lock
// file not existing. One real-world example of this occurring is if
// env->CreateDirIfMissing() doesn't create intermediate directories, e.g.
// when dbname_ is "dir/db" but when "dir" doesn't exist.
Status s = env->CreateDirIfMissing(dirname);
if (!s.ok()) {
return s;
}
return env->NewDirectory(dirname, directory);
}
Status Directories::SetDirectories(Env* env, const std::string& dbname,
const std::string& wal_dir,
const std::vector<DbPath>& data_paths) {
Status s = DBImpl::CreateAndNewDirectory(env, dbname, &db_dir_);
if (!s.ok()) {
return s;
}
if (!wal_dir.empty() && dbname != wal_dir) {
s = DBImpl::CreateAndNewDirectory(env, wal_dir, &wal_dir_);
if (!s.ok()) {
return s;
}
}
data_dirs_.clear();
for (auto& p : data_paths) {
const std::string db_path = p.path;
if (db_path == dbname) {
data_dirs_.emplace_back(nullptr);
} else {
std::unique_ptr<Directory> path_directory;
s = DBImpl::CreateAndNewDirectory(env, db_path, &path_directory);
if (!s.ok()) {
return s;
}
data_dirs_.emplace_back(path_directory.release());
}
}
assert(data_dirs_.size() == data_paths.size());
return Status::OK();
}
Status DBImpl::Recover(
const std::vector<ColumnFamilyDescriptor>& column_families, bool read_only,
bool error_if_log_file_exist, bool error_if_data_exists_in_logs,
uint64_t* recovered_seq) {
mutex_.AssertHeld();
bool is_new_db = false;
assert(db_lock_ == nullptr);
if (!read_only) {
Status s = directories_.SetDirectories(env_, dbname_,
immutable_db_options_.wal_dir,
immutable_db_options_.db_paths);
if (!s.ok()) {
return s;
}
s = env_->LockFile(LockFileName(dbname_), &db_lock_);
if (!s.ok()) {
return s;
}
std::string current_fname = CurrentFileName(dbname_);
s = env_->FileExists(current_fname);
if (s.IsNotFound()) {
if (immutable_db_options_.create_if_missing) {
// Has to be called only after Identity File creation is successful
// because DB ID is stored in Manifest if
// immutable_db_options_.write_dbid_to_manifest = true
s = NewDB();
is_new_db = true;
if (!s.ok()) {
return s;
}
} else {
return Status::InvalidArgument(
current_fname, "does not exist (create_if_missing is false)");
}
} else if (s.ok()) {
if (immutable_db_options_.error_if_exists) {
return Status::InvalidArgument(dbname_,
"exists (error_if_exists is true)");
}
} else {
// Unexpected error reading file
assert(s.IsIOError());
return s;
}
// Verify compatibility of file_options_ and filesystem
{
std::unique_ptr<FSRandomAccessFile> idfile;
FileOptions customized_fs(file_options_);
customized_fs.use_direct_reads |=
immutable_db_options_.use_direct_io_for_flush_and_compaction;
s = fs_->NewRandomAccessFile(current_fname, customized_fs, &idfile,
nullptr);
if (!s.ok()) {
std::string error_str = s.ToString();
// Check if unsupported Direct I/O is the root cause
customized_fs.use_direct_reads = false;
s = fs_->NewRandomAccessFile(current_fname, customized_fs, &idfile,
nullptr);
if (s.ok()) {
return Status::InvalidArgument(
"Direct I/O is not supported by the specified DB.");
} else {
return Status::InvalidArgument(
"Found options incompatible with filesystem", error_str.c_str());
}
}
}
}
assert(db_id_.empty());
Status s = versions_->Recover(column_families, read_only, &db_id_);
if (!s.ok()) {
return s;
}
// Happens when immutable_db_options_.write_dbid_to_manifest is set to true
// the very first time.
if (db_id_.empty()) {
// Check for the IDENTITY file and create it if not there.
s = fs_->FileExists(IdentityFileName(dbname_), IOOptions(), nullptr);
// Typically Identity file is created in NewDB() and for some reason if
// it is no longer available then at this point DB ID is not in Identity
// file or Manifest.
if (s.IsNotFound()) {
s = SetIdentityFile(env_, dbname_);
if (!s.ok()) {
return s;
}
} else if (!s.ok()) {
assert(s.IsIOError());
return s;
}
GetDbIdentityFromIdentityFile(&db_id_);
if (immutable_db_options_.write_dbid_to_manifest) {
VersionEdit edit;
edit.SetDBId(db_id_);
Options options;
MutableCFOptions mutable_cf_options(options);
versions_->db_id_ = db_id_;
versions_->LogAndApply(versions_->GetColumnFamilySet()->GetDefault(),
mutable_cf_options, &edit, &mutex_, nullptr,
false);
}
} else {
SetIdentityFile(env_, dbname_, db_id_);
}
if (immutable_db_options_.paranoid_checks && s.ok()) {
s = CheckConsistency();
}
if (s.ok() && !read_only) {
for (auto cfd : *versions_->GetColumnFamilySet()) {
s = cfd->AddDirectories();
if (!s.ok()) {
return s;
}
}
}
// DB mutex is already held
if (s.ok() && immutable_db_options_.persist_stats_to_disk) {
s = InitPersistStatsColumnFamily();
}
// Initial max_total_in_memory_state_ before recovery logs. Log recovery
// may check this value to decide whether to flush.
max_total_in_memory_state_ = 0;
for (auto cfd : *versions_->GetColumnFamilySet()) {
auto* mutable_cf_options = cfd->GetLatestMutableCFOptions();
max_total_in_memory_state_ += mutable_cf_options->write_buffer_size *
mutable_cf_options->max_write_buffer_number;
}
if (s.ok()) {
SequenceNumber next_sequence(kMaxSequenceNumber);
default_cf_handle_ = new ColumnFamilyHandleImpl(
versions_->GetColumnFamilySet()->GetDefault(), this, &mutex_);
default_cf_internal_stats_ = default_cf_handle_->cfd()->internal_stats();
// TODO(Zhongyi): handle single_column_family_mode_ when
// persistent_stats is enabled
single_column_family_mode_ =
versions_->GetColumnFamilySet()->NumberOfColumnFamilies() == 1;
// Recover from all newer log files than the ones named in the
// descriptor (new log files may have been added by the previous
// incarnation without registering them in the descriptor).
//
// Note that prev_log_number() is no longer used, but we pay
// attention to it in case we are recovering a database
// produced by an older version of rocksdb.
std::vector<std::string> filenames;
s = env_->GetChildren(immutable_db_options_.wal_dir, &filenames);
if (s.IsNotFound()) {
return Status::InvalidArgument("wal_dir not found",
immutable_db_options_.wal_dir);
} else if (!s.ok()) {
return s;
}
std::vector<uint64_t> logs;
for (size_t i = 0; i < filenames.size(); i++) {
uint64_t number;
FileType type;
if (ParseFileName(filenames[i], &number, &type) && type == kLogFile) {
if (is_new_db) {
return Status::Corruption(
"While creating a new Db, wal_dir contains "
"existing log file: ",
filenames[i]);
} else {
logs.push_back(number);
}
}
}
if (logs.size() > 0) {
if (error_if_log_file_exist) {
return Status::Corruption(
"The db was opened in readonly mode with error_if_log_file_exist"
"flag but a log file already exists");
} else if (error_if_data_exists_in_logs) {
for (auto& log : logs) {
std::string fname = LogFileName(immutable_db_options_.wal_dir, log);
uint64_t bytes;
s = env_->GetFileSize(fname, &bytes);
if (s.ok()) {
if (bytes > 0) {
return Status::Corruption(
"error_if_data_exists_in_logs is set but there are data "
" in log files.");
}
}
}
}
}
if (!logs.empty()) {
// Recover in the order in which the logs were generated
std::sort(logs.begin(), logs.end());
bool corrupted_log_found = false;
s = RecoverLogFiles(logs, &next_sequence, read_only,
&corrupted_log_found);
if (corrupted_log_found && recovered_seq != nullptr) {
*recovered_seq = next_sequence;
}
if (!s.ok()) {
// Clear memtables if recovery failed
for (auto cfd : *versions_->GetColumnFamilySet()) {
cfd->CreateNewMemtable(*cfd->GetLatestMutableCFOptions(),
kMaxSequenceNumber);
}
}
}
}
if (read_only) {
// If we are opening as read-only, we need to update options_file_number_
// to reflect the most recent OPTIONS file. It does not matter for regular
// read-write db instance because options_file_number_ will later be
// updated to versions_->NewFileNumber() in RenameTempFileToOptionsFile.
std::vector<std::string> file_names;
if (s.ok()) {
s = env_->GetChildren(GetName(), &file_names);
}
if (s.ok()) {
uint64_t number = 0;
uint64_t options_file_number = 0;
FileType type;
for (const auto& fname : file_names) {
if (ParseFileName(fname, &number, &type) && type == kOptionsFile) {
options_file_number = std::max(number, options_file_number);
}
}
versions_->options_file_number_ = options_file_number;
}
}
return s;
}
Status DBImpl::PersistentStatsProcessFormatVersion() {
mutex_.AssertHeld();
Status s;
// persist version when stats CF doesn't exist
bool should_persist_format_version = !persistent_stats_cfd_exists_;
mutex_.Unlock();
if (persistent_stats_cfd_exists_) {
// Check persistent stats format version compatibility. Drop and recreate
// persistent stats CF if format version is incompatible
uint64_t format_version_recovered = 0;
Status s_format = DecodePersistentStatsVersionNumber(
this, StatsVersionKeyType::kFormatVersion, &format_version_recovered);
uint64_t compatible_version_recovered = 0;
Status s_compatible = DecodePersistentStatsVersionNumber(
this, StatsVersionKeyType::kCompatibleVersion,
&compatible_version_recovered);
// abort reading from existing stats CF if any of following is true:
// 1. failed to read format version or compatible version from disk
// 2. sst's format version is greater than current format version, meaning
// this sst is encoded with a newer RocksDB release, and current compatible
// version is below the sst's compatible version
if (!s_format.ok() || !s_compatible.ok() ||
(kStatsCFCurrentFormatVersion < format_version_recovered &&
kStatsCFCompatibleFormatVersion < compatible_version_recovered)) {
if (!s_format.ok() || !s_compatible.ok()) {
ROCKS_LOG_INFO(
immutable_db_options_.info_log,
"Reading persistent stats version key failed. Format key: %s, "
"compatible key: %s",
s_format.ToString().c_str(), s_compatible.ToString().c_str());
} else {
ROCKS_LOG_INFO(
immutable_db_options_.info_log,
"Disable persistent stats due to corrupted or incompatible format "
"version\n");
}
DropColumnFamily(persist_stats_cf_handle_);
DestroyColumnFamilyHandle(persist_stats_cf_handle_);
ColumnFamilyHandle* handle = nullptr;
ColumnFamilyOptions cfo;
OptimizeForPersistentStats(&cfo);
s = CreateColumnFamily(cfo, kPersistentStatsColumnFamilyName, &handle);
persist_stats_cf_handle_ = static_cast<ColumnFamilyHandleImpl*>(handle);
// should also persist version here because old stats CF is discarded
should_persist_format_version = true;
}
}
if (s.ok() && should_persist_format_version) {
// Persistent stats CF being created for the first time, need to write
// format version key
WriteBatch batch;
batch.Put(persist_stats_cf_handle_, kFormatVersionKeyString,
ToString(kStatsCFCurrentFormatVersion));
batch.Put(persist_stats_cf_handle_, kCompatibleVersionKeyString,
ToString(kStatsCFCompatibleFormatVersion));
WriteOptions wo;
wo.low_pri = true;
wo.no_slowdown = true;
wo.sync = false;
s = Write(wo, &batch);
}
mutex_.Lock();
return s;
}
Status DBImpl::InitPersistStatsColumnFamily() {
mutex_.AssertHeld();
assert(!persist_stats_cf_handle_);
ColumnFamilyData* persistent_stats_cfd =
versions_->GetColumnFamilySet()->GetColumnFamily(
kPersistentStatsColumnFamilyName);
persistent_stats_cfd_exists_ = persistent_stats_cfd != nullptr;
Status s;
if (persistent_stats_cfd != nullptr) {
// We are recovering from a DB which already contains persistent stats CF,
// the CF is already created in VersionSet::ApplyOneVersionEdit, but
// column family handle was not. Need to explicitly create handle here.
persist_stats_cf_handle_ =
new ColumnFamilyHandleImpl(persistent_stats_cfd, this, &mutex_);
} else {
mutex_.Unlock();
ColumnFamilyHandle* handle = nullptr;
ColumnFamilyOptions cfo;
OptimizeForPersistentStats(&cfo);
s = CreateColumnFamily(cfo, kPersistentStatsColumnFamilyName, &handle);
persist_stats_cf_handle_ = static_cast<ColumnFamilyHandleImpl*>(handle);
mutex_.Lock();
}
return s;
}
// REQUIRES: log_numbers are sorted in ascending order
Status DBImpl::RecoverLogFiles(const std::vector<uint64_t>& log_numbers,
SequenceNumber* next_sequence, bool read_only,
bool* corrupted_log_found) {
struct LogReporter : public log::Reader::Reporter {
Env* env;
Logger* info_log;
const char* fname;
Status* status; // nullptr if immutable_db_options_.paranoid_checks==false
void Corruption(size_t bytes, const Status& s) override {
ROCKS_LOG_WARN(info_log, "%s%s: dropping %d bytes; %s",
(this->status == nullptr ? "(ignoring error) " : ""),
fname, static_cast<int>(bytes), s.ToString().c_str());
if (this->status != nullptr && this->status->ok()) {
*this->status = s;
}
}
};
mutex_.AssertHeld();
Status status;
std::unordered_map<int, VersionEdit> version_edits;
// no need to refcount because iteration is under mutex
for (auto cfd : *versions_->GetColumnFamilySet()) {
VersionEdit edit;
edit.SetColumnFamily(cfd->GetID());
version_edits.insert({cfd->GetID(), edit});
}
int job_id = next_job_id_.fetch_add(1);
{
auto stream = event_logger_.Log();
stream << "job" << job_id << "event"
<< "recovery_started";
stream << "log_files";
stream.StartArray();
for (auto log_number : log_numbers) {
stream << log_number;
}
stream.EndArray();
}
#ifndef ROCKSDB_LITE
if (immutable_db_options_.wal_filter != nullptr) {
std::map<std::string, uint32_t> cf_name_id_map;
std::map<uint32_t, uint64_t> cf_lognumber_map;
for (auto cfd : *versions_->GetColumnFamilySet()) {
cf_name_id_map.insert(std::make_pair(cfd->GetName(), cfd->GetID()));
cf_lognumber_map.insert(
std::make_pair(cfd->GetID(), cfd->GetLogNumber()));
}
immutable_db_options_.wal_filter->ColumnFamilyLogNumberMap(cf_lognumber_map,
cf_name_id_map);
}
#endif
bool stop_replay_by_wal_filter = false;
bool stop_replay_for_corruption = false;
bool flushed = false;
uint64_t corrupted_log_number = kMaxSequenceNumber;
uint64_t min_log_number = MinLogNumberToKeep();
for (auto log_number : log_numbers) {
if (log_number < min_log_number) {
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"Skipping log #%" PRIu64
" since it is older than min log to keep #%" PRIu64,
log_number, min_log_number);
continue;
}
// The previous incarnation may not have written any MANIFEST
// records after allocating this log number. So we manually
// update the file number allocation counter in VersionSet.
versions_->MarkFileNumberUsed(log_number);
// Open the log file
std::string fname = LogFileName(immutable_db_options_.wal_dir, log_number);
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"Recovering log #%" PRIu64 " mode %d", log_number,
static_cast<int>(immutable_db_options_.wal_recovery_mode));
auto logFileDropped = [this, &fname]() {
uint64_t bytes;
if (env_->GetFileSize(fname, &bytes).ok()) {
auto info_log = immutable_db_options_.info_log.get();
ROCKS_LOG_WARN(info_log, "%s: dropping %d bytes", fname.c_str(),
static_cast<int>(bytes));
}
};
if (stop_replay_by_wal_filter) {
logFileDropped();
continue;
}
std::unique_ptr<SequentialFileReader> file_reader;
{
std::unique_ptr<FSSequentialFile> file;
status = fs_->NewSequentialFile(fname,
fs_->OptimizeForLogRead(file_options_),
&file, nullptr);
if (!status.ok()) {
MaybeIgnoreError(&status);
if (!status.ok()) {
return status;
} else {
// Fail with one log file, but that's ok.
// Try next one.
continue;
}
}
file_reader.reset(new SequentialFileReader(
std::move(file), fname, immutable_db_options_.log_readahead_size));
}
// Create the log reader.
LogReporter reporter;
reporter.env = env_;
reporter.info_log = immutable_db_options_.info_log.get();
reporter.fname = fname.c_str();
if (!immutable_db_options_.paranoid_checks ||
immutable_db_options_.wal_recovery_mode ==
WALRecoveryMode::kSkipAnyCorruptedRecords) {
reporter.status = nullptr;
} else {
reporter.status = &status;
}
// We intentially make log::Reader do checksumming even if
// paranoid_checks==false so that corruptions cause entire commits
// to be skipped instead of propagating bad information (like overly
// large sequence numbers).
log::Reader reader(immutable_db_options_.info_log, std::move(file_reader),
&reporter, true /*checksum*/, log_number);
// Determine if we should tolerate incomplete records at the tail end of the
// Read all the records and add to a memtable
std::string scratch;
Slice record;
WriteBatch batch;
while (!stop_replay_by_wal_filter &&
reader.ReadRecord(&record, &scratch,
immutable_db_options_.wal_recovery_mode) &&
status.ok()) {
if (record.size() < WriteBatchInternal::kHeader) {
reporter.Corruption(record.size(),
Status::Corruption("log record too small"));
continue;
}
WriteBatchInternal::SetContents(&batch, record);
SequenceNumber sequence = WriteBatchInternal::Sequence(&batch);
if (immutable_db_options_.wal_recovery_mode ==
WALRecoveryMode::kPointInTimeRecovery) {
// In point-in-time recovery mode, if sequence id of log files are
// consecutive, we continue recovery despite corruption. This could
// happen when we open and write to a corrupted DB, where sequence id
// will start from the last sequence id we recovered.
if (sequence == *next_sequence) {
stop_replay_for_corruption = false;
}
if (stop_replay_for_corruption) {
logFileDropped();
break;
}
}
#ifndef ROCKSDB_LITE
if (immutable_db_options_.wal_filter != nullptr) {
WriteBatch new_batch;
bool batch_changed = false;
WalFilter::WalProcessingOption wal_processing_option =
immutable_db_options_.wal_filter->LogRecordFound(
log_number, fname, batch, &new_batch, &batch_changed);
switch (wal_processing_option) {
case WalFilter::WalProcessingOption::kContinueProcessing:
// do nothing, proceeed normally
break;
case WalFilter::WalProcessingOption::kIgnoreCurrentRecord:
// skip current record
continue;
case WalFilter::WalProcessingOption::kStopReplay:
// skip current record and stop replay
stop_replay_by_wal_filter = true;
continue;
case WalFilter::WalProcessingOption::kCorruptedRecord: {
status =
Status::Corruption("Corruption reported by Wal Filter ",
immutable_db_options_.wal_filter->Name());
MaybeIgnoreError(&status);
if (!status.ok()) {
reporter.Corruption(record.size(), status);
continue;
}
break;
}
default: {
assert(false); // unhandled case
status = Status::NotSupported(
"Unknown WalProcessingOption returned"
" by Wal Filter ",
immutable_db_options_.wal_filter->Name());
MaybeIgnoreError(&status);
if (!status.ok()) {
return status;
} else {
// Ignore the error with current record processing.
continue;
}
}
}
if (batch_changed) {
// Make sure that the count in the new batch is
// within the orignal count.
int new_count = WriteBatchInternal::Count(&new_batch);
int original_count = WriteBatchInternal::Count(&batch);
if (new_count > original_count) {
ROCKS_LOG_FATAL(
immutable_db_options_.info_log,
"Recovering log #%" PRIu64
" mode %d log filter %s returned "
"more records (%d) than original (%d) which is not allowed. "
"Aborting recovery.",
log_number,
static_cast<int>(immutable_db_options_.wal_recovery_mode),
immutable_db_options_.wal_filter->Name(), new_count,
original_count);
status = Status::NotSupported(
"More than original # of records "
"returned by Wal Filter ",
immutable_db_options_.wal_filter->Name());
return status;
}
// Set the same sequence number in the new_batch
// as the original batch.
WriteBatchInternal::SetSequence(&new_batch,
WriteBatchInternal::Sequence(&batch));
batch = new_batch;
}
}
#endif // ROCKSDB_LITE
// If column family was not found, it might mean that the WAL write
// batch references to the column family that was dropped after the
// insert. We don't want to fail the whole write batch in that case --
// we just ignore the update.
// That's why we set ignore missing column families to true
bool has_valid_writes = false;
status = WriteBatchInternal::InsertInto(
&batch, column_family_memtables_.get(), &flush_scheduler_,
&trim_history_scheduler_, true, log_number, this,
false /* concurrent_memtable_writes */, next_sequence,
&has_valid_writes, seq_per_batch_, batch_per_txn_);
MaybeIgnoreError(&status);
if (!status.ok()) {
// We are treating this as a failure while reading since we read valid
// blocks that do not form coherent data
reporter.Corruption(record.size(), status);
continue;
}
if (has_valid_writes && !read_only) {
// we can do this because this is called before client has access to the
// DB and there is only a single thread operating on DB
ColumnFamilyData* cfd;
while ((cfd = flush_scheduler_.TakeNextColumnFamily()) != nullptr) {
cfd->UnrefAndTryDelete();
// If this asserts, it means that InsertInto failed in
// filtering updates to already-flushed column families
assert(cfd->GetLogNumber() <= log_number);
auto iter = version_edits.find(cfd->GetID());
assert(iter != version_edits.end());
VersionEdit* edit = &iter->second;
status = WriteLevel0TableForRecovery(job_id, cfd, cfd->mem(), edit);
if (!status.ok()) {
// Reflect errors immediately so that conditions like full
// file-systems cause the DB::Open() to fail.
return status;
}
flushed = true;
cfd->CreateNewMemtable(*cfd->GetLatestMutableCFOptions(),
*next_sequence);
}
}
}
if (!status.ok()) {
if (status.IsNotSupported()) {
// We should not treat NotSupported as corruption. It is rather a clear
// sign that we are processing a WAL that is produced by an incompatible
// version of the code.
return status;
}
if (immutable_db_options_.wal_recovery_mode ==
WALRecoveryMode::kSkipAnyCorruptedRecords) {
// We should ignore all errors unconditionally
status = Status::OK();
} else if (immutable_db_options_.wal_recovery_mode ==
WALRecoveryMode::kPointInTimeRecovery) {
// We should ignore the error but not continue replaying
status = Status::OK();
stop_replay_for_corruption = true;
corrupted_log_number = log_number;
if (corrupted_log_found != nullptr) {
*corrupted_log_found = true;
}
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"Point in time recovered to log #%" PRIu64
" seq #%" PRIu64,
log_number, *next_sequence);
} else {
assert(immutable_db_options_.wal_recovery_mode ==
WALRecoveryMode::kTolerateCorruptedTailRecords ||
immutable_db_options_.wal_recovery_mode ==
WALRecoveryMode::kAbsoluteConsistency);
return status;
}
}
flush_scheduler_.Clear();
trim_history_scheduler_.Clear();
auto last_sequence = *next_sequence - 1;
if ((*next_sequence != kMaxSequenceNumber) &&
(versions_->LastSequence() <= last_sequence)) {
versions_->SetLastAllocatedSequence(last_sequence);
versions_->SetLastPublishedSequence(last_sequence);
versions_->SetLastSequence(last_sequence);
}
}
// Compare the corrupted log number to all columnfamily's current log number.
// Abort Open() if any column family's log number is greater than
// the corrupted log number, which means CF contains data beyond the point of
// corruption. This could during PIT recovery when the WAL is corrupted and
// some (but not all) CFs are flushed
// Exclude the PIT case where no log is dropped after the corruption point.
// This is to cover the case for empty logs after corrupted log, in which we
// don't reset stop_replay_for_corruption.
if (stop_replay_for_corruption == true &&
(immutable_db_options_.wal_recovery_mode ==
WALRecoveryMode::kPointInTimeRecovery ||
immutable_db_options_.wal_recovery_mode ==
WALRecoveryMode::kTolerateCorruptedTailRecords)) {
for (auto cfd : *versions_->GetColumnFamilySet()) {
if (cfd->GetLogNumber() > corrupted_log_number) {
ROCKS_LOG_ERROR(immutable_db_options_.info_log,
"Column family inconsistency: SST file contains data"
" beyond the point of corruption.");
return Status::Corruption("SST file is ahead of WALs");
}
}
}
// True if there's any data in the WALs; if not, we can skip re-processing
// them later
bool data_seen = false;
if (!read_only) {
// no need to refcount since client still doesn't have access
// to the DB and can not drop column families while we iterate
auto max_log_number = log_numbers.back();
for (auto cfd : *versions_->GetColumnFamilySet()) {
auto iter = version_edits.find(cfd->GetID());
assert(iter != version_edits.end());
VersionEdit* edit = &iter->second;
if (cfd->GetLogNumber() > max_log_number) {
// Column family cfd has already flushed the data
// from all logs. Memtable has to be empty because
// we filter the updates based on log_number
// (in WriteBatch::InsertInto)
assert(cfd->mem()->GetFirstSequenceNumber() == 0);
assert(edit->NumEntries() == 0);
continue;
}
TEST_SYNC_POINT_CALLBACK(
"DBImpl::RecoverLogFiles:BeforeFlushFinalMemtable", /*arg=*/nullptr);
// flush the final memtable (if non-empty)
if (cfd->mem()->GetFirstSequenceNumber() != 0) {
// If flush happened in the middle of recovery (e.g. due to memtable
// being full), we flush at the end. Otherwise we'll need to record
// where we were on last flush, which make the logic complicated.
if (flushed || !immutable_db_options_.avoid_flush_during_recovery) {
status = WriteLevel0TableForRecovery(job_id, cfd, cfd->mem(), edit);
if (!status.ok()) {
// Recovery failed
break;
}
flushed = true;
cfd->CreateNewMemtable(*cfd->GetLatestMutableCFOptions(),
versions_->LastSequence());
}
data_seen = true;
}
// Update the log number info in the version edit corresponding to this
// column family. Note that the version edits will be written to MANIFEST
// together later.
// writing log_number in the manifest means that any log file
// with number strongly less than (log_number + 1) is already
// recovered and should be ignored on next reincarnation.
// Since we already recovered max_log_number, we want all logs
// with numbers `<= max_log_number` (includes this one) to be ignored
if (flushed || cfd->mem()->GetFirstSequenceNumber() == 0) {
edit->SetLogNumber(max_log_number + 1);
}
}
if (status.ok()) {
// we must mark the next log number as used, even though it's
// not actually used. that is because VersionSet assumes
// VersionSet::next_file_number_ always to be strictly greater than any
// log number
versions_->MarkFileNumberUsed(max_log_number + 1);
autovector<ColumnFamilyData*> cfds;
autovector<const MutableCFOptions*> cf_opts;
autovector<autovector<VersionEdit*>> edit_lists;
for (auto* cfd : *versions_->GetColumnFamilySet()) {
cfds.push_back(cfd);
cf_opts.push_back(cfd->GetLatestMutableCFOptions());
auto iter = version_edits.find(cfd->GetID());
assert(iter != version_edits.end());
edit_lists.push_back({&iter->second});
}
// write MANIFEST with update
status = versions_->LogAndApply(cfds, cf_opts, edit_lists, &mutex_,
directories_.GetDbDir(),
/*new_descriptor_log=*/true);
}
}
if (status.ok() && data_seen && !flushed) {
status = RestoreAliveLogFiles(log_numbers);
}
event_logger_.Log() << "job" << job_id << "event"
<< "recovery_finished";
return status;
}
Status DBImpl::RestoreAliveLogFiles(const std::vector<uint64_t>& log_numbers) {
if (log_numbers.empty()) {
return Status::OK();
}
Status s;
mutex_.AssertHeld();
assert(immutable_db_options_.avoid_flush_during_recovery);
if (two_write_queues_) {
log_write_mutex_.Lock();
}
// Mark these as alive so they'll be considered for deletion later by
// FindObsoleteFiles()
total_log_size_ = 0;
log_empty_ = false;
for (auto log_number : log_numbers) {
LogFileNumberSize log(log_number);
std::string fname = LogFileName(immutable_db_options_.wal_dir, log_number);
// This gets the appear size of the logs, not including preallocated space.
s = env_->GetFileSize(fname, &log.size);
if (!s.ok()) {
break;
}
total_log_size_ += log.size;
alive_log_files_.push_back(log);
// We preallocate space for logs, but then after a crash and restart, those
// preallocated space are not needed anymore. It is likely only the last
// log has such preallocated space, so we only truncate for the last log.
if (log_number == log_numbers.back()) {
std::unique_ptr<FSWritableFile> last_log;
Status truncate_status = fs_->ReopenWritableFile(
fname,
fs_->OptimizeForLogWrite(
file_options_,
BuildDBOptions(immutable_db_options_, mutable_db_options_)),
&last_log, nullptr);
if (truncate_status.ok()) {
truncate_status = last_log->Truncate(log.size, IOOptions(), nullptr);
}
if (truncate_status.ok()) {
truncate_status = last_log->Close(IOOptions(), nullptr);
}
// Not a critical error if fail to truncate.
if (!truncate_status.ok()) {
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"Failed to truncate log #%" PRIu64 ": %s", log_number,
truncate_status.ToString().c_str());
}
}
}
if (two_write_queues_) {
log_write_mutex_.Unlock();
}
return s;
}
Status DBImpl::WriteLevel0TableForRecovery(int job_id, ColumnFamilyData* cfd,
MemTable* mem, VersionEdit* edit) {
mutex_.AssertHeld();
const uint64_t start_micros = env_->NowMicros();
FileMetaData meta;
std::unique_ptr<std::list<uint64_t>::iterator> pending_outputs_inserted_elem(
new std::list<uint64_t>::iterator(
CaptureCurrentFileNumberInPendingOutputs()));
meta.fd = FileDescriptor(versions_->NewFileNumber(), 0, 0);
ReadOptions ro;
ro.total_order_seek = true;
Arena arena;
Status s;
TableProperties table_properties;
{
ScopedArenaIterator iter(mem->NewIterator(ro, &arena));
ROCKS_LOG_DEBUG(immutable_db_options_.info_log,
"[%s] [WriteLevel0TableForRecovery]"
" Level-0 table #%" PRIu64 ": started",
cfd->GetName().c_str(), meta.fd.GetNumber());
// Get the latest mutable cf options while the mutex is still locked
const MutableCFOptions mutable_cf_options =
*cfd->GetLatestMutableCFOptions();
bool paranoid_file_checks =
cfd->GetLatestMutableCFOptions()->paranoid_file_checks;
int64_t _current_time = 0;
env_->GetCurrentTime(&_current_time); // ignore error
const uint64_t current_time = static_cast<uint64_t>(_current_time);
meta.oldest_ancester_time = current_time;
{
auto write_hint = cfd->CalculateSSTWriteHint(0);
mutex_.Unlock();
SequenceNumber earliest_write_conflict_snapshot;
std::vector<SequenceNumber> snapshot_seqs =
snapshots_.GetAll(&earliest_write_conflict_snapshot);
auto snapshot_checker = snapshot_checker_.get();
if (use_custom_gc_ && snapshot_checker == nullptr) {
snapshot_checker = DisableGCSnapshotChecker::Instance();
}
std::vector<std::unique_ptr<FragmentedRangeTombstoneIterator>>
range_del_iters;
auto range_del_iter =
mem->NewRangeTombstoneIterator(ro, kMaxSequenceNumber);
if (range_del_iter != nullptr) {
range_del_iters.emplace_back(range_del_iter);
}
s = BuildTable(
dbname_, env_, fs_.get(), *cfd->ioptions(), mutable_cf_options,
file_options_for_compaction_, cfd->table_cache(), iter.get(),
std::move(range_del_iters), &meta, cfd->internal_comparator(),
cfd->int_tbl_prop_collector_factories(), cfd->GetID(), cfd->GetName(),
snapshot_seqs, earliest_write_conflict_snapshot, snapshot_checker,
GetCompressionFlush(*cfd->ioptions(), mutable_cf_options),
mutable_cf_options.sample_for_compression,
cfd->ioptions()->compression_opts, paranoid_file_checks,
cfd->internal_stats(), TableFileCreationReason::kRecovery,
&event_logger_, job_id, Env::IO_HIGH, nullptr /* table_properties */,
-1 /* level */, current_time, write_hint);
LogFlush(immutable_db_options_.info_log);
ROCKS_LOG_DEBUG(immutable_db_options_.info_log,
"[%s] [WriteLevel0TableForRecovery]"
" Level-0 table #%" PRIu64 ": %" PRIu64 " bytes %s",
cfd->GetName().c_str(), meta.fd.GetNumber(),
meta.fd.GetFileSize(), s.ToString().c_str());
mutex_.Lock();
}
}
ReleaseFileNumberFromPendingOutputs(pending_outputs_inserted_elem);
// Note that if file_size is zero, the file has been deleted and
// should not be added to the manifest.
int level = 0;
if (s.ok() && meta.fd.GetFileSize() > 0) {
edit->AddFile(level, meta.fd.GetNumber(), meta.fd.GetPathId(),
meta.fd.GetFileSize(), meta.smallest, meta.largest,
meta.fd.smallest_seqno, meta.fd.largest_seqno,
meta.marked_for_compaction, meta.oldest_blob_file_number,
meta.oldest_ancester_time, meta.file_creation_time);
}
InternalStats::CompactionStats stats(CompactionReason::kFlush, 1);
stats.micros = env_->NowMicros() - start_micros;
stats.bytes_written = meta.fd.GetFileSize();
stats.num_output_files = 1;
cfd->internal_stats()->AddCompactionStats(level, Env::Priority::USER, stats);
cfd->internal_stats()->AddCFStats(InternalStats::BYTES_FLUSHED,
meta.fd.GetFileSize());
RecordTick(stats_, COMPACT_WRITE_BYTES, meta.fd.GetFileSize());
return s;
}
Status DB::Open(const Options& options, const std::string& dbname, DB** dbptr) {
DBOptions db_options(options);
ColumnFamilyOptions cf_options(options);
std::vector<ColumnFamilyDescriptor> column_families;
column_families.push_back(
ColumnFamilyDescriptor(kDefaultColumnFamilyName, cf_options));
if (db_options.persist_stats_to_disk) {
column_families.push_back(
ColumnFamilyDescriptor(kPersistentStatsColumnFamilyName, cf_options));
}
std::vector<ColumnFamilyHandle*> handles;
Status s = DB::Open(db_options, dbname, column_families, &handles, dbptr);
if (s.ok()) {
if (db_options.persist_stats_to_disk) {
assert(handles.size() == 2);
} else {
assert(handles.size() == 1);
}
// i can delete the handle since DBImpl is always holding a reference to
// default column family
if (db_options.persist_stats_to_disk && handles[1] != nullptr) {
delete handles[1];
}
delete handles[0];
}
return s;
}
Status DB::Open(const DBOptions& db_options, const std::string& dbname,
const std::vector<ColumnFamilyDescriptor>& column_families,
std::vector<ColumnFamilyHandle*>* handles, DB** dbptr) {
const bool kSeqPerBatch = true;
const bool kBatchPerTxn = true;
return DBImpl::Open(db_options, dbname, column_families, handles, dbptr,
!kSeqPerBatch, kBatchPerTxn);
}
Status DBImpl::CreateWAL(uint64_t log_file_num, uint64_t recycle_log_number,
size_t preallocate_block_size, log::Writer** new_log) {
Status s;
std::unique_ptr<FSWritableFile> lfile;
DBOptions db_options =
BuildDBOptions(immutable_db_options_, mutable_db_options_);
FileOptions opt_file_options =
fs_->OptimizeForLogWrite(file_options_, db_options);
std::string log_fname =
LogFileName(immutable_db_options_.wal_dir, log_file_num);
if (recycle_log_number) {
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"reusing log %" PRIu64 " from recycle list\n",
recycle_log_number);
std::string old_log_fname =
LogFileName(immutable_db_options_.wal_dir, recycle_log_number);
s = fs_->ReuseWritableFile(log_fname, old_log_fname, opt_file_options,
&lfile, /*dbg=*/nullptr);
} else {
s = NewWritableFile(fs_.get(), log_fname, &lfile, opt_file_options);
}
if (s.ok()) {
lfile->SetWriteLifeTimeHint(CalculateWALWriteHint());
lfile->SetPreallocationBlockSize(preallocate_block_size);
const auto& listeners = immutable_db_options_.listeners;
std::unique_ptr<WritableFileWriter> file_writer(
new WritableFileWriter(std::move(lfile), log_fname, opt_file_options,
env_, nullptr /* stats */, listeners));
*new_log = new log::Writer(std::move(file_writer), log_file_num,
immutable_db_options_.recycle_log_file_num > 0,
immutable_db_options_.manual_wal_flush);
}
return s;
}
Status DBImpl::Open(const DBOptions& db_options, const std::string& dbname,
const std::vector<ColumnFamilyDescriptor>& column_families,
std::vector<ColumnFamilyHandle*>* handles, DB** dbptr,
const bool seq_per_batch, const bool batch_per_txn) {
Status s = SanitizeOptionsByTable(db_options, column_families);
if (!s.ok()) {
return s;
}
s = ValidateOptions(db_options, column_families);
if (!s.ok()) {
return s;
}
*dbptr = nullptr;
handles->clear();
size_t max_write_buffer_size = 0;
for (auto cf : column_families) {
max_write_buffer_size =
std::max(max_write_buffer_size, cf.options.write_buffer_size);
}
DBImpl* impl = new DBImpl(db_options, dbname, seq_per_batch, batch_per_txn);
s = impl->env_->CreateDirIfMissing(impl->immutable_db_options_.wal_dir);
if (s.ok()) {
std::vector<std::string> paths;
for (auto& db_path : impl->immutable_db_options_.db_paths) {
paths.emplace_back(db_path.path);
}
for (auto& cf : column_families) {
for (auto& cf_path : cf.options.cf_paths) {
paths.emplace_back(cf_path.path);
}
}
for (auto& path : paths) {
s = impl->env_->CreateDirIfMissing(path);
if (!s.ok()) {
break;
}
}
// For recovery from NoSpace() error, we can only handle
// the case where the database is stored in a single path
if (paths.size() <= 1) {
impl->error_handler_.EnableAutoRecovery();
}
}
if (!s.ok()) {
delete impl;
return s;
}
s = impl->CreateArchivalDirectory();
if (!s.ok()) {
delete impl;
return s;
}
impl->wal_in_db_path_ = IsWalDirSameAsDBPath(&impl->immutable_db_options_);
impl->mutex_.Lock();
// Handles create_if_missing, error_if_exists
uint64_t recovered_seq(kMaxSequenceNumber);
s = impl->Recover(column_families, false, false, false, &recovered_seq);
if (s.ok()) {
uint64_t new_log_number = impl->versions_->NewFileNumber();
log::Writer* new_log = nullptr;
const size_t preallocate_block_size =
impl->GetWalPreallocateBlockSize(max_write_buffer_size);
s = impl->CreateWAL(new_log_number, 0 /*recycle_log_number*/,
preallocate_block_size, &new_log);
if (s.ok()) {
InstrumentedMutexLock wl(&impl->log_write_mutex_);
impl->logfile_number_ = new_log_number;
assert(new_log != nullptr);
impl->logs_.emplace_back(new_log_number, new_log);
}
if (s.ok()) {
// set column family handles
for (auto cf : column_families) {
auto cfd =
impl->versions_->GetColumnFamilySet()->GetColumnFamily(cf.name);
if (cfd != nullptr) {
handles->push_back(
new ColumnFamilyHandleImpl(cfd, impl, &impl->mutex_));
impl->NewThreadStatusCfInfo(cfd);
} else {
if (db_options.create_missing_column_families) {
// missing column family, create it
ColumnFamilyHandle* handle;
impl->mutex_.Unlock();
s = impl->CreateColumnFamily(cf.options, cf.name, &handle);
impl->mutex_.Lock();
if (s.ok()) {
handles->push_back(handle);
} else {
break;
}
} else {
s = Status::InvalidArgument("Column family not found: ", cf.name);
break;
}
}
}
}
if (s.ok()) {
SuperVersionContext sv_context(/* create_superversion */ true);
for (auto cfd : *impl->versions_->GetColumnFamilySet()) {
impl->InstallSuperVersionAndScheduleWork(
cfd, &sv_context, *cfd->GetLatestMutableCFOptions());
}
sv_context.Clean();
if (impl->two_write_queues_) {
impl->log_write_mutex_.Lock();
}
impl->alive_log_files_.push_back(
DBImpl::LogFileNumberSize(impl->logfile_number_));
if (impl->two_write_queues_) {
impl->log_write_mutex_.Unlock();
}
impl->DeleteObsoleteFiles();
s = impl->directories_.GetDbDir()->Fsync();
}
if (s.ok()) {
// In WritePrepared there could be gap in sequence numbers. This breaks
// the trick we use in kPointInTimeRecovery which assumes the first seq in
// the log right after the corrupted log is one larger than the last seq
// we read from the logs. To let this trick keep working, we add a dummy
// entry with the expected sequence to the first log right after recovery.
// In non-WritePrepared case also the new log after recovery could be
// empty, and thus missing the consecutive seq hint to distinguish
// middle-log corruption to corrupted-log-remained-after-recovery. This
// case also will be addressed by a dummy write.
if (recovered_seq != kMaxSequenceNumber) {
WriteBatch empty_batch;
WriteBatchInternal::SetSequence(&empty_batch, recovered_seq);
WriteOptions write_options;
uint64_t log_used, log_size;
log::Writer* log_writer = impl->logs_.back().writer;
s = impl->WriteToWAL(empty_batch, log_writer, &log_used, &log_size);
}
}
}
if (s.ok() && impl->immutable_db_options_.persist_stats_to_disk) {
// try to read format version but no need to fail Open() even if it fails
s = impl->PersistentStatsProcessFormatVersion();
}
if (s.ok()) {
for (auto cfd : *impl->versions_->GetColumnFamilySet()) {
if (cfd->ioptions()->compaction_style == kCompactionStyleFIFO) {
auto* vstorage = cfd->current()->storage_info();
for (int i = 1; i < vstorage->num_levels(); ++i) {
int num_files = vstorage->NumLevelFiles(i);
if (num_files > 0) {
s = Status::InvalidArgument(
"Not all files are at level 0. Cannot "
"open with FIFO compaction style.");
break;
}
}
}
if (!cfd->mem()->IsSnapshotSupported()) {
impl->is_snapshot_supported_ = false;
}
if (cfd->ioptions()->merge_operator != nullptr &&
!cfd->mem()->IsMergeOperatorSupported()) {
s = Status::InvalidArgument(
"The memtable of column family %s does not support merge operator "
"its options.merge_operator is non-null",
cfd->GetName().c_str());
}
if (!s.ok()) {
break;
}
}
}
TEST_SYNC_POINT("DBImpl::Open:Opened");
Status persist_options_status;
if (s.ok()) {
// Persist RocksDB Options before scheduling the compaction.
// The WriteOptionsFile() will release and lock the mutex internally.
persist_options_status = impl->WriteOptionsFile(
false /*need_mutex_lock*/, false /*need_enter_write_thread*/);
*dbptr = impl;
impl->opened_successfully_ = true;
impl->MaybeScheduleFlushOrCompaction();
}
impl->mutex_.Unlock();
#ifndef ROCKSDB_LITE
auto sfm = static_cast<SstFileManagerImpl*>(
impl->immutable_db_options_.sst_file_manager.get());
if (s.ok() && sfm) {
// Notify SstFileManager about all sst files that already exist in
// db_paths[0] and cf_paths[0] when the DB is opened.
std::vector<std::string> paths;
paths.emplace_back(impl->immutable_db_options_.db_paths[0].path);
for (auto& cf : column_families) {
if (!cf.options.cf_paths.empty()) {
paths.emplace_back(cf.options.cf_paths[0].path);
}
}
// Remove duplicate paths.
std::sort(paths.begin(), paths.end());
paths.erase(std::unique(paths.begin(), paths.end()), paths.end());
for (auto& path : paths) {
std::vector<std::string> existing_files;
impl->immutable_db_options_.env->GetChildren(path, &existing_files);
for (auto& file_name : existing_files) {
uint64_t file_number;
FileType file_type;
std::string file_path = path + "/" + file_name;
if (ParseFileName(file_name, &file_number, &file_type) &&
file_type == kTableFile) {
sfm->OnAddFile(file_path);
}
}
}
// Reserve some disk buffer space. This is a heuristic - when we run out
// of disk space, this ensures that there is atleast write_buffer_size
// amount of free space before we resume DB writes. In low disk space
// conditions, we want to avoid a lot of small L0 files due to frequent
// WAL write failures and resultant forced flushes
sfm->ReserveDiskBuffer(max_write_buffer_size,
impl->immutable_db_options_.db_paths[0].path);
}
#endif // !ROCKSDB_LITE
if (s.ok()) {
ROCKS_LOG_HEADER(impl->immutable_db_options_.info_log, "DB pointer %p",
impl);
LogFlush(impl->immutable_db_options_.info_log);
assert(impl->TEST_WALBufferIsEmpty());
// If the assert above fails then we need to FlushWAL before returning
// control back to the user.
if (!persist_options_status.ok()) {
s = Status::IOError(
"DB::Open() failed --- Unable to persist Options file",
persist_options_status.ToString());
}
}
if (s.ok()) {
impl->StartTimedTasks();
}
if (!s.ok()) {
for (auto* h : *handles) {
delete h;
}
handles->clear();
delete impl;
*dbptr = nullptr;
}
return s;
}
} // namespace rocksdb