rocksdb/table/cuckoo/cuckoo_table_reader_test.cc
anand76 afa2420c2b Introduce a new storage specific Env API (#5761)
Summary:
The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc.

This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO.

The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before.

This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection.

The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761

Differential Revision: D18868376

Pulled By: anand1976

fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
2019-12-13 14:48:41 -08:00

580 lines
20 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#ifndef ROCKSDB_LITE
#ifndef GFLAGS
#include <cstdio>
int main() {
fprintf(stderr, "Please install gflags to run this test... Skipping...\n");
return 0;
}
#else
#include <cinttypes>
#include <map>
#include <string>
#include <vector>
#include "memory/arena.h"
#include "table/cuckoo/cuckoo_table_builder.h"
#include "table/cuckoo/cuckoo_table_factory.h"
#include "table/cuckoo/cuckoo_table_reader.h"
#include "table/get_context.h"
#include "table/meta_blocks.h"
#include "test_util/testharness.h"
#include "test_util/testutil.h"
#include "util/gflags_compat.h"
#include "util/random.h"
#include "util/string_util.h"
using GFLAGS_NAMESPACE::ParseCommandLineFlags;
using GFLAGS_NAMESPACE::SetUsageMessage;
DEFINE_string(file_dir, "", "Directory where the files will be created"
" for benchmark. Added for using tmpfs.");
DEFINE_bool(enable_perf, false, "Run Benchmark Tests too.");
DEFINE_bool(write, false,
"Should write new values to file in performance tests?");
DEFINE_bool(identity_as_first_hash, true, "use identity as first hash");
namespace rocksdb {
namespace {
const uint32_t kNumHashFunc = 10;
// Methods, variables related to Hash functions.
std::unordered_map<std::string, std::vector<uint64_t>> hash_map;
void AddHashLookups(const std::string& s, uint64_t bucket_id,
uint32_t num_hash_fun) {
std::vector<uint64_t> v;
for (uint32_t i = 0; i < num_hash_fun; i++) {
v.push_back(bucket_id + i);
}
hash_map[s] = v;
}
uint64_t GetSliceHash(const Slice& s, uint32_t index,
uint64_t /*max_num_buckets*/) {
return hash_map[s.ToString()][index];
}
} // namespace
class CuckooReaderTest : public testing::Test {
public:
using testing::Test::SetUp;
CuckooReaderTest() {
options.allow_mmap_reads = true;
env = options.env;
env_options = EnvOptions(options);
}
void SetUp(int num) {
num_items = num;
hash_map.clear();
keys.clear();
keys.resize(num_items);
user_keys.clear();
user_keys.resize(num_items);
values.clear();
values.resize(num_items);
}
std::string NumToStr(int64_t i) {
return std::string(reinterpret_cast<char*>(&i), sizeof(i));
}
void CreateCuckooFileAndCheckReader(
const Comparator* ucomp = BytewiseComparator()) {
std::unique_ptr<WritableFile> writable_file;
ASSERT_OK(env->NewWritableFile(fname, &writable_file, env_options));
std::unique_ptr<WritableFileWriter> file_writer(new WritableFileWriter(
NewLegacyWritableFileWrapper(std::move(writable_file)), fname,
env_options));
CuckooTableBuilder builder(
file_writer.get(), 0.9, kNumHashFunc, 100, ucomp, 2, false, false,
GetSliceHash, 0 /* column_family_id */, kDefaultColumnFamilyName);
ASSERT_OK(builder.status());
for (uint32_t key_idx = 0; key_idx < num_items; ++key_idx) {
builder.Add(Slice(keys[key_idx]), Slice(values[key_idx]));
ASSERT_OK(builder.status());
ASSERT_EQ(builder.NumEntries(), key_idx + 1);
}
ASSERT_OK(builder.Finish());
ASSERT_EQ(num_items, builder.NumEntries());
file_size = builder.FileSize();
ASSERT_OK(file_writer->Close());
// Check reader now.
std::unique_ptr<RandomAccessFile> read_file;
ASSERT_OK(env->NewRandomAccessFile(fname, &read_file, env_options));
std::unique_ptr<RandomAccessFileReader> file_reader(
new RandomAccessFileReader(NewLegacyRandomAccessFileWrapper(read_file),
fname));
const ImmutableCFOptions ioptions(options);
CuckooTableReader reader(ioptions, std::move(file_reader), file_size, ucomp,
GetSliceHash);
ASSERT_OK(reader.status());
// Assume no merge/deletion
for (uint32_t i = 0; i < num_items; ++i) {
PinnableSlice value;
GetContext get_context(ucomp, nullptr, nullptr, nullptr,
GetContext::kNotFound, Slice(user_keys[i]), &value,
nullptr, nullptr, true, nullptr, nullptr);
ASSERT_OK(
reader.Get(ReadOptions(), Slice(keys[i]), &get_context, nullptr));
ASSERT_STREQ(values[i].c_str(), value.data());
}
}
void UpdateKeys(bool with_zero_seqno) {
for (uint32_t i = 0; i < num_items; i++) {
ParsedInternalKey ikey(user_keys[i],
with_zero_seqno ? 0 : i + 1000, kTypeValue);
keys[i].clear();
AppendInternalKey(&keys[i], ikey);
}
}
void CheckIterator(const Comparator* ucomp = BytewiseComparator()) {
std::unique_ptr<RandomAccessFile> read_file;
ASSERT_OK(env->NewRandomAccessFile(fname, &read_file, env_options));
std::unique_ptr<RandomAccessFileReader> file_reader(
new RandomAccessFileReader(NewLegacyRandomAccessFileWrapper(read_file),
fname));
const ImmutableCFOptions ioptions(options);
CuckooTableReader reader(ioptions, std::move(file_reader), file_size, ucomp,
GetSliceHash);
ASSERT_OK(reader.status());
InternalIterator* it = reader.NewIterator(
ReadOptions(), /*prefix_extractor=*/nullptr, /*arena=*/nullptr,
/*skip_filters=*/false, TableReaderCaller::kUncategorized);
ASSERT_OK(it->status());
ASSERT_TRUE(!it->Valid());
it->SeekToFirst();
int cnt = 0;
while (it->Valid()) {
ASSERT_OK(it->status());
ASSERT_TRUE(Slice(keys[cnt]) == it->key());
ASSERT_TRUE(Slice(values[cnt]) == it->value());
++cnt;
it->Next();
}
ASSERT_EQ(static_cast<uint32_t>(cnt), num_items);
it->SeekToLast();
cnt = static_cast<int>(num_items) - 1;
ASSERT_TRUE(it->Valid());
while (it->Valid()) {
ASSERT_OK(it->status());
ASSERT_TRUE(Slice(keys[cnt]) == it->key());
ASSERT_TRUE(Slice(values[cnt]) == it->value());
--cnt;
it->Prev();
}
ASSERT_EQ(cnt, -1);
cnt = static_cast<int>(num_items) / 2;
it->Seek(keys[cnt]);
while (it->Valid()) {
ASSERT_OK(it->status());
ASSERT_TRUE(Slice(keys[cnt]) == it->key());
ASSERT_TRUE(Slice(values[cnt]) == it->value());
++cnt;
it->Next();
}
ASSERT_EQ(static_cast<uint32_t>(cnt), num_items);
delete it;
Arena arena;
it = reader.NewIterator(ReadOptions(), /*prefix_extractor=*/nullptr, &arena,
/*skip_filters=*/false,
TableReaderCaller::kUncategorized);
ASSERT_OK(it->status());
ASSERT_TRUE(!it->Valid());
it->Seek(keys[num_items/2]);
ASSERT_TRUE(it->Valid());
ASSERT_OK(it->status());
ASSERT_TRUE(keys[num_items/2] == it->key());
ASSERT_TRUE(values[num_items/2] == it->value());
ASSERT_OK(it->status());
it->~InternalIterator();
}
std::vector<std::string> keys;
std::vector<std::string> user_keys;
std::vector<std::string> values;
uint64_t num_items;
std::string fname;
uint64_t file_size;
Options options;
Env* env;
EnvOptions env_options;
};
TEST_F(CuckooReaderTest, WhenKeyExists) {
SetUp(kNumHashFunc);
fname = test::PerThreadDBPath("CuckooReader_WhenKeyExists");
for (uint64_t i = 0; i < num_items; i++) {
user_keys[i] = "key" + NumToStr(i);
ParsedInternalKey ikey(user_keys[i], i + 1000, kTypeValue);
AppendInternalKey(&keys[i], ikey);
values[i] = "value" + NumToStr(i);
// Give disjoint hash values.
AddHashLookups(user_keys[i], i, kNumHashFunc);
}
CreateCuckooFileAndCheckReader();
// Last level file.
UpdateKeys(true);
CreateCuckooFileAndCheckReader();
// Test with collision. Make all hash values collide.
hash_map.clear();
for (uint32_t i = 0; i < num_items; i++) {
AddHashLookups(user_keys[i], 0, kNumHashFunc);
}
UpdateKeys(false);
CreateCuckooFileAndCheckReader();
// Last level file.
UpdateKeys(true);
CreateCuckooFileAndCheckReader();
}
TEST_F(CuckooReaderTest, WhenKeyExistsWithUint64Comparator) {
SetUp(kNumHashFunc);
fname = test::PerThreadDBPath("CuckooReaderUint64_WhenKeyExists");
for (uint64_t i = 0; i < num_items; i++) {
user_keys[i].resize(8);
memcpy(&user_keys[i][0], static_cast<void*>(&i), 8);
ParsedInternalKey ikey(user_keys[i], i + 1000, kTypeValue);
AppendInternalKey(&keys[i], ikey);
values[i] = "value" + NumToStr(i);
// Give disjoint hash values.
AddHashLookups(user_keys[i], i, kNumHashFunc);
}
CreateCuckooFileAndCheckReader(test::Uint64Comparator());
// Last level file.
UpdateKeys(true);
CreateCuckooFileAndCheckReader(test::Uint64Comparator());
// Test with collision. Make all hash values collide.
hash_map.clear();
for (uint32_t i = 0; i < num_items; i++) {
AddHashLookups(user_keys[i], 0, kNumHashFunc);
}
UpdateKeys(false);
CreateCuckooFileAndCheckReader(test::Uint64Comparator());
// Last level file.
UpdateKeys(true);
CreateCuckooFileAndCheckReader(test::Uint64Comparator());
}
TEST_F(CuckooReaderTest, CheckIterator) {
SetUp(2*kNumHashFunc);
fname = test::PerThreadDBPath("CuckooReader_CheckIterator");
for (uint64_t i = 0; i < num_items; i++) {
user_keys[i] = "key" + NumToStr(i);
ParsedInternalKey ikey(user_keys[i], 1000, kTypeValue);
AppendInternalKey(&keys[i], ikey);
values[i] = "value" + NumToStr(i);
// Give disjoint hash values, in reverse order.
AddHashLookups(user_keys[i], num_items-i-1, kNumHashFunc);
}
CreateCuckooFileAndCheckReader();
CheckIterator();
// Last level file.
UpdateKeys(true);
CreateCuckooFileAndCheckReader();
CheckIterator();
}
TEST_F(CuckooReaderTest, CheckIteratorUint64) {
SetUp(2*kNumHashFunc);
fname = test::PerThreadDBPath("CuckooReader_CheckIterator");
for (uint64_t i = 0; i < num_items; i++) {
user_keys[i].resize(8);
memcpy(&user_keys[i][0], static_cast<void*>(&i), 8);
ParsedInternalKey ikey(user_keys[i], 1000, kTypeValue);
AppendInternalKey(&keys[i], ikey);
values[i] = "value" + NumToStr(i);
// Give disjoint hash values, in reverse order.
AddHashLookups(user_keys[i], num_items-i-1, kNumHashFunc);
}
CreateCuckooFileAndCheckReader(test::Uint64Comparator());
CheckIterator(test::Uint64Comparator());
// Last level file.
UpdateKeys(true);
CreateCuckooFileAndCheckReader(test::Uint64Comparator());
CheckIterator(test::Uint64Comparator());
}
TEST_F(CuckooReaderTest, WhenKeyNotFound) {
// Add keys with colliding hash values.
SetUp(kNumHashFunc);
fname = test::PerThreadDBPath("CuckooReader_WhenKeyNotFound");
for (uint64_t i = 0; i < num_items; i++) {
user_keys[i] = "key" + NumToStr(i);
ParsedInternalKey ikey(user_keys[i], i + 1000, kTypeValue);
AppendInternalKey(&keys[i], ikey);
values[i] = "value" + NumToStr(i);
// Make all hash values collide.
AddHashLookups(user_keys[i], 0, kNumHashFunc);
}
auto* ucmp = BytewiseComparator();
CreateCuckooFileAndCheckReader();
std::unique_ptr<RandomAccessFile> read_file;
ASSERT_OK(env->NewRandomAccessFile(fname, &read_file, env_options));
std::unique_ptr<RandomAccessFileReader> file_reader(
new RandomAccessFileReader(NewLegacyRandomAccessFileWrapper(read_file),
fname));
const ImmutableCFOptions ioptions(options);
CuckooTableReader reader(ioptions, std::move(file_reader), file_size, ucmp,
GetSliceHash);
ASSERT_OK(reader.status());
// Search for a key with colliding hash values.
std::string not_found_user_key = "key" + NumToStr(num_items);
std::string not_found_key;
AddHashLookups(not_found_user_key, 0, kNumHashFunc);
ParsedInternalKey ikey(not_found_user_key, 1000, kTypeValue);
AppendInternalKey(&not_found_key, ikey);
PinnableSlice value;
GetContext get_context(ucmp, nullptr, nullptr, nullptr, GetContext::kNotFound,
Slice(not_found_key), &value, nullptr, nullptr, true,
nullptr, nullptr);
ASSERT_OK(
reader.Get(ReadOptions(), Slice(not_found_key), &get_context, nullptr));
ASSERT_TRUE(value.empty());
ASSERT_OK(reader.status());
// Search for a key with an independent hash value.
std::string not_found_user_key2 = "key" + NumToStr(num_items + 1);
AddHashLookups(not_found_user_key2, kNumHashFunc, kNumHashFunc);
ParsedInternalKey ikey2(not_found_user_key2, 1000, kTypeValue);
std::string not_found_key2;
AppendInternalKey(&not_found_key2, ikey2);
value.Reset();
GetContext get_context2(ucmp, nullptr, nullptr, nullptr,
GetContext::kNotFound, Slice(not_found_key2), &value,
nullptr, nullptr, true, nullptr, nullptr);
ASSERT_OK(
reader.Get(ReadOptions(), Slice(not_found_key2), &get_context2, nullptr));
ASSERT_TRUE(value.empty());
ASSERT_OK(reader.status());
// Test read when key is unused key.
std::string unused_key =
reader.GetTableProperties()->user_collected_properties.at(
CuckooTablePropertyNames::kEmptyKey);
// Add hash values that map to empty buckets.
AddHashLookups(ExtractUserKey(unused_key).ToString(),
kNumHashFunc, kNumHashFunc);
value.Reset();
GetContext get_context3(ucmp, nullptr, nullptr, nullptr,
GetContext::kNotFound, Slice(unused_key), &value,
nullptr, nullptr, true, nullptr, nullptr);
ASSERT_OK(
reader.Get(ReadOptions(), Slice(unused_key), &get_context3, nullptr));
ASSERT_TRUE(value.empty());
ASSERT_OK(reader.status());
}
// Performance tests
namespace {
void GetKeys(uint64_t num, std::vector<std::string>* keys) {
keys->clear();
IterKey k;
k.SetInternalKey("", 0, kTypeValue);
std::string internal_key_suffix = k.GetInternalKey().ToString();
ASSERT_EQ(static_cast<size_t>(8), internal_key_suffix.size());
for (uint64_t key_idx = 0; key_idx < num; ++key_idx) {
uint64_t value = 2 * key_idx;
std::string new_key(reinterpret_cast<char*>(&value), sizeof(value));
new_key += internal_key_suffix;
keys->push_back(new_key);
}
}
std::string GetFileName(uint64_t num) {
if (FLAGS_file_dir.empty()) {
FLAGS_file_dir = test::TmpDir();
}
return test::PerThreadDBPath(FLAGS_file_dir, "cuckoo_read_benchmark") +
ToString(num / 1000000) + "Mkeys";
}
// Create last level file as we are interested in measuring performance of
// last level file only.
void WriteFile(const std::vector<std::string>& keys,
const uint64_t num, double hash_ratio) {
Options options;
options.allow_mmap_reads = true;
Env* env = options.env;
EnvOptions env_options = EnvOptions(options);
std::string fname = GetFileName(num);
std::unique_ptr<WritableFile> writable_file;
ASSERT_OK(env->NewWritableFile(fname, &writable_file, env_options));
std::unique_ptr<WritableFileWriter> file_writer(new WritableFileWriter(
NewLegacyWritableFileWrapper(std::move(writable_file)), fname,
env_options));
CuckooTableBuilder builder(
file_writer.get(), hash_ratio, 64, 1000, test::Uint64Comparator(), 5,
false, FLAGS_identity_as_first_hash, nullptr, 0 /* column_family_id */,
kDefaultColumnFamilyName);
ASSERT_OK(builder.status());
for (uint64_t key_idx = 0; key_idx < num; ++key_idx) {
// Value is just a part of key.
builder.Add(Slice(keys[key_idx]), Slice(&keys[key_idx][0], 4));
ASSERT_EQ(builder.NumEntries(), key_idx + 1);
ASSERT_OK(builder.status());
}
ASSERT_OK(builder.Finish());
ASSERT_EQ(num, builder.NumEntries());
ASSERT_OK(file_writer->Close());
uint64_t file_size;
env->GetFileSize(fname, &file_size);
std::unique_ptr<RandomAccessFile> read_file;
ASSERT_OK(env->NewRandomAccessFile(fname, &read_file, env_options));
std::unique_ptr<RandomAccessFileReader> file_reader(
new RandomAccessFileReader(NewLegacyRandomAccessFileWrapper(read_file),
fname));
const ImmutableCFOptions ioptions(options);
CuckooTableReader reader(ioptions, std::move(file_reader), file_size,
test::Uint64Comparator(), nullptr);
ASSERT_OK(reader.status());
ReadOptions r_options;
PinnableSlice value;
// Assume only the fast path is triggered
GetContext get_context(nullptr, nullptr, nullptr, nullptr,
GetContext::kNotFound, Slice(), &value, nullptr,
nullptr, true, nullptr, nullptr);
for (uint64_t i = 0; i < num; ++i) {
value.Reset();
value.clear();
ASSERT_OK(reader.Get(r_options, Slice(keys[i]), &get_context, nullptr));
ASSERT_TRUE(Slice(keys[i]) == Slice(&keys[i][0], 4));
}
}
void ReadKeys(uint64_t num, uint32_t batch_size) {
Options options;
options.allow_mmap_reads = true;
Env* env = options.env;
EnvOptions env_options = EnvOptions(options);
std::string fname = GetFileName(num);
uint64_t file_size;
env->GetFileSize(fname, &file_size);
std::unique_ptr<RandomAccessFile> read_file;
ASSERT_OK(env->NewRandomAccessFile(fname, &read_file, env_options));
std::unique_ptr<RandomAccessFileReader> file_reader(
new RandomAccessFileReader(NewLegacyRandomAccessFileWrapper(read_file),
fname));
const ImmutableCFOptions ioptions(options);
CuckooTableReader reader(ioptions, std::move(file_reader), file_size,
test::Uint64Comparator(), nullptr);
ASSERT_OK(reader.status());
const UserCollectedProperties user_props =
reader.GetTableProperties()->user_collected_properties;
const uint32_t num_hash_fun = *reinterpret_cast<const uint32_t*>(
user_props.at(CuckooTablePropertyNames::kNumHashFunc).data());
const uint64_t table_size = *reinterpret_cast<const uint64_t*>(
user_props.at(CuckooTablePropertyNames::kHashTableSize).data());
fprintf(stderr, "With %" PRIu64 " items, utilization is %.2f%%, number of"
" hash functions: %u.\n", num, num * 100.0 / (table_size), num_hash_fun);
ReadOptions r_options;
std::vector<uint64_t> keys;
keys.reserve(num);
for (uint64_t i = 0; i < num; ++i) {
keys.push_back(2 * i);
}
std::random_shuffle(keys.begin(), keys.end());
PinnableSlice value;
// Assume only the fast path is triggered
GetContext get_context(nullptr, nullptr, nullptr, nullptr,
GetContext::kNotFound, Slice(), &value, nullptr,
nullptr, true, nullptr, nullptr);
uint64_t start_time = env->NowMicros();
if (batch_size > 0) {
for (uint64_t i = 0; i < num; i += batch_size) {
for (uint64_t j = i; j < i+batch_size && j < num; ++j) {
reader.Prepare(Slice(reinterpret_cast<char*>(&keys[j]), 16));
}
for (uint64_t j = i; j < i+batch_size && j < num; ++j) {
reader.Get(r_options, Slice(reinterpret_cast<char*>(&keys[j]), 16),
&get_context, nullptr);
}
}
} else {
for (uint64_t i = 0; i < num; i++) {
reader.Get(r_options, Slice(reinterpret_cast<char*>(&keys[i]), 16),
&get_context, nullptr);
}
}
float time_per_op = (env->NowMicros() - start_time) * 1.0f / num;
fprintf(stderr,
"Time taken per op is %.3fus (%.1f Mqps) with batch size of %u\n",
time_per_op, 1.0 / time_per_op, batch_size);
}
} // namespace.
TEST_F(CuckooReaderTest, TestReadPerformance) {
if (!FLAGS_enable_perf) {
return;
}
double hash_ratio = 0.95;
// These numbers are chosen to have a hash utilization % close to
// 0.9, 0.75, 0.6 and 0.5 respectively.
// They all create 128 M buckets.
std::vector<uint64_t> nums = {120*1024*1024, 100*1024*1024, 80*1024*1024,
70*1024*1024};
#ifndef NDEBUG
fprintf(stdout,
"WARNING: Not compiled with DNDEBUG. Performance tests may be slow.\n");
#endif
for (uint64_t num : nums) {
if (FLAGS_write ||
Env::Default()->FileExists(GetFileName(num)).IsNotFound()) {
std::vector<std::string> all_keys;
GetKeys(num, &all_keys);
WriteFile(all_keys, num, hash_ratio);
}
ReadKeys(num, 0);
ReadKeys(num, 10);
ReadKeys(num, 25);
ReadKeys(num, 50);
ReadKeys(num, 100);
fprintf(stderr, "\n");
}
}
} // namespace rocksdb
int main(int argc, char** argv) {
if (rocksdb::port::kLittleEndian) {
::testing::InitGoogleTest(&argc, argv);
ParseCommandLineFlags(&argc, &argv, true);
return RUN_ALL_TESTS();
}
else {
fprintf(stderr, "SKIPPED as Cuckoo table doesn't support Big Endian\n");
return 0;
}
}
#endif // GFLAGS.
#else
#include <stdio.h>
int main(int /*argc*/, char** /*argv*/) {
fprintf(stderr, "SKIPPED as Cuckoo table is not supported in ROCKSDB_LITE\n");
return 0;
}
#endif // ROCKSDB_LITE