161ab42a8a
Summary: We are going to expose properties of all tables to end users through "some" db interface. However, current design doesn't naturally fit for this need, which is because: 1. If a table presents in table cache, we cannot simply return the reference to its table properties, because the table may be destroy after compaction (and we don't want to hold the ref of the version). 2. Copy table properties is OK, but it's slow. Thus in this diff, I change the table reader's interface to return a shared pointer (for const table properties), instead a const refernce. Test Plan: `make check` passed Reviewers: haobo, sdong, dhruba Reviewed By: haobo CC: leveldb Differential Revision: https://reviews.facebook.net/D15999
695 lines
21 KiB
C++
695 lines
21 KiB
C++
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "table/plain_table_reader.h"
|
|
|
|
#include <string>
|
|
|
|
#include "db/dbformat.h"
|
|
|
|
#include "rocksdb/cache.h"
|
|
#include "rocksdb/comparator.h"
|
|
#include "rocksdb/env.h"
|
|
#include "rocksdb/filter_policy.h"
|
|
#include "rocksdb/options.h"
|
|
#include "rocksdb/statistics.h"
|
|
|
|
#include "table/block.h"
|
|
#include "table/filter_block.h"
|
|
#include "table/format.h"
|
|
#include "table/meta_blocks.h"
|
|
#include "table/two_level_iterator.h"
|
|
#include "table/plain_table_factory.h"
|
|
|
|
#include "util/coding.h"
|
|
#include "util/dynamic_bloom.h"
|
|
#include "util/hash.h"
|
|
#include "util/histogram.h"
|
|
#include "util/murmurhash.h"
|
|
#include "util/perf_context_imp.h"
|
|
#include "util/stop_watch.h"
|
|
|
|
|
|
namespace rocksdb {
|
|
|
|
namespace {
|
|
|
|
inline uint32_t GetSliceHash(Slice const& s) {
|
|
return Hash(s.data(), s.size(), 397) ;
|
|
}
|
|
|
|
inline uint32_t GetBucketIdFromHash(uint32_t hash, uint32_t num_buckets) {
|
|
return hash % num_buckets;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// Iterator to iterate IndexedTable
|
|
class PlainTableIterator : public Iterator {
|
|
public:
|
|
explicit PlainTableIterator(PlainTableReader* table);
|
|
~PlainTableIterator();
|
|
|
|
bool Valid() const;
|
|
|
|
void SeekToFirst();
|
|
|
|
void SeekToLast();
|
|
|
|
void Seek(const Slice& target);
|
|
|
|
void Next();
|
|
|
|
void Prev();
|
|
|
|
Slice key() const;
|
|
|
|
Slice value() const;
|
|
|
|
Status status() const;
|
|
|
|
private:
|
|
PlainTableReader* table_;
|
|
uint32_t offset_;
|
|
uint32_t next_offset_;
|
|
Slice key_;
|
|
Slice value_;
|
|
Status status_;
|
|
std::string tmp_str_;
|
|
// No copying allowed
|
|
PlainTableIterator(const PlainTableIterator&) = delete;
|
|
void operator=(const Iterator&) = delete;
|
|
};
|
|
|
|
extern const uint64_t kPlainTableMagicNumber;
|
|
PlainTableReader::PlainTableReader(const EnvOptions& storage_options,
|
|
const InternalKeyComparator& icomparator,
|
|
uint64_t file_size, int bloom_bits_per_key,
|
|
double hash_table_ratio,
|
|
const TableProperties* table_properties)
|
|
: soptions_(storage_options),
|
|
internal_comparator_(icomparator),
|
|
file_size_(file_size),
|
|
kHashTableRatio(hash_table_ratio),
|
|
kBloomBitsPerKey(bloom_bits_per_key),
|
|
table_properties_(table_properties),
|
|
data_end_offset_(table_properties_->data_size),
|
|
user_key_len_(table_properties->fixed_key_len) {}
|
|
|
|
PlainTableReader::~PlainTableReader() {
|
|
delete[] hash_table_;
|
|
delete[] sub_index_;
|
|
delete bloom_;
|
|
}
|
|
|
|
Status PlainTableReader::Open(const Options& options,
|
|
const EnvOptions& soptions,
|
|
const InternalKeyComparator& internal_comparator,
|
|
unique_ptr<RandomAccessFile>&& file,
|
|
uint64_t file_size,
|
|
unique_ptr<TableReader>* table_reader,
|
|
const int bloom_bits_per_key,
|
|
double hash_table_ratio) {
|
|
assert(options.allow_mmap_reads);
|
|
|
|
if (file_size > kMaxFileSize) {
|
|
return Status::NotSupported("File is too large for PlainTableReader!");
|
|
}
|
|
|
|
TableProperties* props = nullptr;
|
|
auto s = ReadTableProperties(file.get(), file_size, kPlainTableMagicNumber,
|
|
options.env, options.info_log.get(), &props);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
std::unique_ptr<PlainTableReader> new_reader(
|
|
new PlainTableReader(soptions, internal_comparator, file_size,
|
|
bloom_bits_per_key, hash_table_ratio, props));
|
|
new_reader->file_ = std::move(file);
|
|
new_reader->options_ = options;
|
|
|
|
// -- Populate Index
|
|
s = new_reader->PopulateIndex();
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
*table_reader = std::move(new_reader);
|
|
return s;
|
|
}
|
|
|
|
void PlainTableReader::SetupForCompaction() {
|
|
}
|
|
|
|
bool PlainTableReader::PrefixMayMatch(const Slice& internal_prefix) {
|
|
return true;
|
|
}
|
|
|
|
Iterator* PlainTableReader::NewIterator(const ReadOptions& options) {
|
|
return new PlainTableIterator(this);
|
|
}
|
|
|
|
struct PlainTableReader::IndexRecord {
|
|
uint32_t hash; // hash of the prefix
|
|
uint32_t offset; // offset of a row
|
|
IndexRecord* next;
|
|
};
|
|
|
|
// Helper class to track all the index records
|
|
class PlainTableReader::IndexRecordList {
|
|
public:
|
|
explicit IndexRecordList(size_t num_records_per_group)
|
|
: kNumRecordsPerGroup(num_records_per_group),
|
|
current_group_(nullptr),
|
|
num_records_in_current_group_(num_records_per_group) {}
|
|
|
|
~IndexRecordList() {
|
|
for (size_t i = 0; i < groups_.size(); i++) {
|
|
delete[] groups_[i];
|
|
}
|
|
}
|
|
|
|
void AddRecord(murmur_t hash, uint32_t offset) {
|
|
if (num_records_in_current_group_ == kNumRecordsPerGroup) {
|
|
current_group_ = AllocateNewGroup();
|
|
num_records_in_current_group_ = 0;
|
|
}
|
|
auto& new_record = current_group_[num_records_in_current_group_++];
|
|
new_record.hash = hash;
|
|
new_record.offset = offset;
|
|
new_record.next = nullptr;
|
|
}
|
|
|
|
size_t GetNumRecords() const {
|
|
return (groups_.size() - 1) * kNumRecordsPerGroup +
|
|
num_records_in_current_group_;
|
|
}
|
|
IndexRecord* At(size_t index) {
|
|
return &(groups_[index / kNumRecordsPerGroup][index % kNumRecordsPerGroup]);
|
|
}
|
|
|
|
private:
|
|
IndexRecord* AllocateNewGroup() {
|
|
IndexRecord* result = new IndexRecord[kNumRecordsPerGroup];
|
|
groups_.push_back(result);
|
|
return result;
|
|
}
|
|
|
|
const size_t kNumRecordsPerGroup;
|
|
IndexRecord* current_group_;
|
|
// List of arrays allocated
|
|
std::vector<IndexRecord*> groups_;
|
|
size_t num_records_in_current_group_;
|
|
};
|
|
|
|
int PlainTableReader::PopulateIndexRecordList(IndexRecordList* record_list) {
|
|
Slice prev_key_prefix_slice;
|
|
uint32_t prev_key_prefix_hash = 0;
|
|
uint32_t pos = data_start_offset_;
|
|
int key_index_within_prefix = 0;
|
|
bool is_first_record = true;
|
|
HistogramImpl keys_per_prefix_hist;
|
|
// Need map to be ordered to make sure sub indexes generated
|
|
// are in order.
|
|
|
|
int num_prefixes = 0;
|
|
while (pos < data_end_offset_) {
|
|
uint32_t key_offset = pos;
|
|
ParsedInternalKey key;
|
|
Slice value_slice;
|
|
status_ = Next(pos, &key, &value_slice, pos);
|
|
Slice key_prefix_slice = GetPrefix(key);
|
|
|
|
if (is_first_record || prev_key_prefix_slice != key_prefix_slice) {
|
|
++num_prefixes;
|
|
if (!is_first_record) {
|
|
keys_per_prefix_hist.Add(key_index_within_prefix);
|
|
}
|
|
key_index_within_prefix = 0;
|
|
prev_key_prefix_slice = key_prefix_slice;
|
|
prev_key_prefix_hash = GetSliceHash(key_prefix_slice);
|
|
}
|
|
|
|
if (key_index_within_prefix++ % kIndexIntervalForSamePrefixKeys == 0) {
|
|
// Add an index key for every kIndexIntervalForSamePrefixKeys keys
|
|
record_list->AddRecord(prev_key_prefix_hash, key_offset);
|
|
}
|
|
is_first_record = false;
|
|
}
|
|
|
|
keys_per_prefix_hist.Add(key_index_within_prefix);
|
|
Log(options_.info_log, "Number of Keys per prefix Histogram: %s",
|
|
keys_per_prefix_hist.ToString().c_str());
|
|
|
|
return num_prefixes;
|
|
}
|
|
|
|
void PlainTableReader::AllocateIndexAndBloom(int num_prefixes) {
|
|
delete[] hash_table_;
|
|
|
|
if (kBloomBitsPerKey > 0) {
|
|
bloom_ = new DynamicBloom(num_prefixes * kBloomBitsPerKey);
|
|
}
|
|
double hash_table_size_multipier =
|
|
(kHashTableRatio > 1.0) ? 1.0 : 1.0 / kHashTableRatio;
|
|
hash_table_size_ = num_prefixes * hash_table_size_multipier + 1;
|
|
hash_table_ = new uint32_t[hash_table_size_];
|
|
}
|
|
|
|
size_t PlainTableReader::BucketizeIndexesAndFillBloom(
|
|
IndexRecordList& record_list, int num_prefixes,
|
|
std::vector<IndexRecord*>* hash_to_offsets,
|
|
std::vector<uint32_t>* bucket_count) {
|
|
size_t sub_index_size_needed = 0;
|
|
bool first = true;
|
|
uint32_t prev_hash = 0;
|
|
size_t num_records = record_list.GetNumRecords();
|
|
for (size_t i = 0; i < num_records; i++) {
|
|
IndexRecord* index_record = record_list.At(i);
|
|
uint32_t cur_hash = index_record->hash;
|
|
if (first || prev_hash != cur_hash) {
|
|
prev_hash = cur_hash;
|
|
first = false;
|
|
if (bloom_) {
|
|
bloom_->AddHash(cur_hash);
|
|
}
|
|
}
|
|
uint32_t bucket = GetBucketIdFromHash(cur_hash, hash_table_size_);
|
|
IndexRecord* prev_bucket_head = (*hash_to_offsets)[bucket];
|
|
index_record->next = prev_bucket_head;
|
|
(*hash_to_offsets)[bucket] = index_record;
|
|
auto& item_count = (*bucket_count)[bucket];
|
|
if (item_count > 0) {
|
|
if (item_count == 1) {
|
|
sub_index_size_needed += kOffsetLen + 1;
|
|
}
|
|
if (item_count == 127) {
|
|
// Need more than one byte for length
|
|
sub_index_size_needed++;
|
|
}
|
|
sub_index_size_needed += kOffsetLen;
|
|
}
|
|
item_count++;
|
|
}
|
|
return sub_index_size_needed;
|
|
}
|
|
|
|
void PlainTableReader::FillIndexes(
|
|
size_t sub_index_size_needed,
|
|
const std::vector<IndexRecord*>& hash_to_offsets,
|
|
const std::vector<uint32_t>& bucket_count) {
|
|
Log(options_.info_log, "Reserving %zu bytes for sub index",
|
|
sub_index_size_needed);
|
|
// 8 bytes buffer for variable length size
|
|
size_t buffer_size = 8 * 8;
|
|
size_t buffer_used = 0;
|
|
sub_index_size_needed += buffer_size;
|
|
sub_index_ = new char[sub_index_size_needed];
|
|
size_t sub_index_offset = 0;
|
|
char* prev_ptr;
|
|
char* cur_ptr;
|
|
uint32_t* sub_index_ptr;
|
|
for (int i = 0; i < hash_table_size_; i++) {
|
|
uint32_t num_keys_for_bucket = bucket_count[i];
|
|
switch (num_keys_for_bucket) {
|
|
case 0:
|
|
// No key for bucket
|
|
hash_table_[i] = data_end_offset_;
|
|
break;
|
|
case 1:
|
|
// point directly to the file offset
|
|
hash_table_[i] = hash_to_offsets[i]->offset;
|
|
break;
|
|
default:
|
|
// point to second level indexes.
|
|
hash_table_[i] = sub_index_offset | kSubIndexMask;
|
|
prev_ptr = sub_index_ + sub_index_offset;
|
|
cur_ptr = EncodeVarint32(prev_ptr, num_keys_for_bucket);
|
|
sub_index_offset += (cur_ptr - prev_ptr);
|
|
if (cur_ptr - prev_ptr > 2
|
|
|| (cur_ptr - prev_ptr == 2 && num_keys_for_bucket <= 127)) {
|
|
// Need to resize sub_index. Exponentially grow buffer.
|
|
buffer_used += cur_ptr - prev_ptr - 1;
|
|
if (buffer_used + 4 > buffer_size) {
|
|
Log(options_.info_log, "Recalculate suffix_map length to %zu",
|
|
sub_index_size_needed);
|
|
|
|
sub_index_size_needed += buffer_size;
|
|
buffer_size *= 2;
|
|
char* new_sub_index = new char[sub_index_size_needed];
|
|
memcpy(new_sub_index, sub_index_, sub_index_offset);
|
|
delete[] sub_index_;
|
|
sub_index_ = new_sub_index;
|
|
}
|
|
}
|
|
sub_index_ptr = (uint32_t*) (sub_index_ + sub_index_offset);
|
|
IndexRecord* record = hash_to_offsets[i];
|
|
int j;
|
|
for (j = num_keys_for_bucket - 1; j >= 0 && record;
|
|
j--, record = record->next) {
|
|
sub_index_ptr[j] = record->offset;
|
|
}
|
|
assert(j == -1 && record == nullptr);
|
|
sub_index_offset += kOffsetLen * num_keys_for_bucket;
|
|
break;
|
|
}
|
|
}
|
|
|
|
Log(options_.info_log, "hash table size: %d, suffix_map length %zu",
|
|
hash_table_size_, sub_index_size_needed);
|
|
}
|
|
|
|
Status PlainTableReader::PopulateIndex() {
|
|
// Get mmapped memory to file_data_.
|
|
Status s = file_->Read(0, file_size_, &file_data_, nullptr);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
IndexRecordList record_list(kRecordsPerGroup);
|
|
// First, read the whole file, for every kIndexIntervalForSamePrefixKeys rows
|
|
// for a prefix (starting from the first one), generate a record of (hash,
|
|
// offset) and append it to IndexRecordList, which is a data structure created
|
|
// to store them.
|
|
int num_prefixes = PopulateIndexRecordList(&record_list);
|
|
// Calculated hash table and bloom filter size and allocate memory for indexes
|
|
// and bloom filter based on the number of prefixes.
|
|
AllocateIndexAndBloom(num_prefixes);
|
|
|
|
// Bucketize all the index records to a temp data structure, in which for
|
|
// each bucket, we generate a linked list of IndexRecord, in reversed order.
|
|
std::vector<IndexRecord*> hash_to_offsets(hash_table_size_, nullptr);
|
|
std::vector<uint32_t> bucket_count(hash_table_size_, 0);
|
|
size_t sub_index_size_needed = BucketizeIndexesAndFillBloom(
|
|
record_list, num_prefixes, &hash_to_offsets, &bucket_count);
|
|
// From the temp data structure, populate indexes.
|
|
FillIndexes(sub_index_size_needed, hash_to_offsets, bucket_count);
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
Status PlainTableReader::GetOffset(const Slice& target, const Slice& prefix,
|
|
uint32_t prefix_hash, bool& prefix_matched,
|
|
uint32_t& ret_offset) {
|
|
prefix_matched = false;
|
|
int bucket = GetBucketIdFromHash(prefix_hash, hash_table_size_);
|
|
uint32_t bucket_value = hash_table_[bucket];
|
|
if (bucket_value == data_end_offset_) {
|
|
ret_offset = data_end_offset_;
|
|
return Status::OK();
|
|
} else if ((bucket_value & kSubIndexMask) == 0) {
|
|
// point directly to the file
|
|
ret_offset = bucket_value;
|
|
return Status::OK();
|
|
}
|
|
|
|
// point to sub-index, need to do a binary search
|
|
uint32_t low = 0;
|
|
uint64_t prefix_index_offset = bucket_value ^ kSubIndexMask;
|
|
|
|
const char* index_ptr = sub_index_ + prefix_index_offset;
|
|
uint32_t upper_bound = 0;
|
|
const uint32_t* base_ptr = (const uint32_t*) GetVarint32Ptr(index_ptr,
|
|
index_ptr + 4,
|
|
&upper_bound);
|
|
uint32_t high = upper_bound;
|
|
ParsedInternalKey mid_key;
|
|
ParsedInternalKey parsed_target;
|
|
if (!ParseInternalKey(target, &parsed_target)) {
|
|
return Status::Corruption(Slice());
|
|
}
|
|
|
|
// The key is between [low, high). Do a binary search between it.
|
|
while (high - low > 1) {
|
|
uint32_t mid = (high + low) / 2;
|
|
uint32_t file_offset = base_ptr[mid];
|
|
size_t tmp;
|
|
Status s = ReadKey(file_data_.data() + file_offset, &mid_key, tmp);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
int cmp_result = internal_comparator_.Compare(mid_key, parsed_target);
|
|
if (cmp_result < 0) {
|
|
low = mid;
|
|
} else {
|
|
if (cmp_result == 0) {
|
|
// Happen to have found the exact key or target is smaller than the
|
|
// first key after base_offset.
|
|
prefix_matched = true;
|
|
ret_offset = file_offset;
|
|
return Status::OK();
|
|
} else {
|
|
high = mid;
|
|
}
|
|
}
|
|
}
|
|
// Both of the key at the position low or low+1 could share the same
|
|
// prefix as target. We need to rule out one of them to avoid to go
|
|
// to the wrong prefix.
|
|
ParsedInternalKey low_key;
|
|
size_t tmp;
|
|
uint32_t low_key_offset = base_ptr[low];
|
|
Status s = ReadKey(file_data_.data() + low_key_offset, &low_key, tmp);
|
|
if (GetPrefix(low_key) == prefix) {
|
|
prefix_matched = true;
|
|
ret_offset = low_key_offset;
|
|
} else if (low + 1 < upper_bound) {
|
|
// There is possible a next prefix, return it
|
|
prefix_matched = false;
|
|
ret_offset = base_ptr[low + 1];
|
|
} else {
|
|
// target is larger than a key of the last prefix in this bucket
|
|
// but with a different prefix. Key does not exist.
|
|
ret_offset = data_end_offset_;
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
bool PlainTableReader::MayHavePrefix(uint32_t hash) {
|
|
return bloom_ == nullptr || bloom_->MayContainHash(hash);
|
|
}
|
|
|
|
Slice PlainTableReader::GetPrefix(const ParsedInternalKey& target) {
|
|
return options_.prefix_extractor->Transform(target.user_key);
|
|
}
|
|
|
|
Status PlainTableReader::ReadKey(const char* row_ptr, ParsedInternalKey* key,
|
|
size_t& bytes_read) {
|
|
const char* key_ptr = nullptr;
|
|
bytes_read = 0;
|
|
size_t user_key_size = 0;
|
|
if (IsFixedLength()) {
|
|
user_key_size = user_key_len_;
|
|
key_ptr = row_ptr;
|
|
} else {
|
|
uint32_t tmp_size = 0;
|
|
key_ptr = GetVarint32Ptr(row_ptr, file_data_.data() + data_end_offset_,
|
|
&tmp_size);
|
|
if (key_ptr == nullptr) {
|
|
return Status::Corruption("Unable to read the next key");
|
|
}
|
|
user_key_size = (size_t)tmp_size;
|
|
bytes_read = key_ptr - row_ptr;
|
|
}
|
|
if (key_ptr + user_key_size + 1 >= file_data_.data() + data_end_offset_) {
|
|
return Status::Corruption("Unable to read the next key");
|
|
}
|
|
|
|
if (*(key_ptr + user_key_size) == PlainTableFactory::kValueTypeSeqId0) {
|
|
// Special encoding for the row with seqID=0
|
|
key->user_key = Slice(key_ptr, user_key_size);
|
|
key->sequence = 0;
|
|
key->type = kTypeValue;
|
|
bytes_read += user_key_size + 1;
|
|
} else {
|
|
if (row_ptr + user_key_size + 8 >= file_data_.data() + data_end_offset_) {
|
|
return Status::Corruption("Unable to read the next key");
|
|
}
|
|
if (!ParseInternalKey(Slice(key_ptr, user_key_size + 8), key)) {
|
|
return Status::Corruption(Slice());
|
|
}
|
|
bytes_read += user_key_size + 8;
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
Status PlainTableReader::Next(uint32_t offset, ParsedInternalKey* key,
|
|
Slice* value, uint32_t& next_offset) {
|
|
if (offset == data_end_offset_) {
|
|
next_offset = data_end_offset_;
|
|
return Status::OK();
|
|
}
|
|
|
|
if (offset > data_end_offset_) {
|
|
return Status::Corruption("Offset is out of file size");
|
|
}
|
|
|
|
const char* row_ptr = file_data_.data() + offset;
|
|
size_t bytes_for_key;
|
|
Status s = ReadKey(row_ptr, key, bytes_for_key);
|
|
uint32_t value_size;
|
|
const char* value_ptr = GetVarint32Ptr(row_ptr + bytes_for_key,
|
|
file_data_.data() + data_end_offset_,
|
|
&value_size);
|
|
if (value_ptr == nullptr) {
|
|
return Status::Corruption("Error reading value length.");
|
|
}
|
|
next_offset = offset + (value_ptr - row_ptr) + value_size;
|
|
if (next_offset > data_end_offset_) {
|
|
return Status::Corruption("Reach end of file when reading value");
|
|
}
|
|
*value = Slice(value_ptr, value_size);
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
Status PlainTableReader::Get(const ReadOptions& ro, const Slice& target,
|
|
void* arg,
|
|
bool (*saver)(void*, const ParsedInternalKey&,
|
|
const Slice&, bool),
|
|
void (*mark_key_may_exist)(void*)) {
|
|
// Check bloom filter first.
|
|
Slice prefix_slice = GetPrefix(target);
|
|
uint32_t prefix_hash = GetSliceHash(prefix_slice);
|
|
if (!MayHavePrefix(prefix_hash)) {
|
|
return Status::OK();
|
|
}
|
|
uint32_t offset;
|
|
bool prefix_match;
|
|
Status s = GetOffset(target, prefix_slice, prefix_hash, prefix_match, offset);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
ParsedInternalKey found_key;
|
|
ParsedInternalKey parsed_target;
|
|
if (!ParseInternalKey(target, &parsed_target)) {
|
|
return Status::Corruption(Slice());
|
|
}
|
|
|
|
Slice found_value;
|
|
while (offset < data_end_offset_) {
|
|
Status s = Next(offset, &found_key, &found_value, offset);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
if (!prefix_match) {
|
|
// Need to verify prefix for the first key found if it is not yet
|
|
// checked.
|
|
if (GetPrefix(found_key) != prefix_slice) {
|
|
return Status::OK();
|
|
}
|
|
prefix_match = true;
|
|
}
|
|
if (internal_comparator_.Compare(found_key, parsed_target) >= 0) {
|
|
if (!(*saver)(arg, found_key, found_value, true)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
uint64_t PlainTableReader::ApproximateOffsetOf(const Slice& key) {
|
|
return 0;
|
|
}
|
|
|
|
PlainTableIterator::PlainTableIterator(PlainTableReader* table) :
|
|
table_(table) {
|
|
next_offset_ = offset_ = table_->data_end_offset_;
|
|
}
|
|
|
|
PlainTableIterator::~PlainTableIterator() {
|
|
}
|
|
|
|
bool PlainTableIterator::Valid() const {
|
|
return offset_ < table_->data_end_offset_
|
|
&& offset_ >= table_->data_start_offset_;
|
|
}
|
|
|
|
void PlainTableIterator::SeekToFirst() {
|
|
next_offset_ = table_->data_start_offset_;
|
|
if (next_offset_ >= table_->data_end_offset_) {
|
|
next_offset_ = offset_ = table_->data_end_offset_;
|
|
} else {
|
|
Next();
|
|
}
|
|
}
|
|
|
|
void PlainTableIterator::SeekToLast() {
|
|
assert(false);
|
|
}
|
|
|
|
void PlainTableIterator::Seek(const Slice& target) {
|
|
Slice prefix_slice = table_->GetPrefix(target);
|
|
uint32_t prefix_hash = GetSliceHash(prefix_slice);
|
|
if (!table_->MayHavePrefix(prefix_hash)) {
|
|
offset_ = next_offset_ = table_->data_end_offset_;
|
|
return;
|
|
}
|
|
bool prefix_match;
|
|
status_ = table_->GetOffset(target, prefix_slice, prefix_hash, prefix_match,
|
|
next_offset_);
|
|
if (!status_.ok()) {
|
|
offset_ = next_offset_ = table_->data_end_offset_;
|
|
return;
|
|
}
|
|
|
|
if (next_offset_ < table_-> data_end_offset_) {
|
|
for (Next(); status_.ok() && Valid(); Next()) {
|
|
if (!prefix_match) {
|
|
// Need to verify the first key's prefix
|
|
if (table_->GetPrefix(key()) != prefix_slice) {
|
|
offset_ = next_offset_ = table_->data_end_offset_;
|
|
break;
|
|
}
|
|
prefix_match = true;
|
|
}
|
|
if (table_->internal_comparator_.Compare(key(), target) >= 0) {
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
offset_ = table_->data_end_offset_;
|
|
}
|
|
}
|
|
|
|
void PlainTableIterator::Next() {
|
|
offset_ = next_offset_;
|
|
if (offset_ < table_->data_end_offset_) {
|
|
Slice tmp_slice;
|
|
ParsedInternalKey parsed_key;
|
|
status_ = table_->Next(next_offset_, &parsed_key, &value_, next_offset_);
|
|
if (status_.ok()) {
|
|
// Make a copy in this case. TODO optimize.
|
|
tmp_str_.clear();
|
|
AppendInternalKey(&tmp_str_, parsed_key);
|
|
key_ = Slice(tmp_str_);
|
|
} else {
|
|
offset_ = next_offset_ = table_->data_end_offset_;
|
|
}
|
|
}
|
|
}
|
|
|
|
void PlainTableIterator::Prev() {
|
|
assert(false);
|
|
}
|
|
|
|
Slice PlainTableIterator::key() const {
|
|
assert(Valid());
|
|
return key_;
|
|
}
|
|
|
|
Slice PlainTableIterator::value() const {
|
|
assert(Valid());
|
|
return value_;
|
|
}
|
|
|
|
Status PlainTableIterator::status() const {
|
|
return status_;
|
|
}
|
|
|
|
} // namespace rocksdb
|