rocksdb/table/block_fetcher_test.cc
Cheng Chang 91b7553293 Enable IO Uring in MultiGet in direct IO mode (#6815)
Summary:
Currently, in direct IO mode, `MultiGet` retrieves the data blocks one by one instead of in parallel, see `BlockBasedTable::RetrieveMultipleBlocks`.

Since direct IO is supported in `RandomAccessFileReader::MultiRead` in https://github.com/facebook/rocksdb/pull/6446, this PR applies `MultiRead` to `MultiGet` so that the data blocks can be retrieved in parallel.

Also, in direct IO mode and when data blocks are compressed and need to uncompressed, this PR only allocates one continuous aligned buffer to hold the data blocks, and then directly uncompress the blocks to insert into block cache, there is no longer intermediate copies to scratch buffers.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6815

Test Plan:
1. added a new unit test `BlockBasedTableReaderTest::MultiGet`.
2. existing unit tests and stress tests  contain tests against `MultiGet` in direct IO mode.

Reviewed By: anand1976

Differential Revision: D21426347

Pulled By: cheng-chang

fbshipit-source-id: b8446ae0e74152444ef9111e97f8e402ac31b24f
2020-05-14 23:26:26 -07:00

448 lines
18 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include "table/block_fetcher.h"
#include "db/table_properties_collector.h"
#include "options/options_helper.h"
#include "port/port.h"
#include "port/stack_trace.h"
#include "table/block_based/binary_search_index_reader.h"
#include "table/block_based/block_based_table_builder.h"
#include "table/block_based/block_based_table_factory.h"
#include "table/block_based/block_based_table_reader.h"
#include "table/format.h"
#include "test_util/testharness.h"
#include "test_util/testutil.h"
namespace ROCKSDB_NAMESPACE {
namespace {
class CountedMemoryAllocator : public MemoryAllocator {
public:
const char* Name() const override { return "CountedMemoryAllocator"; }
void* Allocate(size_t size) override {
num_allocations_++;
return static_cast<void*>(new char[size]);
}
void Deallocate(void* p) override {
num_deallocations_++;
delete[] static_cast<char*>(p);
}
int GetNumAllocations() const { return num_allocations_; }
int GetNumDeallocations() const { return num_deallocations_; }
private:
int num_allocations_ = 0;
int num_deallocations_ = 0;
};
struct MemcpyStats {
int num_stack_buf_memcpy = 0;
int num_heap_buf_memcpy = 0;
int num_compressed_buf_memcpy = 0;
};
struct BufAllocationStats {
int num_heap_buf_allocations = 0;
int num_compressed_buf_allocations = 0;
};
struct TestStats {
MemcpyStats memcpy_stats;
BufAllocationStats buf_allocation_stats;
};
class BlockFetcherTest : public testing::Test {
protected:
void SetUp() override {
test::SetupSyncPointsToMockDirectIO();
test_dir_ = test::PerThreadDBPath("block_fetcher_test");
env_ = Env::Default();
fs_ = FileSystem::Default();
ASSERT_OK(fs_->CreateDir(test_dir_, IOOptions(), nullptr));
}
void TearDown() override { EXPECT_OK(test::DestroyDir(env_, test_dir_)); }
void AssertSameBlock(const BlockContents& block1,
const BlockContents& block2) {
ASSERT_EQ(block1.data.ToString(), block2.data.ToString());
}
// Creates a table with kv pairs (i, i) where i ranges from 0 to 9, inclusive.
void CreateTable(const std::string& table_name,
const CompressionType& compression_type) {
std::unique_ptr<WritableFileWriter> writer;
NewFileWriter(table_name, &writer);
// Create table builder.
Options options;
ImmutableCFOptions ioptions(options);
InternalKeyComparator comparator(options.comparator);
ColumnFamilyOptions cf_options;
MutableCFOptions moptions(cf_options);
std::vector<std::unique_ptr<IntTblPropCollectorFactory>> factories;
std::unique_ptr<TableBuilder> table_builder(table_factory_.NewTableBuilder(
TableBuilderOptions(ioptions, moptions, comparator, &factories,
compression_type, 0 /* sample_for_compression */,
CompressionOptions(), false /* skip_filters */,
kDefaultColumnFamilyName, -1 /* level */),
0 /* column_family_id */, writer.get()));
// Build table.
for (int i = 0; i < 9; i++) {
std::string key = ToInternalKey(std::to_string(i));
std::string value = std::to_string(i);
table_builder->Add(key, value);
}
ASSERT_OK(table_builder->Finish());
}
void FetchIndexBlock(const std::string& table_name, bool use_direct_io,
CountedMemoryAllocator* heap_buf_allocator,
CountedMemoryAllocator* compressed_buf_allocator,
MemcpyStats* memcpy_stats, BlockContents* index_block) {
FileOptions fopt;
fopt.use_direct_reads = use_direct_io;
std::unique_ptr<RandomAccessFileReader> file;
NewFileReader(table_name, fopt, &file);
// Get handle of the index block.
Footer footer;
ReadFooter(file.get(), &footer);
const BlockHandle& index_handle = footer.index_handle();
CompressionType compression_type;
FetchBlock(file.get(), index_handle, BlockType::kIndex,
false /* compressed */, false /* do_uncompress */,
heap_buf_allocator, compressed_buf_allocator, index_block,
memcpy_stats, &compression_type);
ASSERT_EQ(compression_type, CompressionType::kNoCompression);
}
// Fetches the first data block in both direct IO and non-direct IO mode.
//
// compressed: whether the data blocks are compressed;
// do_uncompress: whether the data blocks should be uncompressed on fetching.
// compression_type: the expected compression type.
//
// Expects:
// Block contents are the same.
// Bufferr allocation and memory copy statistics are expected.
void TestFetchDataBlock(const std::string& table_name_prefix, bool compressed,
bool do_uncompress,
const TestStats& expected_non_direct_io_stats,
const TestStats& expected_direct_io_stats) {
for (CompressionType compression_type : GetSupportedCompressions()) {
bool do_compress = compression_type != kNoCompression;
if (compressed != do_compress) continue;
std::string compression_type_str =
CompressionTypeToString(compression_type);
std::string table_name = table_name_prefix + compression_type_str;
CreateTable(table_name, compression_type);
CompressionType expected_compression_type_after_fetch =
(compressed && !do_uncompress) ? compression_type : kNoCompression;
BlockContents blocks[2];
MemcpyStats memcpy_stats[2];
CountedMemoryAllocator heap_buf_allocators[2];
CountedMemoryAllocator compressed_buf_allocators[2];
for (bool use_direct_io : {false, true}) {
FetchFirstDataBlock(
table_name, use_direct_io, compressed, do_uncompress,
expected_compression_type_after_fetch,
&heap_buf_allocators[use_direct_io],
&compressed_buf_allocators[use_direct_io], &blocks[use_direct_io],
&memcpy_stats[use_direct_io]);
}
AssertSameBlock(blocks[0], blocks[1]);
// Check memcpy and buffer allocation statistics.
for (bool use_direct_io : {false, true}) {
const TestStats& expected_stats = use_direct_io
? expected_direct_io_stats
: expected_non_direct_io_stats;
ASSERT_EQ(memcpy_stats[use_direct_io].num_stack_buf_memcpy,
expected_stats.memcpy_stats.num_stack_buf_memcpy);
ASSERT_EQ(memcpy_stats[use_direct_io].num_heap_buf_memcpy,
expected_stats.memcpy_stats.num_heap_buf_memcpy);
ASSERT_EQ(memcpy_stats[use_direct_io].num_compressed_buf_memcpy,
expected_stats.memcpy_stats.num_compressed_buf_memcpy);
ASSERT_EQ(heap_buf_allocators[use_direct_io].GetNumAllocations(),
expected_stats.buf_allocation_stats.num_heap_buf_allocations);
ASSERT_EQ(
compressed_buf_allocators[use_direct_io].GetNumAllocations(),
expected_stats.buf_allocation_stats.num_compressed_buf_allocations);
// The allocated buffers are not deallocated until
// the block content is deleted.
ASSERT_EQ(heap_buf_allocators[use_direct_io].GetNumDeallocations(), 0);
ASSERT_EQ(
compressed_buf_allocators[use_direct_io].GetNumDeallocations(), 0);
blocks[use_direct_io].allocation.reset();
ASSERT_EQ(heap_buf_allocators[use_direct_io].GetNumDeallocations(),
expected_stats.buf_allocation_stats.num_heap_buf_allocations);
ASSERT_EQ(
compressed_buf_allocators[use_direct_io].GetNumDeallocations(),
expected_stats.buf_allocation_stats.num_compressed_buf_allocations);
}
}
}
private:
std::string test_dir_;
Env* env_;
std::shared_ptr<FileSystem> fs_;
BlockBasedTableFactory table_factory_;
std::string Path(const std::string& fname) { return test_dir_ + "/" + fname; }
void WriteToFile(const std::string& content, const std::string& filename) {
std::unique_ptr<FSWritableFile> f;
ASSERT_OK(fs_->NewWritableFile(Path(filename), FileOptions(), &f, nullptr));
ASSERT_OK(f->Append(content, IOOptions(), nullptr));
ASSERT_OK(f->Close(IOOptions(), nullptr));
}
void NewFileWriter(const std::string& filename,
std::unique_ptr<WritableFileWriter>* writer) {
std::string path = Path(filename);
EnvOptions env_options;
std::unique_ptr<WritableFile> file;
ASSERT_OK(env_->NewWritableFile(path, &file, env_options));
writer->reset(new WritableFileWriter(
NewLegacyWritableFileWrapper(std::move(file)), path, env_options));
}
void NewFileReader(const std::string& filename, const FileOptions& opt,
std::unique_ptr<RandomAccessFileReader>* reader) {
std::string path = Path(filename);
std::unique_ptr<FSRandomAccessFile> f;
ASSERT_OK(fs_->NewRandomAccessFile(path, opt, &f, nullptr));
reader->reset(new RandomAccessFileReader(std::move(f), path, env_));
}
void NewTableReader(const ImmutableCFOptions& ioptions,
const FileOptions& foptions,
const InternalKeyComparator& comparator,
const std::string& table_name,
std::unique_ptr<BlockBasedTable>* table) {
std::unique_ptr<RandomAccessFileReader> file;
NewFileReader(table_name, foptions, &file);
uint64_t file_size = 0;
ASSERT_OK(env_->GetFileSize(Path(table_name), &file_size));
std::unique_ptr<TableReader> table_reader;
ASSERT_OK(BlockBasedTable::Open(ioptions, EnvOptions(),
table_factory_.table_options(), comparator,
std::move(file), file_size, &table_reader));
table->reset(reinterpret_cast<BlockBasedTable*>(table_reader.release()));
}
std::string ToInternalKey(const std::string& key) {
InternalKey internal_key(key, 0, ValueType::kTypeValue);
return internal_key.Encode().ToString();
}
void ReadFooter(RandomAccessFileReader* file, Footer* footer) {
uint64_t file_size = 0;
ASSERT_OK(env_->GetFileSize(file->file_name(), &file_size));
ReadFooterFromFile(file, nullptr /* prefetch_buffer */, file_size, footer,
kBlockBasedTableMagicNumber);
}
// NOTE: compression_type returns the compression type of the fetched block
// contents, so if the block is fetched and uncompressed, then it's
// kNoCompression.
void FetchBlock(RandomAccessFileReader* file, const BlockHandle& block,
BlockType block_type, bool compressed, bool do_uncompress,
MemoryAllocator* heap_buf_allocator,
MemoryAllocator* compressed_buf_allocator,
BlockContents* contents, MemcpyStats* stats,
CompressionType* compresstion_type) {
Options options;
ImmutableCFOptions ioptions(options);
ReadOptions roptions;
PersistentCacheOptions persistent_cache_options;
Footer footer;
ReadFooter(file, &footer);
std::unique_ptr<BlockFetcher> fetcher(new BlockFetcher(
file, nullptr /* prefetch_buffer */, footer, roptions, block, contents,
ioptions, do_uncompress, compressed, block_type,
UncompressionDict::GetEmptyDict(), persistent_cache_options,
heap_buf_allocator, compressed_buf_allocator));
ASSERT_OK(fetcher->ReadBlockContents());
stats->num_stack_buf_memcpy = fetcher->TEST_GetNumStackBufMemcpy();
stats->num_heap_buf_memcpy = fetcher->TEST_GetNumHeapBufMemcpy();
stats->num_compressed_buf_memcpy =
fetcher->TEST_GetNumCompressedBufMemcpy();
*compresstion_type = fetcher->get_compression_type();
}
// NOTE: expected_compression_type is the expected compression
// type of the fetched block content, if the block is uncompressed,
// then the expected compression type is kNoCompression.
void FetchFirstDataBlock(const std::string& table_name, bool use_direct_io,
bool compressed, bool do_uncompress,
CompressionType expected_compression_type,
MemoryAllocator* heap_buf_allocator,
MemoryAllocator* compressed_buf_allocator,
BlockContents* block, MemcpyStats* memcpy_stats) {
Options options;
ImmutableCFOptions ioptions(options);
InternalKeyComparator comparator(options.comparator);
FileOptions foptions;
foptions.use_direct_reads = use_direct_io;
// Get block handle for the first data block.
std::unique_ptr<BlockBasedTable> table;
NewTableReader(ioptions, foptions, comparator, table_name, &table);
std::unique_ptr<BlockBasedTable::IndexReader> index_reader;
ASSERT_OK(BinarySearchIndexReader::Create(
table.get(), nullptr /* prefetch_buffer */, false /* use_cache */,
false /* prefetch */, false /* pin */, nullptr /* lookup_context */,
&index_reader));
std::unique_ptr<InternalIteratorBase<IndexValue>> iter(
index_reader->NewIterator(
ReadOptions(), false /* disable_prefix_seek */, nullptr /* iter */,
nullptr /* get_context */, nullptr /* lookup_context */));
ASSERT_OK(iter->status());
iter->SeekToFirst();
BlockHandle first_block_handle = iter->value().handle;
// Fetch first data block.
std::unique_ptr<RandomAccessFileReader> file;
NewFileReader(table_name, foptions, &file);
CompressionType compression_type;
FetchBlock(file.get(), first_block_handle, BlockType::kData, compressed,
do_uncompress, heap_buf_allocator, compressed_buf_allocator,
block, memcpy_stats, &compression_type);
ASSERT_EQ(compression_type, expected_compression_type);
}
};
// Fetch index block under both direct IO and non-direct IO.
// Expects:
// the index block contents are the same for both read modes.
TEST_F(BlockFetcherTest, FetchIndexBlock) {
for (CompressionType compression : GetSupportedCompressions()) {
std::string table_name =
"FetchIndexBlock" + CompressionTypeToString(compression);
CreateTable(table_name, compression);
CountedMemoryAllocator allocator;
MemcpyStats memcpy_stats;
BlockContents indexes[2];
for (bool use_direct_io : {false, true}) {
FetchIndexBlock(table_name, use_direct_io, &allocator, &allocator,
&memcpy_stats, &indexes[use_direct_io]);
}
AssertSameBlock(indexes[0], indexes[1]);
}
}
// Data blocks are not compressed,
// fetch data block under both direct IO and non-direct IO.
// Expects:
// 1. in non-direct IO mode, allocate a heap buffer and memcpy the block
// into the buffer;
// 2. in direct IO mode, allocate a heap buffer and memcpy from the
// direct IO buffer to the heap buffer.
TEST_F(BlockFetcherTest, FetchUncompressedDataBlock) {
MemcpyStats memcpy_stats;
memcpy_stats.num_heap_buf_memcpy = 1;
BufAllocationStats buf_allocation_stats;
buf_allocation_stats.num_heap_buf_allocations = 1;
TestStats expected_stats{memcpy_stats, buf_allocation_stats};
TestFetchDataBlock("FetchUncompressedDataBlock", false, false, expected_stats,
expected_stats);
}
// Data blocks are compressed,
// fetch data block under both direct IO and non-direct IO,
// but do not uncompress.
// Expects:
// 1. in non-direct IO mode, allocate a compressed buffer and memcpy the block
// into the buffer;
// 2. in direct IO mode, allocate a compressed buffer and memcpy from the
// direct IO buffer to the compressed buffer.
TEST_F(BlockFetcherTest, FetchCompressedDataBlock) {
MemcpyStats memcpy_stats;
memcpy_stats.num_compressed_buf_memcpy = 1;
BufAllocationStats buf_allocation_stats;
buf_allocation_stats.num_compressed_buf_allocations = 1;
TestStats expected_stats{memcpy_stats, buf_allocation_stats};
TestFetchDataBlock("FetchCompressedDataBlock", true, false, expected_stats,
expected_stats);
}
// Data blocks are compressed,
// fetch and uncompress data block under both direct IO and non-direct IO.
// Expects:
// 1. in non-direct IO mode, since the block is small, so it's first memcpyed
// to the stack buffer, then a heap buffer is allocated and the block is
// uncompressed into the heap.
// 2. in direct IO mode mode, allocate a heap buffer, then directly uncompress
// and memcpy from the direct IO buffer to the heap buffer.
TEST_F(BlockFetcherTest, FetchAndUncompressCompressedDataBlock) {
TestStats expected_non_direct_io_stats;
{
MemcpyStats memcpy_stats;
memcpy_stats.num_stack_buf_memcpy = 1;
memcpy_stats.num_heap_buf_memcpy = 1;
BufAllocationStats buf_allocation_stats;
buf_allocation_stats.num_heap_buf_allocations = 1;
buf_allocation_stats.num_compressed_buf_allocations = 0;
expected_non_direct_io_stats = {memcpy_stats, buf_allocation_stats};
}
TestStats expected_direct_io_stats;
{
MemcpyStats memcpy_stats;
memcpy_stats.num_heap_buf_memcpy = 1;
BufAllocationStats buf_allocation_stats;
buf_allocation_stats.num_heap_buf_allocations = 1;
expected_direct_io_stats = {memcpy_stats, buf_allocation_stats};
}
TestFetchDataBlock("FetchAndUncompressCompressedDataBlock", true, true,
expected_non_direct_io_stats, expected_direct_io_stats);
}
} // namespace
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}