3d2fe844ab
Conflicts: db/db_impl.cc db/db_impl.h db/memtable_list.cc db/version_set.cc
879 lines
32 KiB
C++
879 lines
32 KiB
C++
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree. An additional grant
|
|
// of patent rights can be found in the PATENTS file in the same directory.
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "db/compaction_picker.h"
|
|
|
|
#include <limits>
|
|
#include "util/log_buffer.h"
|
|
#include "util/statistics.h"
|
|
|
|
namespace rocksdb {
|
|
|
|
namespace {
|
|
|
|
uint64_t TotalFileSize(const std::vector<FileMetaData*>& files) {
|
|
uint64_t sum = 0;
|
|
for (size_t i = 0; i < files.size() && files[i]; i++) {
|
|
sum += files[i]->file_size;
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
// Multiple two operands. If they overflow, return op1.
|
|
uint64_t MultiplyCheckOverflow(uint64_t op1, int op2) {
|
|
if (op1 == 0) {
|
|
return 0;
|
|
}
|
|
if (op2 <= 0) {
|
|
return op1;
|
|
}
|
|
uint64_t casted_op2 = (uint64_t) op2;
|
|
if (std::numeric_limits<uint64_t>::max() / op1 < casted_op2) {
|
|
return op1;
|
|
}
|
|
return op1 * casted_op2;
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
CompactionPicker::CompactionPicker(const Options* options,
|
|
const InternalKeyComparator* icmp)
|
|
: compactions_in_progress_(options->num_levels),
|
|
options_(options),
|
|
num_levels_(options->num_levels),
|
|
icmp_(icmp) {
|
|
|
|
max_file_size_.reset(new uint64_t[NumberLevels()]);
|
|
level_max_bytes_.reset(new uint64_t[NumberLevels()]);
|
|
int target_file_size_multiplier = options_->target_file_size_multiplier;
|
|
int max_bytes_multiplier = options_->max_bytes_for_level_multiplier;
|
|
for (int i = 0; i < NumberLevels(); i++) {
|
|
if (i == 0 && options_->compaction_style == kCompactionStyleUniversal) {
|
|
max_file_size_[i] = ULLONG_MAX;
|
|
level_max_bytes_[i] = options_->max_bytes_for_level_base;
|
|
} else if (i > 1) {
|
|
max_file_size_[i] = MultiplyCheckOverflow(max_file_size_[i - 1],
|
|
target_file_size_multiplier);
|
|
level_max_bytes_[i] = MultiplyCheckOverflow(
|
|
MultiplyCheckOverflow(level_max_bytes_[i - 1], max_bytes_multiplier),
|
|
options_->max_bytes_for_level_multiplier_additional[i - 1]);
|
|
} else {
|
|
max_file_size_[i] = options_->target_file_size_base;
|
|
level_max_bytes_[i] = options_->max_bytes_for_level_base;
|
|
}
|
|
}
|
|
}
|
|
|
|
CompactionPicker::~CompactionPicker() {}
|
|
|
|
void CompactionPicker::SizeBeingCompacted(std::vector<uint64_t>& sizes) {
|
|
for (int level = 0; level < NumberLevels() - 1; level++) {
|
|
uint64_t total = 0;
|
|
for (auto c : compactions_in_progress_[level]) {
|
|
assert(c->level() == level);
|
|
for (int i = 0; i < c->num_input_files(0); i++) {
|
|
total += c->input(0,i)->file_size;
|
|
}
|
|
}
|
|
sizes[level] = total;
|
|
}
|
|
}
|
|
|
|
// Clear all files to indicate that they are not being compacted
|
|
// Delete this compaction from the list of running compactions.
|
|
void CompactionPicker::ReleaseCompactionFiles(Compaction* c, Status status) {
|
|
c->MarkFilesBeingCompacted(false);
|
|
compactions_in_progress_[c->level()].erase(c);
|
|
if (!status.ok()) {
|
|
c->ResetNextCompactionIndex();
|
|
}
|
|
}
|
|
|
|
uint64_t CompactionPicker::MaxFileSizeForLevel(int level) const {
|
|
assert(level >= 0);
|
|
assert(level < NumberLevels());
|
|
return max_file_size_[level];
|
|
}
|
|
|
|
uint64_t CompactionPicker::MaxGrandParentOverlapBytes(int level) {
|
|
uint64_t result = MaxFileSizeForLevel(level);
|
|
result *= options_->max_grandparent_overlap_factor;
|
|
return result;
|
|
}
|
|
|
|
double CompactionPicker::MaxBytesForLevel(int level) {
|
|
// Note: the result for level zero is not really used since we set
|
|
// the level-0 compaction threshold based on number of files.
|
|
assert(level >= 0);
|
|
assert(level < NumberLevels());
|
|
return level_max_bytes_[level];
|
|
}
|
|
|
|
void CompactionPicker::GetRange(const std::vector<FileMetaData*>& inputs,
|
|
InternalKey* smallest, InternalKey* largest) {
|
|
assert(!inputs.empty());
|
|
smallest->Clear();
|
|
largest->Clear();
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
FileMetaData* f = inputs[i];
|
|
if (i == 0) {
|
|
*smallest = f->smallest;
|
|
*largest = f->largest;
|
|
} else {
|
|
if (icmp_->Compare(f->smallest, *smallest) < 0) {
|
|
*smallest = f->smallest;
|
|
}
|
|
if (icmp_->Compare(f->largest, *largest) > 0) {
|
|
*largest = f->largest;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CompactionPicker::GetRange(const std::vector<FileMetaData*>& inputs1,
|
|
const std::vector<FileMetaData*>& inputs2,
|
|
InternalKey* smallest, InternalKey* largest) {
|
|
std::vector<FileMetaData*> all = inputs1;
|
|
all.insert(all.end(), inputs2.begin(), inputs2.end());
|
|
GetRange(all, smallest, largest);
|
|
}
|
|
|
|
bool CompactionPicker::ExpandWhileOverlapping(Compaction* c) {
|
|
// If inputs are empty then there is nothing to expand.
|
|
if (!c || c->inputs_[0].empty()) {
|
|
return true;
|
|
}
|
|
|
|
// GetOverlappingInputs will always do the right thing for level-0.
|
|
// So we don't need to do any expansion if level == 0.
|
|
if (c->level() == 0) {
|
|
return true;
|
|
}
|
|
|
|
const int level = c->level();
|
|
InternalKey smallest, largest;
|
|
|
|
// Keep expanding c->inputs_[0] until we are sure that there is a
|
|
// "clean cut" boundary between the files in input and the surrounding files.
|
|
// This will ensure that no parts of a key are lost during compaction.
|
|
int hint_index = -1;
|
|
size_t old_size;
|
|
do {
|
|
old_size = c->inputs_[0].size();
|
|
GetRange(c->inputs_[0], &smallest, &largest);
|
|
c->inputs_[0].clear();
|
|
c->input_version_->GetOverlappingInputs(
|
|
level, &smallest, &largest, &c->inputs_[0], hint_index, &hint_index);
|
|
} while(c->inputs_[0].size() > old_size);
|
|
|
|
// Get the new range
|
|
GetRange(c->inputs_[0], &smallest, &largest);
|
|
|
|
// If, after the expansion, there are files that are already under
|
|
// compaction, then we must drop/cancel this compaction.
|
|
int parent_index = -1;
|
|
if (c->inputs_[0].empty()) {
|
|
Log(options_->info_log,
|
|
"ExpandWhileOverlapping() failure because zero input files");
|
|
}
|
|
if (c->inputs_[0].empty() || FilesInCompaction(c->inputs_[0]) ||
|
|
(c->level() != c->output_level() &&
|
|
ParentRangeInCompaction(c->input_version_, &smallest, &largest, level,
|
|
&parent_index))) {
|
|
c->inputs_[0].clear();
|
|
c->inputs_[1].clear();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
uint64_t CompactionPicker::ExpandedCompactionByteSizeLimit(int level) {
|
|
uint64_t result = MaxFileSizeForLevel(level);
|
|
result *= options_->expanded_compaction_factor;
|
|
return result;
|
|
}
|
|
|
|
// Returns true if any one of specified files are being compacted
|
|
bool CompactionPicker::FilesInCompaction(std::vector<FileMetaData*>& files) {
|
|
for (unsigned int i = 0; i < files.size(); i++) {
|
|
if (files[i]->being_compacted) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Returns true if any one of the parent files are being compacted
|
|
bool CompactionPicker::ParentRangeInCompaction(Version* version,
|
|
const InternalKey* smallest,
|
|
const InternalKey* largest,
|
|
int level, int* parent_index) {
|
|
std::vector<FileMetaData*> inputs;
|
|
assert(level + 1 < NumberLevels());
|
|
|
|
version->GetOverlappingInputs(level + 1, smallest, largest, &inputs,
|
|
*parent_index, parent_index);
|
|
return FilesInCompaction(inputs);
|
|
}
|
|
|
|
// Populates the set of inputs from "level+1" that overlap with "level".
|
|
// Will also attempt to expand "level" if that doesn't expand "level+1"
|
|
// or cause "level" to include a file for compaction that has an overlapping
|
|
// user-key with another file.
|
|
void CompactionPicker::SetupOtherInputs(Compaction* c) {
|
|
// If inputs are empty, then there is nothing to expand.
|
|
// If both input and output levels are the same, no need to consider
|
|
// files at level "level+1"
|
|
if (c->inputs_[0].empty() || c->level() == c->output_level()) {
|
|
return;
|
|
}
|
|
|
|
const int level = c->level();
|
|
InternalKey smallest, largest;
|
|
|
|
// Get the range one last time.
|
|
GetRange(c->inputs_[0], &smallest, &largest);
|
|
|
|
// Populate the set of next-level files (inputs_[1]) to include in compaction
|
|
c->input_version_->GetOverlappingInputs(level + 1, &smallest, &largest,
|
|
&c->inputs_[1], c->parent_index_,
|
|
&c->parent_index_);
|
|
|
|
// Get entire range covered by compaction
|
|
InternalKey all_start, all_limit;
|
|
GetRange(c->inputs_[0], c->inputs_[1], &all_start, &all_limit);
|
|
|
|
// See if we can further grow the number of inputs in "level" without
|
|
// changing the number of "level+1" files we pick up. We also choose NOT
|
|
// to expand if this would cause "level" to include some entries for some
|
|
// user key, while excluding other entries for the same user key. This
|
|
// can happen when one user key spans multiple files.
|
|
if (!c->inputs_[1].empty()) {
|
|
std::vector<FileMetaData*> expanded0;
|
|
c->input_version_->GetOverlappingInputs(
|
|
level, &all_start, &all_limit, &expanded0, c->base_index_, nullptr);
|
|
const uint64_t inputs0_size = TotalFileSize(c->inputs_[0]);
|
|
const uint64_t inputs1_size = TotalFileSize(c->inputs_[1]);
|
|
const uint64_t expanded0_size = TotalFileSize(expanded0);
|
|
uint64_t limit = ExpandedCompactionByteSizeLimit(level);
|
|
if (expanded0.size() > c->inputs_[0].size() &&
|
|
inputs1_size + expanded0_size < limit &&
|
|
!FilesInCompaction(expanded0) &&
|
|
!c->input_version_->HasOverlappingUserKey(&expanded0, level)) {
|
|
InternalKey new_start, new_limit;
|
|
GetRange(expanded0, &new_start, &new_limit);
|
|
std::vector<FileMetaData*> expanded1;
|
|
c->input_version_->GetOverlappingInputs(level + 1, &new_start, &new_limit,
|
|
&expanded1, c->parent_index_,
|
|
&c->parent_index_);
|
|
if (expanded1.size() == c->inputs_[1].size() &&
|
|
!FilesInCompaction(expanded1)) {
|
|
Log(options_->info_log,
|
|
"Expanding@%lu %lu+%lu (%lu+%lu bytes) to %lu+%lu (%lu+%lu bytes)"
|
|
"\n",
|
|
(unsigned long)level, (unsigned long)(c->inputs_[0].size()),
|
|
(unsigned long)(c->inputs_[1].size()), (unsigned long)inputs0_size,
|
|
(unsigned long)inputs1_size, (unsigned long)(expanded0.size()),
|
|
(unsigned long)(expanded1.size()), (unsigned long)expanded0_size,
|
|
(unsigned long)inputs1_size);
|
|
smallest = new_start;
|
|
largest = new_limit;
|
|
c->inputs_[0] = expanded0;
|
|
c->inputs_[1] = expanded1;
|
|
GetRange(c->inputs_[0], c->inputs_[1], &all_start, &all_limit);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute the set of grandparent files that overlap this compaction
|
|
// (parent == level+1; grandparent == level+2)
|
|
if (level + 2 < NumberLevels()) {
|
|
c->input_version_->GetOverlappingInputs(level + 2, &all_start, &all_limit,
|
|
&c->grandparents_);
|
|
}
|
|
}
|
|
|
|
|
|
Compaction* CompactionPicker::CompactRange(Version* version, int input_level,
|
|
int output_level,
|
|
const InternalKey* begin,
|
|
const InternalKey* end,
|
|
InternalKey** compaction_end) {
|
|
std::vector<FileMetaData*> inputs;
|
|
bool covering_the_whole_range = true;
|
|
|
|
// All files are 'overlapping' in universal style compaction.
|
|
// We have to compact the entire range in one shot.
|
|
if (options_->compaction_style == kCompactionStyleUniversal) {
|
|
begin = nullptr;
|
|
end = nullptr;
|
|
}
|
|
version->GetOverlappingInputs(input_level, begin, end, &inputs);
|
|
if (inputs.empty()) {
|
|
return nullptr;
|
|
}
|
|
|
|
// Avoid compacting too much in one shot in case the range is large.
|
|
// But we cannot do this for level-0 since level-0 files can overlap
|
|
// and we must not pick one file and drop another older file if the
|
|
// two files overlap.
|
|
if (input_level > 0) {
|
|
const uint64_t limit =
|
|
MaxFileSizeForLevel(input_level) * options_->source_compaction_factor;
|
|
uint64_t total = 0;
|
|
for (size_t i = 0; i + 1 < inputs.size(); ++i) {
|
|
uint64_t s = inputs[i]->file_size;
|
|
total += s;
|
|
if (total >= limit) {
|
|
**compaction_end = inputs[i + 1]->smallest;
|
|
covering_the_whole_range = false;
|
|
inputs.resize(i + 1);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
Compaction* c = new Compaction(version, input_level, output_level,
|
|
MaxFileSizeForLevel(output_level),
|
|
MaxGrandParentOverlapBytes(input_level));
|
|
|
|
c->inputs_[0] = inputs;
|
|
if (ExpandWhileOverlapping(c) == false) {
|
|
delete c;
|
|
Log(options_->info_log, "Could not compact due to expansion failure.\n");
|
|
return nullptr;
|
|
}
|
|
|
|
SetupOtherInputs(c);
|
|
|
|
if (covering_the_whole_range) {
|
|
*compaction_end = nullptr;
|
|
}
|
|
|
|
// These files that are to be manaully compacted do not trample
|
|
// upon other files because manual compactions are processed when
|
|
// the system has a max of 1 background compaction thread.
|
|
c->MarkFilesBeingCompacted(true);
|
|
|
|
// Is this compaction creating a file at the bottommost level
|
|
c->SetupBottomMostLevel(true);
|
|
|
|
c->is_manual_compaction_ = true;
|
|
|
|
return c;
|
|
}
|
|
|
|
Compaction* LevelCompactionPicker::PickCompaction(Version* version,
|
|
LogBuffer* log_buffer) {
|
|
Compaction* c = nullptr;
|
|
int level = -1;
|
|
|
|
// Compute the compactions needed. It is better to do it here
|
|
// and also in LogAndApply(), otherwise the values could be stale.
|
|
std::vector<uint64_t> size_being_compacted(NumberLevels() - 1);
|
|
SizeBeingCompacted(size_being_compacted);
|
|
version->ComputeCompactionScore(size_being_compacted);
|
|
|
|
// We prefer compactions triggered by too much data in a level over
|
|
// the compactions triggered by seeks.
|
|
//
|
|
// Find the compactions by size on all levels.
|
|
for (int i = 0; i < NumberLevels() - 1; i++) {
|
|
assert(i == 0 ||
|
|
version->compaction_score_[i] <= version->compaction_score_[i - 1]);
|
|
level = version->compaction_level_[i];
|
|
if ((version->compaction_score_[i] >= 1)) {
|
|
c = PickCompactionBySize(version, level, version->compaction_score_[i]);
|
|
if (ExpandWhileOverlapping(c) == false) {
|
|
delete c;
|
|
c = nullptr;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find compactions needed by seeks
|
|
FileMetaData* f = version->file_to_compact_;
|
|
if (c == nullptr && f != nullptr && !f->being_compacted) {
|
|
|
|
level = version->file_to_compact_level_;
|
|
int parent_index = -1;
|
|
|
|
// Only allow one level 0 compaction at a time.
|
|
// Do not pick this file if its parents at level+1 are being compacted.
|
|
if (level != 0 || compactions_in_progress_[0].empty()) {
|
|
if (!ParentRangeInCompaction(version, &f->smallest, &f->largest, level,
|
|
&parent_index)) {
|
|
c = new Compaction(version, level, level + 1,
|
|
MaxFileSizeForLevel(level + 1),
|
|
MaxGrandParentOverlapBytes(level), true);
|
|
c->inputs_[0].push_back(f);
|
|
c->parent_index_ = parent_index;
|
|
c->input_version_->file_to_compact_ = nullptr;
|
|
if (ExpandWhileOverlapping(c) == false) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (c == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
// Two level 0 compaction won't run at the same time, so don't need to worry
|
|
// about files on level 0 being compacted.
|
|
if (level == 0) {
|
|
assert(compactions_in_progress_[0].empty());
|
|
InternalKey smallest, largest;
|
|
GetRange(c->inputs_[0], &smallest, &largest);
|
|
// Note that the next call will discard the file we placed in
|
|
// c->inputs_[0] earlier and replace it with an overlapping set
|
|
// which will include the picked file.
|
|
c->inputs_[0].clear();
|
|
c->input_version_->GetOverlappingInputs(0, &smallest, &largest,
|
|
&c->inputs_[0]);
|
|
|
|
// If we include more L0 files in the same compaction run it can
|
|
// cause the 'smallest' and 'largest' key to get extended to a
|
|
// larger range. So, re-invoke GetRange to get the new key range
|
|
GetRange(c->inputs_[0], &smallest, &largest);
|
|
if (ParentRangeInCompaction(c->input_version_, &smallest, &largest, level,
|
|
&c->parent_index_)) {
|
|
delete c;
|
|
return nullptr;
|
|
}
|
|
assert(!c->inputs_[0].empty());
|
|
}
|
|
|
|
// Setup "level+1" files (inputs_[1])
|
|
SetupOtherInputs(c);
|
|
|
|
// mark all the files that are being compacted
|
|
c->MarkFilesBeingCompacted(true);
|
|
|
|
// Is this compaction creating a file at the bottommost level
|
|
c->SetupBottomMostLevel(false);
|
|
|
|
// remember this currently undergoing compaction
|
|
compactions_in_progress_[level].insert(c);
|
|
|
|
return c;
|
|
}
|
|
|
|
Compaction* LevelCompactionPicker::PickCompactionBySize(Version* version,
|
|
int level,
|
|
double score) {
|
|
Compaction* c = nullptr;
|
|
|
|
// level 0 files are overlapping. So we cannot pick more
|
|
// than one concurrent compactions at this level. This
|
|
// could be made better by looking at key-ranges that are
|
|
// being compacted at level 0.
|
|
if (level == 0 && compactions_in_progress_[level].size() == 1) {
|
|
return nullptr;
|
|
}
|
|
|
|
assert(level >= 0);
|
|
assert(level + 1 < NumberLevels());
|
|
c = new Compaction(version, level, level + 1, MaxFileSizeForLevel(level + 1),
|
|
MaxGrandParentOverlapBytes(level));
|
|
c->score_ = score;
|
|
|
|
// Pick the largest file in this level that is not already
|
|
// being compacted
|
|
std::vector<int>& file_size = c->input_version_->files_by_size_[level];
|
|
|
|
// record the first file that is not yet compacted
|
|
int nextIndex = -1;
|
|
|
|
for (unsigned int i = c->input_version_->next_file_to_compact_by_size_[level];
|
|
i < file_size.size(); i++) {
|
|
int index = file_size[i];
|
|
FileMetaData* f = c->input_version_->files_[level][index];
|
|
|
|
// check to verify files are arranged in descending size
|
|
assert((i == file_size.size() - 1) ||
|
|
(i >= Version::number_of_files_to_sort_ - 1) ||
|
|
(f->file_size >=
|
|
c->input_version_->files_[level][file_size[i + 1]]->file_size));
|
|
|
|
// do not pick a file to compact if it is being compacted
|
|
// from n-1 level.
|
|
if (f->being_compacted) {
|
|
continue;
|
|
}
|
|
|
|
// remember the startIndex for the next call to PickCompaction
|
|
if (nextIndex == -1) {
|
|
nextIndex = i;
|
|
}
|
|
|
|
//if (i > Version::number_of_files_to_sort_) {
|
|
// Log(options_->info_log, "XXX Looking at index %d", i);
|
|
//}
|
|
|
|
// Do not pick this file if its parents at level+1 are being compacted.
|
|
// Maybe we can avoid redoing this work in SetupOtherInputs
|
|
int parent_index = -1;
|
|
if (ParentRangeInCompaction(c->input_version_, &f->smallest, &f->largest,
|
|
level, &parent_index)) {
|
|
continue;
|
|
}
|
|
c->inputs_[0].push_back(f);
|
|
c->base_index_ = index;
|
|
c->parent_index_ = parent_index;
|
|
break;
|
|
}
|
|
|
|
if (c->inputs_[0].empty()) {
|
|
delete c;
|
|
c = nullptr;
|
|
}
|
|
|
|
// store where to start the iteration in the next call to PickCompaction
|
|
version->next_file_to_compact_by_size_[level] = nextIndex;
|
|
|
|
return c;
|
|
}
|
|
|
|
// Universal style of compaction. Pick files that are contiguous in
|
|
// time-range to compact.
|
|
//
|
|
Compaction* UniversalCompactionPicker::PickCompaction(Version* version,
|
|
LogBuffer* log_buffer) {
|
|
int level = 0;
|
|
double score = version->compaction_score_[0];
|
|
|
|
if ((version->files_[level].size() <
|
|
(unsigned int)options_->level0_file_num_compaction_trigger)) {
|
|
LogToBuffer(log_buffer, "Universal: nothing to do\n");
|
|
return nullptr;
|
|
}
|
|
Version::FileSummaryStorage tmp;
|
|
LogToBuffer(log_buffer, "Universal: candidate files(%zu): %s\n",
|
|
version->files_[level].size(),
|
|
version->LevelFileSummary(&tmp, 0));
|
|
|
|
// Check for size amplification first.
|
|
Compaction* c;
|
|
if ((c = PickCompactionUniversalSizeAmp(version, score, log_buffer)) !=
|
|
nullptr) {
|
|
LogToBuffer(log_buffer, "Universal: compacting for size amp\n");
|
|
} else {
|
|
// Size amplification is within limits. Try reducing read
|
|
// amplification while maintaining file size ratios.
|
|
unsigned int ratio = options_->compaction_options_universal.size_ratio;
|
|
|
|
if ((c = PickCompactionUniversalReadAmp(version, score, ratio, UINT_MAX,
|
|
log_buffer)) != nullptr) {
|
|
LogToBuffer(log_buffer, "Universal: compacting for size ratio\n");
|
|
} else {
|
|
// Size amplification and file size ratios are within configured limits.
|
|
// If max read amplification is exceeding configured limits, then force
|
|
// compaction without looking at filesize ratios and try to reduce
|
|
// the number of files to fewer than level0_file_num_compaction_trigger.
|
|
unsigned int num_files = version->files_[level].size() -
|
|
options_->level0_file_num_compaction_trigger;
|
|
if ((c = PickCompactionUniversalReadAmp(
|
|
version, score, UINT_MAX, num_files, log_buffer)) != nullptr) {
|
|
LogToBuffer(log_buffer, "Universal: compacting for file num\n");
|
|
}
|
|
}
|
|
}
|
|
if (c == nullptr) {
|
|
return nullptr;
|
|
}
|
|
assert(c->inputs_[0].size() > 1);
|
|
|
|
// validate that all the chosen files are non overlapping in time
|
|
FileMetaData* newerfile __attribute__((unused)) = nullptr;
|
|
for (unsigned int i = 0; i < c->inputs_[0].size(); i++) {
|
|
FileMetaData* f = c->inputs_[0][i];
|
|
assert (f->smallest_seqno <= f->largest_seqno);
|
|
assert(newerfile == nullptr ||
|
|
newerfile->smallest_seqno > f->largest_seqno);
|
|
newerfile = f;
|
|
}
|
|
|
|
// The files are sorted from newest first to oldest last.
|
|
std::vector<int>& file_by_time = c->input_version_->files_by_size_[level];
|
|
|
|
// Is the earliest file part of this compaction?
|
|
int last_index = file_by_time[file_by_time.size()-1];
|
|
FileMetaData* last_file = c->input_version_->files_[level][last_index];
|
|
if (c->inputs_[0][c->inputs_[0].size()-1] == last_file) {
|
|
c->bottommost_level_ = true;
|
|
}
|
|
|
|
// update statistics
|
|
MeasureTime(options_->statistics.get(), NUM_FILES_IN_SINGLE_COMPACTION,
|
|
c->inputs_[0].size());
|
|
|
|
// mark all the files that are being compacted
|
|
c->MarkFilesBeingCompacted(true);
|
|
|
|
// remember this currently undergoing compaction
|
|
compactions_in_progress_[level].insert(c);
|
|
|
|
// Record whether this compaction includes all sst files.
|
|
// For now, it is only relevant in universal compaction mode.
|
|
c->is_full_compaction_ =
|
|
(c->inputs_[0].size() == c->input_version_->files_[0].size());
|
|
|
|
return c;
|
|
}
|
|
|
|
//
|
|
// Consider compaction files based on their size differences with
|
|
// the next file in time order.
|
|
//
|
|
Compaction* UniversalCompactionPicker::PickCompactionUniversalReadAmp(
|
|
Version* version, double score, unsigned int ratio,
|
|
unsigned int max_number_of_files_to_compact, LogBuffer* log_buffer) {
|
|
int level = 0;
|
|
|
|
unsigned int min_merge_width =
|
|
options_->compaction_options_universal.min_merge_width;
|
|
unsigned int max_merge_width =
|
|
options_->compaction_options_universal.max_merge_width;
|
|
|
|
// The files are sorted from newest first to oldest last.
|
|
std::vector<int>& file_by_time = version->files_by_size_[level];
|
|
FileMetaData* f = nullptr;
|
|
bool done = false;
|
|
int start_index = 0;
|
|
unsigned int candidate_count = 0;
|
|
assert(file_by_time.size() == version->files_[level].size());
|
|
|
|
unsigned int max_files_to_compact = std::min(max_merge_width,
|
|
max_number_of_files_to_compact);
|
|
min_merge_width = std::max(min_merge_width, 2U);
|
|
|
|
// Considers a candidate file only if it is smaller than the
|
|
// total size accumulated so far.
|
|
for (unsigned int loop = 0; loop < file_by_time.size(); loop++) {
|
|
|
|
candidate_count = 0;
|
|
|
|
// Skip files that are already being compacted
|
|
for (f = nullptr; loop < file_by_time.size(); loop++) {
|
|
int index = file_by_time[loop];
|
|
f = version->files_[level][index];
|
|
|
|
if (!f->being_compacted) {
|
|
candidate_count = 1;
|
|
break;
|
|
}
|
|
LogToBuffer(log_buffer,
|
|
"Universal: file %lu[%d] being compacted, skipping",
|
|
(unsigned long)f->number, loop);
|
|
f = nullptr;
|
|
}
|
|
|
|
// This file is not being compacted. Consider it as the
|
|
// first candidate to be compacted.
|
|
uint64_t candidate_size = f != nullptr? f->file_size : 0;
|
|
if (f != nullptr) {
|
|
LogToBuffer(log_buffer, "Universal: Possible candidate file %lu[%d].",
|
|
(unsigned long)f->number, loop);
|
|
}
|
|
|
|
// Check if the suceeding files need compaction.
|
|
for (unsigned int i = loop+1;
|
|
candidate_count < max_files_to_compact && i < file_by_time.size();
|
|
i++) {
|
|
int index = file_by_time[i];
|
|
FileMetaData* f = version->files_[level][index];
|
|
if (f->being_compacted) {
|
|
break;
|
|
}
|
|
// Pick files if the total/last candidate file size (increased by the
|
|
// specified ratio) is still larger than the next candidate file.
|
|
// candidate_size is the total size of files picked so far with the
|
|
// default kCompactionStopStyleTotalSize; with
|
|
// kCompactionStopStyleSimilarSize, it's simply the size of the last
|
|
// picked file.
|
|
uint64_t sz = (candidate_size * (100L + ratio)) /100;
|
|
if (sz < f->file_size) {
|
|
break;
|
|
}
|
|
if (options_->compaction_options_universal.stop_style == kCompactionStopStyleSimilarSize) {
|
|
// Similar-size stopping rule: also check the last picked file isn't
|
|
// far larger than the next candidate file.
|
|
sz = (f->file_size * (100L + ratio)) / 100;
|
|
if (sz < candidate_size) {
|
|
// If the small file we've encountered begins a run of similar-size
|
|
// files, we'll pick them up on a future iteration of the outer
|
|
// loop. If it's some lonely straggler, it'll eventually get picked
|
|
// by the last-resort read amp strategy which disregards size ratios.
|
|
break;
|
|
}
|
|
candidate_size = f->file_size;
|
|
} else { // default kCompactionStopStyleTotalSize
|
|
candidate_size += f->file_size;
|
|
}
|
|
candidate_count++;
|
|
}
|
|
|
|
// Found a series of consecutive files that need compaction.
|
|
if (candidate_count >= (unsigned int)min_merge_width) {
|
|
start_index = loop;
|
|
done = true;
|
|
break;
|
|
} else {
|
|
for (unsigned int i = loop;
|
|
i < loop + candidate_count && i < file_by_time.size(); i++) {
|
|
int index = file_by_time[i];
|
|
FileMetaData* f = version->files_[level][index];
|
|
LogToBuffer(log_buffer,
|
|
"Universal: Skipping file %lu[%d] with size %lu %d\n",
|
|
(unsigned long)f->number, i, (unsigned long)f->file_size,
|
|
f->being_compacted);
|
|
}
|
|
}
|
|
}
|
|
if (!done || candidate_count <= 1) {
|
|
return nullptr;
|
|
}
|
|
unsigned int first_index_after = start_index + candidate_count;
|
|
// Compression is enabled if files compacted earlier already reached
|
|
// size ratio of compression.
|
|
bool enable_compression = true;
|
|
int ratio_to_compress =
|
|
options_->compaction_options_universal.compression_size_percent;
|
|
if (ratio_to_compress >= 0) {
|
|
uint64_t total_size = version->NumLevelBytes(level);
|
|
uint64_t older_file_size = 0;
|
|
for (unsigned int i = file_by_time.size() - 1; i >= first_index_after;
|
|
i--) {
|
|
older_file_size += version->files_[level][file_by_time[i]]->file_size;
|
|
if (older_file_size * 100L >= total_size * (long) ratio_to_compress) {
|
|
enable_compression = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
Compaction* c =
|
|
new Compaction(version, level, level, MaxFileSizeForLevel(level),
|
|
LLONG_MAX, false, enable_compression);
|
|
c->score_ = score;
|
|
|
|
for (unsigned int i = start_index; i < first_index_after; i++) {
|
|
int index = file_by_time[i];
|
|
FileMetaData* f = c->input_version_->files_[level][index];
|
|
c->inputs_[0].push_back(f);
|
|
LogToBuffer(log_buffer, "Universal: Picking file %lu[%d] with size %lu\n",
|
|
(unsigned long)f->number, i, (unsigned long)f->file_size);
|
|
}
|
|
return c;
|
|
}
|
|
|
|
// Look at overall size amplification. If size amplification
|
|
// exceeeds the configured value, then do a compaction
|
|
// of the candidate files all the way upto the earliest
|
|
// base file (overrides configured values of file-size ratios,
|
|
// min_merge_width and max_merge_width).
|
|
//
|
|
Compaction* UniversalCompactionPicker::PickCompactionUniversalSizeAmp(
|
|
Version* version, double score, LogBuffer* log_buffer) {
|
|
int level = 0;
|
|
|
|
// percentage flexibilty while reducing size amplification
|
|
uint64_t ratio = options_->compaction_options_universal.
|
|
max_size_amplification_percent;
|
|
|
|
// The files are sorted from newest first to oldest last.
|
|
std::vector<int>& file_by_time = version->files_by_size_[level];
|
|
assert(file_by_time.size() == version->files_[level].size());
|
|
|
|
unsigned int candidate_count = 0;
|
|
uint64_t candidate_size = 0;
|
|
unsigned int start_index = 0;
|
|
FileMetaData* f = nullptr;
|
|
|
|
// Skip files that are already being compacted
|
|
for (unsigned int loop = 0; loop < file_by_time.size() - 1; loop++) {
|
|
int index = file_by_time[loop];
|
|
f = version->files_[level][index];
|
|
if (!f->being_compacted) {
|
|
start_index = loop; // Consider this as the first candidate.
|
|
break;
|
|
}
|
|
LogToBuffer(log_buffer, "Universal: skipping file %lu[%d] compacted %s",
|
|
(unsigned long)f->number, loop,
|
|
" cannot be a candidate to reduce size amp.\n");
|
|
f = nullptr;
|
|
}
|
|
if (f == nullptr) {
|
|
return nullptr; // no candidate files
|
|
}
|
|
|
|
LogToBuffer(log_buffer, "Universal: First candidate file %lu[%d] %s",
|
|
(unsigned long)f->number, start_index, " to reduce size amp.\n");
|
|
|
|
// keep adding up all the remaining files
|
|
for (unsigned int loop = start_index; loop < file_by_time.size() - 1;
|
|
loop++) {
|
|
int index = file_by_time[loop];
|
|
f = version->files_[level][index];
|
|
if (f->being_compacted) {
|
|
LogToBuffer(
|
|
log_buffer, "Universal: Possible candidate file %lu[%d] %s.",
|
|
(unsigned long)f->number, loop,
|
|
" is already being compacted. No size amp reduction possible.\n");
|
|
return nullptr;
|
|
}
|
|
candidate_size += f->file_size;
|
|
candidate_count++;
|
|
}
|
|
if (candidate_count == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
// size of earliest file
|
|
int index = file_by_time[file_by_time.size() - 1];
|
|
uint64_t earliest_file_size = version->files_[level][index]->file_size;
|
|
|
|
// size amplification = percentage of additional size
|
|
if (candidate_size * 100 < ratio * earliest_file_size) {
|
|
LogToBuffer(log_buffer,
|
|
"Universal: size amp not needed. newer-files-total-size %lu "
|
|
"earliest-file-size %lu",
|
|
(unsigned long)candidate_size,
|
|
(unsigned long)earliest_file_size);
|
|
return nullptr;
|
|
} else {
|
|
LogToBuffer(log_buffer,
|
|
"Universal: size amp needed. newer-files-total-size %lu "
|
|
"earliest-file-size %lu",
|
|
(unsigned long)candidate_size,
|
|
(unsigned long)earliest_file_size);
|
|
}
|
|
assert(start_index >= 0 && start_index < file_by_time.size() - 1);
|
|
|
|
// create a compaction request
|
|
// We always compact all the files, so always compress.
|
|
Compaction* c =
|
|
new Compaction(version, level, level, MaxFileSizeForLevel(level),
|
|
LLONG_MAX, false, true);
|
|
c->score_ = score;
|
|
for (unsigned int loop = start_index; loop < file_by_time.size(); loop++) {
|
|
int index = file_by_time[loop];
|
|
f = c->input_version_->files_[level][index];
|
|
c->inputs_[0].push_back(f);
|
|
LogToBuffer(log_buffer,
|
|
"Universal: size amp picking file %lu[%d] with size %lu",
|
|
(unsigned long)f->number, index, (unsigned long)f->file_size);
|
|
}
|
|
return c;
|
|
}
|
|
|
|
} // namespace rocksdb
|