rocksdb/table/block.cc
Siying Dong 8f06b4fa01 Separate some IndexBlockIter logic from BlockIter (#4136)
Summary:
Some logic only related to IndexBlockIter is separated from BlockIter to IndexBlockIter. This is done by writing an exclusive Seek() and SeekForPrev() for DataBlockIter, and all metadata block iter and tombstone block iter now use data block iter. Dealing with the BinarySeek() sharing problem by passing in the comparator to use.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4136

Reviewed By: maysamyabandeh

Differential Revision: D8859673

Pulled By: siying

fbshipit-source-id: 703e5e6824b82b7cbf4721f3594b94127797ca9e
2018-07-16 10:13:18 -07:00

547 lines
17 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
//
// Decodes the blocks generated by block_builder.cc.
#include "table/block.h"
#include <algorithm>
#include <string>
#include <unordered_map>
#include <vector>
#include "monitoring/perf_context_imp.h"
#include "port/port.h"
#include "port/stack_trace.h"
#include "rocksdb/comparator.h"
#include "table/block_prefix_index.h"
#include "table/format.h"
#include "util/coding.h"
#include "util/logging.h"
namespace rocksdb {
// Helper routine: decode the next block entry starting at "p",
// storing the number of shared key bytes, non_shared key bytes,
// and the length of the value in "*shared", "*non_shared", and
// "*value_length", respectively. Will not derefence past "limit".
//
// If any errors are detected, returns nullptr. Otherwise, returns a
// pointer to the key delta (just past the three decoded values).
static inline const char* DecodeEntry(const char* p, const char* limit,
uint32_t* shared,
uint32_t* non_shared,
uint32_t* value_length) {
if (limit - p < 3) return nullptr;
*shared = reinterpret_cast<const unsigned char*>(p)[0];
*non_shared = reinterpret_cast<const unsigned char*>(p)[1];
*value_length = reinterpret_cast<const unsigned char*>(p)[2];
if ((*shared | *non_shared | *value_length) < 128) {
// Fast path: all three values are encoded in one byte each
p += 3;
} else {
if ((p = GetVarint32Ptr(p, limit, shared)) == nullptr) return nullptr;
if ((p = GetVarint32Ptr(p, limit, non_shared)) == nullptr) return nullptr;
if ((p = GetVarint32Ptr(p, limit, value_length)) == nullptr) return nullptr;
}
if (static_cast<uint32_t>(limit - p) < (*non_shared + *value_length)) {
return nullptr;
}
return p;
}
void BlockIter::Next() {
assert(Valid());
ParseNextKey();
}
void BlockIter::Prev() {
assert(Valid());
assert(prev_entries_idx_ == -1 ||
static_cast<size_t>(prev_entries_idx_) < prev_entries_.size());
// Check if we can use cached prev_entries_
if (prev_entries_idx_ > 0 &&
prev_entries_[prev_entries_idx_].offset == current_) {
// Read cached CachedPrevEntry
prev_entries_idx_--;
const CachedPrevEntry& current_prev_entry =
prev_entries_[prev_entries_idx_];
const char* key_ptr = nullptr;
if (current_prev_entry.key_ptr != nullptr) {
// The key is not delta encoded and stored in the data block
key_ptr = current_prev_entry.key_ptr;
key_pinned_ = true;
} else {
// The key is delta encoded and stored in prev_entries_keys_buff_
key_ptr = prev_entries_keys_buff_.data() + current_prev_entry.key_offset;
key_pinned_ = false;
}
const Slice current_key(key_ptr, current_prev_entry.key_size);
current_ = current_prev_entry.offset;
if (key_includes_seq_) {
key_.SetInternalKey(current_key, false /* copy */);
} else {
key_.SetUserKey(current_key, false /* copy */);
}
value_ = current_prev_entry.value;
return;
}
// Clear prev entries cache
prev_entries_idx_ = -1;
prev_entries_.clear();
prev_entries_keys_buff_.clear();
// Scan backwards to a restart point before current_
const uint32_t original = current_;
while (GetRestartPoint(restart_index_) >= original) {
if (restart_index_ == 0) {
// No more entries
current_ = restarts_;
restart_index_ = num_restarts_;
return;
}
restart_index_--;
}
SeekToRestartPoint(restart_index_);
do {
if (!ParseNextKey()) {
break;
}
Slice current_key = key();
if (key_.IsKeyPinned()) {
// The key is not delta encoded
prev_entries_.emplace_back(current_, current_key.data(), 0,
current_key.size(), value());
} else {
// The key is delta encoded, cache decoded key in buffer
size_t new_key_offset = prev_entries_keys_buff_.size();
prev_entries_keys_buff_.append(current_key.data(), current_key.size());
prev_entries_.emplace_back(current_, nullptr, new_key_offset,
current_key.size(), value());
}
// Loop until end of current entry hits the start of original entry
} while (NextEntryOffset() < original);
prev_entries_idx_ = static_cast<int32_t>(prev_entries_.size()) - 1;
}
void DataBlockIter::Seek(const Slice& target) {
Slice seek_key = target;
PERF_TIMER_GUARD(block_seek_nanos);
if (data_ == nullptr) { // Not init yet
return;
}
uint32_t index = 0;
bool ok = BinarySeek(seek_key, 0, num_restarts_ - 1, &index, comparator_);
if (!ok) {
return;
}
SeekToRestartPoint(index);
// Linear search (within restart block) for first key >= target
while (true) {
if (!ParseNextKey() || Compare(key_, seek_key) >= 0) {
return;
}
}
}
void IndexBlockIter::Seek(const Slice& target) {
Slice seek_key = target;
if (!key_includes_seq_) {
seek_key = ExtractUserKey(target);
}
PERF_TIMER_GUARD(block_seek_nanos);
if (data_ == nullptr) { // Not init yet
return;
}
uint32_t index = 0;
bool ok = false;
if (prefix_index_) {
ok = PrefixSeek(target, &index);
} else {
ok = BinarySeek(seek_key, 0, num_restarts_ - 1, &index,
key_includes_seq_ ? comparator_ : user_comparator_);
}
if (!ok) {
return;
}
SeekToRestartPoint(index);
// Linear search (within restart block) for first key >= target
while (true) {
if (!ParseNextKey() || Compare(key_, seek_key) >= 0) {
return;
}
}
}
void DataBlockIter::SeekForPrev(const Slice& target) {
PERF_TIMER_GUARD(block_seek_nanos);
Slice seek_key = target;
if (data_ == nullptr) { // Not init yet
return;
}
uint32_t index = 0;
bool ok = BinarySeek(seek_key, 0, num_restarts_ - 1, &index, comparator_);
if (!ok) {
return;
}
SeekToRestartPoint(index);
// Linear search (within restart block) for first key >= seek_key
while (ParseNextKey() && Compare(key_, seek_key) < 0) {
}
if (!Valid()) {
SeekToLast();
} else {
while (Valid() && Compare(key_, seek_key) > 0) {
Prev();
}
}
}
void BlockIter::SeekToFirst() {
if (data_ == nullptr) { // Not init yet
return;
}
SeekToRestartPoint(0);
ParseNextKey();
}
void BlockIter::SeekToLast() {
if (data_ == nullptr) { // Not init yet
return;
}
SeekToRestartPoint(num_restarts_ - 1);
while (ParseNextKey() && NextEntryOffset() < restarts_) {
// Keep skipping
}
}
void BlockIter::CorruptionError() {
current_ = restarts_;
restart_index_ = num_restarts_;
status_ = Status::Corruption("bad entry in block");
key_.Clear();
value_.clear();
}
bool BlockIter::ParseNextKey() {
current_ = NextEntryOffset();
const char* p = data_ + current_;
const char* limit = data_ + restarts_; // Restarts come right after data
if (p >= limit) {
// No more entries to return. Mark as invalid.
current_ = restarts_;
restart_index_ = num_restarts_;
return false;
}
// Decode next entry
uint32_t shared, non_shared, value_length;
p = DecodeEntry(p, limit, &shared, &non_shared, &value_length);
if (p == nullptr || key_.Size() < shared) {
CorruptionError();
return false;
} else {
if (shared == 0) {
// If this key dont share any bytes with prev key then we dont need
// to decode it and can use it's address in the block directly.
if (key_includes_seq_) {
key_.SetInternalKey(Slice(p, non_shared), false /* copy */);
} else {
key_.SetUserKey(Slice(p, non_shared), false /* copy */);
}
key_pinned_ = true;
} else {
// This key share `shared` bytes with prev key, we need to decode it
key_.TrimAppend(shared, p, non_shared);
key_pinned_ = false;
}
if (global_seqno_ != kDisableGlobalSequenceNumber) {
// If we are reading a file with a global sequence number we should
// expect that all encoded sequence numbers are zeros and any value
// type is kTypeValue, kTypeMerge, kTypeDeletion, or kTypeRangeDeletion.
assert(GetInternalKeySeqno(key_.GetInternalKey()) == 0);
ValueType value_type = ExtractValueType(key_.GetInternalKey());
assert(value_type == ValueType::kTypeValue ||
value_type == ValueType::kTypeMerge ||
value_type == ValueType::kTypeDeletion ||
value_type == ValueType::kTypeRangeDeletion);
if (key_pinned_) {
// TODO(tec): Investigate updating the seqno in the loaded block
// directly instead of doing a copy and update.
// We cannot use the key address in the block directly because
// we have a global_seqno_ that will overwrite the encoded one.
key_.OwnKey();
key_pinned_ = false;
}
key_.UpdateInternalKey(global_seqno_, value_type);
}
value_ = Slice(p + non_shared, value_length);
while (restart_index_ + 1 < num_restarts_ &&
GetRestartPoint(restart_index_ + 1) < current_) {
++restart_index_;
}
return true;
}
}
// Binary search in restart array to find the first restart point that
// is either the last restart point with a key less than target,
// which means the key of next restart point is larger than target, or
// the first restart point with a key = target
bool BlockIter::BinarySeek(const Slice& target, uint32_t left, uint32_t right,
uint32_t* index, const Comparator* comp) {
assert(left <= right);
while (left < right) {
uint32_t mid = (left + right + 1) / 2;
uint32_t region_offset = GetRestartPoint(mid);
uint32_t shared, non_shared, value_length;
const char* key_ptr = DecodeEntry(data_ + region_offset, data_ + restarts_,
&shared, &non_shared, &value_length);
if (key_ptr == nullptr || (shared != 0)) {
CorruptionError();
return false;
}
Slice mid_key(key_ptr, non_shared);
int cmp = comp->Compare(mid_key, target);
if (cmp < 0) {
// Key at "mid" is smaller than "target". Therefore all
// blocks before "mid" are uninteresting.
left = mid;
} else if (cmp > 0) {
// Key at "mid" is >= "target". Therefore all blocks at or
// after "mid" are uninteresting.
right = mid - 1;
} else {
left = right = mid;
}
}
*index = left;
return true;
}
// Compare target key and the block key of the block of `block_index`.
// Return -1 if eror.
int IndexBlockIter::CompareBlockKey(uint32_t block_index, const Slice& target) {
uint32_t region_offset = GetRestartPoint(block_index);
uint32_t shared, non_shared, value_length;
const char* key_ptr = DecodeEntry(data_ + region_offset, data_ + restarts_,
&shared, &non_shared, &value_length);
if (key_ptr == nullptr || (shared != 0)) {
CorruptionError();
return 1; // Return target is smaller
}
Slice block_key(key_ptr, non_shared);
return Compare(block_key, target);
}
// Binary search in block_ids to find the first block
// with a key >= target
bool IndexBlockIter::BinaryBlockIndexSeek(const Slice& target,
uint32_t* block_ids, uint32_t left,
uint32_t right, uint32_t* index) {
assert(left <= right);
uint32_t left_bound = left;
while (left <= right) {
uint32_t mid = (right + left) / 2;
int cmp = CompareBlockKey(block_ids[mid], target);
if (!status_.ok()) {
return false;
}
if (cmp < 0) {
// Key at "target" is larger than "mid". Therefore all
// blocks before or at "mid" are uninteresting.
left = mid + 1;
} else {
// Key at "target" is <= "mid". Therefore all blocks
// after "mid" are uninteresting.
// If there is only one block left, we found it.
if (left == right) break;
right = mid;
}
}
if (left == right) {
// In one of the two following cases:
// (1) left is the first one of block_ids
// (2) there is a gap of blocks between block of `left` and `left-1`.
// we can further distinguish the case of key in the block or key not
// existing, by comparing the target key and the key of the previous
// block to the left of the block found.
if (block_ids[left] > 0 &&
(left == left_bound || block_ids[left - 1] != block_ids[left] - 1) &&
CompareBlockKey(block_ids[left] - 1, target) > 0) {
current_ = restarts_;
return false;
}
*index = block_ids[left];
return true;
} else {
assert(left > right);
// Mark iterator invalid
current_ = restarts_;
return false;
}
}
bool IndexBlockIter::PrefixSeek(const Slice& target, uint32_t* index) {
assert(prefix_index_);
Slice seek_key = target;
if (!key_includes_seq_) {
seek_key = ExtractUserKey(target);
}
uint32_t* block_ids = nullptr;
uint32_t num_blocks = prefix_index_->GetBlocks(target, &block_ids);
if (num_blocks == 0) {
current_ = restarts_;
return false;
} else {
return BinaryBlockIndexSeek(seek_key, block_ids, 0, num_blocks - 1, index);
}
}
uint32_t Block::NumRestarts() const {
assert(size_ >= 2*sizeof(uint32_t));
return DecodeFixed32(data_ + size_ - sizeof(uint32_t));
}
Block::Block(BlockContents&& contents, SequenceNumber _global_seqno,
size_t read_amp_bytes_per_bit, Statistics* statistics)
: contents_(std::move(contents)),
data_(contents_.data.data()),
size_(contents_.data.size()),
restart_offset_(0),
num_restarts_(0),
global_seqno_(_global_seqno) {
if (size_ < sizeof(uint32_t)) {
size_ = 0; // Error marker
} else {
// Should only decode restart points for uncompressed blocks
if (compression_type() == kNoCompression) {
num_restarts_ = NumRestarts();
restart_offset_ =
static_cast<uint32_t>(size_) - (1 + num_restarts_) * sizeof(uint32_t);
if (restart_offset_ > size_ - sizeof(uint32_t)) {
// The size is too small for NumRestarts() and therefore
// restart_offset_ wrapped around.
size_ = 0;
}
}
}
if (read_amp_bytes_per_bit != 0 && statistics && size_ != 0) {
read_amp_bitmap_.reset(new BlockReadAmpBitmap(
restart_offset_, read_amp_bytes_per_bit, statistics));
}
}
template <>
DataBlockIter* Block::NewIterator(const Comparator* cmp, const Comparator* ucmp,
DataBlockIter* iter, Statistics* stats,
bool /*total_order_seek*/,
bool /*key_includes_seq*/,
BlockPrefixIndex* /*prefix_index*/) {
DataBlockIter* ret_iter;
if (iter != nullptr) {
ret_iter = iter;
} else {
ret_iter = new DataBlockIter;
}
if (size_ < 2 * sizeof(uint32_t)) {
ret_iter->Invalidate(Status::Corruption("bad block contents"));
return ret_iter;
}
if (num_restarts_ == 0) {
// Empty block.
ret_iter->Invalidate(Status::OK());
return ret_iter;
} else {
ret_iter->Initialize(cmp, ucmp, data_, restart_offset_, num_restarts_,
global_seqno_, read_amp_bitmap_.get(), cachable());
if (read_amp_bitmap_) {
if (read_amp_bitmap_->GetStatistics() != stats) {
// DB changed the Statistics pointer, we need to notify read_amp_bitmap_
read_amp_bitmap_->SetStatistics(stats);
}
}
}
return ret_iter;
}
template <>
IndexBlockIter* Block::NewIterator(const Comparator* cmp,
const Comparator* ucmp, IndexBlockIter* iter,
Statistics* /*stats*/, bool total_order_seek,
bool key_includes_seq,
BlockPrefixIndex* prefix_index) {
IndexBlockIter* ret_iter;
if (iter != nullptr) {
ret_iter = iter;
} else {
ret_iter = new IndexBlockIter;
}
if (size_ < 2 * sizeof(uint32_t)) {
ret_iter->Invalidate(Status::Corruption("bad block contents"));
return ret_iter;
}
if (num_restarts_ == 0) {
// Empty block.
ret_iter->Invalidate(Status::OK());
return ret_iter;
} else {
BlockPrefixIndex* prefix_index_ptr =
total_order_seek ? nullptr : prefix_index;
ret_iter->Initialize(cmp, ucmp, data_, restart_offset_, num_restarts_,
prefix_index_ptr, key_includes_seq, cachable());
}
return ret_iter;
}
size_t Block::ApproximateMemoryUsage() const {
size_t usage = usable_size();
#ifdef ROCKSDB_MALLOC_USABLE_SIZE
usage += malloc_usable_size((void*)this);
#else
usage += sizeof(*this);
#endif // ROCKSDB_MALLOC_USABLE_SIZE
if (read_amp_bitmap_) {
usage += read_amp_bitmap_->ApproximateMemoryUsage();
}
return usage;
}
} // namespace rocksdb