rocksdb/utilities/persistent_cache/block_cache_tier_file.cc
Karthikeyan Radhakrishnan 3068870cce Making persistent cache more resilient to filesystem failures
Summary:
The persistent cache is designed to hop over errors and return key not found. So far, it has shown resilience to write errors, encoding errors, data corruption etc. It is not resilient against disappearing files/directories. This was exposed during testing when multiple instances of persistence cache was started sharing the same directory simulating an unpredictable filesystem environment.

This patch

- makes the write code path more resilient to errors while creating files
- makes the read code path more resilient to handle situation where files are not found
- added a test that does negative write/read testing by removing the directory while writes are in progress
Closes https://github.com/facebook/rocksdb/pull/1472

Differential Revision: D4143413

Pulled By: kradhakrishnan

fbshipit-source-id: fd25e9b
2016-11-22 10:39:10 -08:00

588 lines
15 KiB
C++

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
#ifndef ROCKSDB_LITE
#include "utilities/persistent_cache/block_cache_tier_file.h"
#ifndef OS_WIN
#include <unistd.h>
#endif
#include <memory>
#include <vector>
#include "util/crc32c.h"
namespace rocksdb {
//
// File creation factories
//
Status NewWritableCacheFile(Env* const env, const std::string& filepath,
std::unique_ptr<WritableFile>* file,
const bool use_direct_writes = false) {
EnvOptions opt;
opt.use_direct_writes = use_direct_writes;
Status s = env->NewWritableFile(filepath, file, opt);
return s;
}
Status NewRandomAccessCacheFile(Env* const env, const std::string& filepath,
std::unique_ptr<RandomAccessFile>* file,
const bool use_direct_reads = true) {
EnvOptions opt;
opt.use_direct_reads = use_direct_reads;
Status s = env->NewRandomAccessFile(filepath, file, opt);
return s;
}
//
// BlockCacheFile
//
Status BlockCacheFile::Delete(uint64_t* size) {
Status status = env_->GetFileSize(Path(), size);
if (!status.ok()) {
return status;
}
return env_->DeleteFile(Path());
}
//
// CacheRecord
//
// Cache record represents the record on disk
//
// +--------+---------+----------+------------+---------------+-------------+
// | magic | crc | key size | value size | key data | value data |
// +--------+---------+----------+------------+---------------+-------------+
// <-- 4 --><-- 4 --><-- 4 --><-- 4 --><-- key size --><-- v-size -->
//
struct CacheRecordHeader {
CacheRecordHeader() {}
CacheRecordHeader(const uint32_t magic, const uint32_t key_size,
const uint32_t val_size)
: magic_(magic), crc_(0), key_size_(key_size), val_size_(val_size) {}
uint32_t magic_;
uint32_t crc_;
uint32_t key_size_;
uint32_t val_size_;
};
struct CacheRecord {
CacheRecord() {}
CacheRecord(const Slice& key, const Slice& val)
: hdr_(MAGIC, static_cast<uint32_t>(key.size()),
static_cast<uint32_t>(val.size())),
key_(key),
val_(val) {
hdr_.crc_ = ComputeCRC();
}
uint32_t ComputeCRC() const;
bool Serialize(std::vector<CacheWriteBuffer*>* bufs, size_t* woff);
bool Deserialize(const Slice& buf);
static uint32_t CalcSize(const Slice& key, const Slice& val) {
return static_cast<uint32_t>(sizeof(CacheRecordHeader) + key.size() +
val.size());
}
static const uint32_t MAGIC = 0xfefa;
bool Append(std::vector<CacheWriteBuffer*>* bufs, size_t* woff,
const char* data, const size_t size);
CacheRecordHeader hdr_;
Slice key_;
Slice val_;
};
static_assert(sizeof(CacheRecordHeader) == 16, "DataHeader is not aligned");
uint32_t CacheRecord::ComputeCRC() const {
uint32_t crc = 0;
CacheRecordHeader tmp = hdr_;
tmp.crc_ = 0;
crc = crc32c::Extend(crc, reinterpret_cast<const char*>(&tmp), sizeof(tmp));
crc = crc32c::Extend(crc, reinterpret_cast<const char*>(key_.data()),
key_.size());
crc = crc32c::Extend(crc, reinterpret_cast<const char*>(val_.data()),
val_.size());
return crc;
}
bool CacheRecord::Serialize(std::vector<CacheWriteBuffer*>* bufs,
size_t* woff) {
assert(bufs->size());
return Append(bufs, woff, reinterpret_cast<const char*>(&hdr_),
sizeof(hdr_)) &&
Append(bufs, woff, reinterpret_cast<const char*>(key_.data()),
key_.size()) &&
Append(bufs, woff, reinterpret_cast<const char*>(val_.data()),
val_.size());
}
bool CacheRecord::Append(std::vector<CacheWriteBuffer*>* bufs, size_t* woff,
const char* data, const size_t data_size) {
assert(*woff < bufs->size());
const char* p = data;
size_t size = data_size;
while (size && *woff < bufs->size()) {
CacheWriteBuffer* buf = (*bufs)[*woff];
const size_t free = buf->Free();
if (size <= free) {
buf->Append(p, size);
size = 0;
} else {
buf->Append(p, free);
p += free;
size -= free;
assert(!buf->Free());
assert(buf->Used() == buf->Capacity());
}
if (!buf->Free()) {
*woff += 1;
}
}
assert(!size);
return !size;
}
bool CacheRecord::Deserialize(const Slice& data) {
assert(data.size() >= sizeof(CacheRecordHeader));
if (data.size() < sizeof(CacheRecordHeader)) {
return false;
}
memcpy(&hdr_, data.data(), sizeof(hdr_));
assert(hdr_.key_size_ + hdr_.val_size_ + sizeof(hdr_) == data.size());
if (hdr_.key_size_ + hdr_.val_size_ + sizeof(hdr_) != data.size()) {
return false;
}
key_ = Slice(data.data_ + sizeof(hdr_), hdr_.key_size_);
val_ = Slice(key_.data_ + hdr_.key_size_, hdr_.val_size_);
if (!(hdr_.magic_ == MAGIC && ComputeCRC() == hdr_.crc_)) {
fprintf(stderr, "** magic %d ** \n", hdr_.magic_);
fprintf(stderr, "** key_size %d ** \n", hdr_.key_size_);
fprintf(stderr, "** val_size %d ** \n", hdr_.val_size_);
fprintf(stderr, "** key %s ** \n", key_.ToString().c_str());
fprintf(stderr, "** val %s ** \n", val_.ToString().c_str());
for (size_t i = 0; i < hdr_.val_size_; ++i) {
fprintf(stderr, "%d.", (uint8_t)val_.data()[i]);
}
fprintf(stderr, "\n** cksum %d != %d **", hdr_.crc_, ComputeCRC());
}
assert(hdr_.magic_ == MAGIC && ComputeCRC() == hdr_.crc_);
return hdr_.magic_ == MAGIC && ComputeCRC() == hdr_.crc_;
}
//
// RandomAccessFile
//
bool RandomAccessCacheFile::Open(const bool enable_direct_reads) {
WriteLock _(&rwlock_);
return OpenImpl(enable_direct_reads);
}
bool RandomAccessCacheFile::OpenImpl(const bool enable_direct_reads) {
rwlock_.AssertHeld();
Debug(log_, "Opening cache file %s", Path().c_str());
Status status = NewRandomAccessCacheFile(env_, Path(), &file_);
if (!status.ok()) {
Error(log_, "Error opening random access file %s. %s", Path().c_str(),
status.ToString().c_str());
return false;
}
return true;
}
bool RandomAccessCacheFile::Read(const LBA& lba, Slice* key, Slice* val,
char* scratch) {
ReadLock _(&rwlock_);
assert(lba.cache_id_ == cache_id_);
if (!file_) {
return false;
}
Slice result;
Status s = file_->Read(lba.off_, lba.size_, &result, scratch);
if (!s.ok()) {
Error(log_, "Error reading from file %s. %s", Path().c_str(),
s.ToString().c_str());
return false;
}
assert(result.data() == scratch);
return ParseRec(lba, key, val, scratch);
}
bool RandomAccessCacheFile::ParseRec(const LBA& lba, Slice* key, Slice* val,
char* scratch) {
Slice data(scratch, lba.size_);
CacheRecord rec;
if (!rec.Deserialize(data)) {
assert(!"Error deserializing data");
Error(log_, "Error de-serializing record from file %s off %d",
Path().c_str(), lba.off_);
return false;
}
*key = Slice(rec.key_);
*val = Slice(rec.val_);
return true;
}
//
// WriteableCacheFile
//
WriteableCacheFile::~WriteableCacheFile() {
WriteLock _(&rwlock_);
if (!eof_) {
// This file never flushed. We give priority to shutdown since this is a
// cache
// TODO(krad): Figure a way to flush the pending data
if (file_) {
assert(refs_ == 1);
--refs_;
}
}
assert(!refs_);
ClearBuffers();
}
bool WriteableCacheFile::Create(const bool enable_direct_writes,
const bool enable_direct_reads) {
WriteLock _(&rwlock_);
enable_direct_reads_ = enable_direct_reads;
Debug(log_, "Creating new cache %s (max size is %d B)", Path().c_str(),
max_size_);
Status s = env_->FileExists(Path());
if (s.ok()) {
Warn(log_, "File %s already exists. %s", Path().c_str(),
s.ToString().c_str());
}
s = NewWritableCacheFile(env_, Path(), &file_);
if (!s.ok()) {
Warn(log_, "Unable to create file %s. %s", Path().c_str(),
s.ToString().c_str());
return false;
}
assert(!refs_);
++refs_;
return true;
}
bool WriteableCacheFile::Append(const Slice& key, const Slice& val, LBA* lba) {
WriteLock _(&rwlock_);
if (eof_) {
// We can't append since the file is full
return false;
}
// estimate the space required to store the (key, val)
uint32_t rec_size = CacheRecord::CalcSize(key, val);
if (!ExpandBuffer(rec_size)) {
// unable to expand the buffer
Debug(log_, "Error expanding buffers. size=%d", rec_size);
return false;
}
lba->cache_id_ = cache_id_;
lba->off_ = disk_woff_;
lba->size_ = rec_size;
CacheRecord rec(key, val);
if (!rec.Serialize(&bufs_, &buf_woff_)) {
// unexpected error: unable to serialize the data
assert(!"Error serializing record");
return false;
}
disk_woff_ += rec_size;
eof_ = disk_woff_ >= max_size_;
// dispatch buffer for flush
DispatchBuffer();
return true;
}
bool WriteableCacheFile::ExpandBuffer(const size_t size) {
rwlock_.AssertHeld();
assert(!eof_);
// determine if there is enough space
size_t free = 0; // compute the free space left in buffer
for (size_t i = buf_woff_; i < bufs_.size(); ++i) {
free += bufs_[i]->Free();
if (size <= free) {
// we have enough space in the buffer
return true;
}
}
// expand the buffer until there is enough space to write `size` bytes
assert(free < size);
while (free < size) {
CacheWriteBuffer* const buf = alloc_->Allocate();
if (!buf) {
Debug(log_, "Unable to allocate buffers");
return false;
}
size_ += static_cast<uint32_t>(buf->Free());
free += buf->Free();
bufs_.push_back(buf);
}
assert(free >= size);
return true;
}
void WriteableCacheFile::DispatchBuffer() {
rwlock_.AssertHeld();
assert(bufs_.size());
assert(buf_doff_ <= buf_woff_);
assert(buf_woff_ <= bufs_.size());
if (pending_ios_) {
return;
}
if (!eof_ && buf_doff_ == buf_woff_) {
// dispatch buffer is pointing to write buffer and we haven't hit eof
return;
}
assert(eof_ || buf_doff_ < buf_woff_);
assert(buf_doff_ < bufs_.size());
assert(file_);
auto* buf = bufs_[buf_doff_];
const uint64_t file_off = buf_doff_ * alloc_->BufferSize();
assert(!buf->Free() ||
(eof_ && buf_doff_ == buf_woff_ && buf_woff_ < bufs_.size()));
// we have reached end of file, and there is space in the last buffer
// pad it with zero for direct IO
buf->FillTrailingZeros();
assert(buf->Used() % kFileAlignmentSize == 0);
writer_->Write(file_.get(), buf, file_off,
std::bind(&WriteableCacheFile::BufferWriteDone, this));
pending_ios_++;
buf_doff_++;
}
void WriteableCacheFile::BufferWriteDone() {
WriteLock _(&rwlock_);
assert(bufs_.size());
pending_ios_--;
if (buf_doff_ < bufs_.size()) {
DispatchBuffer();
}
if (eof_ && buf_doff_ >= bufs_.size() && !pending_ios_) {
// end-of-file reached, move to read mode
CloseAndOpenForReading();
}
}
void WriteableCacheFile::CloseAndOpenForReading() {
// Our env abstraction do not allow reading from a file opened for appending
// We need close the file and re-open it for reading
Close();
RandomAccessCacheFile::OpenImpl(enable_direct_reads_);
}
bool WriteableCacheFile::ReadBuffer(const LBA& lba, Slice* key, Slice* block,
char* scratch) {
rwlock_.AssertHeld();
if (!ReadBuffer(lba, scratch)) {
Error(log_, "Error reading from buffer. cache=%d off=%d", cache_id_,
lba.off_);
return false;
}
return ParseRec(lba, key, block, scratch);
}
bool WriteableCacheFile::ReadBuffer(const LBA& lba, char* data) {
rwlock_.AssertHeld();
assert(lba.off_ < disk_woff_);
// we read from the buffers like reading from a flat file. The list of buffers
// are treated as contiguous stream of data
char* tmp = data;
size_t pending_nbytes = lba.size_;
// start buffer
size_t start_idx = lba.off_ / alloc_->BufferSize();
// offset into the start buffer
size_t start_off = lba.off_ % alloc_->BufferSize();
assert(start_idx <= buf_woff_);
for (size_t i = start_idx; pending_nbytes && i < bufs_.size(); ++i) {
assert(i <= buf_woff_);
auto* buf = bufs_[i];
assert(i == buf_woff_ || !buf->Free());
// bytes to write to the buffer
size_t nbytes = pending_nbytes > (buf->Used() - start_off)
? (buf->Used() - start_off)
: pending_nbytes;
memcpy(tmp, buf->Data() + start_off, nbytes);
// left over to be written
pending_nbytes -= nbytes;
start_off = 0;
tmp += nbytes;
}
assert(!pending_nbytes);
if (pending_nbytes) {
return false;
}
assert(tmp == data + lba.size_);
return true;
}
void WriteableCacheFile::Close() {
rwlock_.AssertHeld();
assert(size_ >= max_size_);
assert(disk_woff_ >= max_size_);
assert(buf_doff_ == bufs_.size());
assert(bufs_.size() - buf_woff_ <= 1);
assert(!pending_ios_);
Info(log_, "Closing file %s. size=%d written=%d", Path().c_str(), size_,
disk_woff_);
ClearBuffers();
file_.reset();
assert(refs_);
--refs_;
}
void WriteableCacheFile::ClearBuffers() {
for (size_t i = 0; i < bufs_.size(); ++i) {
alloc_->Deallocate(bufs_[i]);
}
bufs_.clear();
}
//
// ThreadedFileWriter implementation
//
ThreadedWriter::ThreadedWriter(PersistentCacheTier* const cache,
const size_t qdepth, const size_t io_size)
: Writer(cache), io_size_(io_size) {
for (size_t i = 0; i < qdepth; ++i) {
std::thread th(&ThreadedWriter::ThreadMain, this);
threads_.push_back(std::move(th));
}
}
void ThreadedWriter::Stop() {
// notify all threads to exit
for (size_t i = 0; i < threads_.size(); ++i) {
q_.Push(IO(/*signal=*/true));
}
// wait for all threads to exit
for (auto& th : threads_) {
th.join();
assert(!th.joinable());
}
threads_.clear();
}
void ThreadedWriter::Write(WritableFile* const file, CacheWriteBuffer* buf,
const uint64_t file_off,
const std::function<void()> callback) {
q_.Push(IO(file, buf, file_off, callback));
}
void ThreadedWriter::ThreadMain() {
while (true) {
// Fetch the IO to process
IO io(q_.Pop());
if (io.signal_) {
// that's secret signal to exit
break;
}
// Reserve space for writing the buffer
while (!cache_->Reserve(io.buf_->Used())) {
// We can fail to reserve space if every file in the system
// is being currently accessed
/* sleep override */
Env::Default()->SleepForMicroseconds(1000000);
}
DispatchIO(io);
io.callback_();
}
}
void ThreadedWriter::DispatchIO(const IO& io) {
size_t written = 0;
while (written < io.buf_->Used()) {
Slice data(io.buf_->Data() + written, io_size_);
Status s = io.file_->Append(data);
assert(s.ok());
if (!s.ok()) {
// That is definite IO error to device. There is not much we can
// do but ignore the failure. This can lead to corruption of data on
// disk, but the cache will skip while reading
fprintf(stderr, "Error writing data to file. %s\n", s.ToString().c_str());
}
written += io_size_;
}
}
} // namespace rocksdb
#endif