rocksdb/memtable/write_buffer_manager_test.cc
Siying Dong beb44ec3eb WriteBufferManager's dummy entry size to block cache 1MB -> 256KB (#5175)
Summary:
Dummy cache size of 1MB is too large for small block sizes. Our GetDefaultCacheShardBits() use min_shard_size = 512L * 1024L to determine number of shards, so 1MB will excceeds the size of the whole shard and make the cache excceeds the budget.
Change it to 256KB accordingly.
There shouldn't be obvious performance impact, since inserting a cache entry every 256KB of memtable inserts is still infrequently enough.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5175

Differential Revision: D14954289

Pulled By: siying

fbshipit-source-id: 2c275255c1ac3992174e06529e44c55538325c94
2019-04-16 12:03:07 -07:00

152 lines
5.3 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "rocksdb/write_buffer_manager.h"
#include "util/testharness.h"
namespace rocksdb {
class WriteBufferManagerTest : public testing::Test {};
#ifndef ROCKSDB_LITE
TEST_F(WriteBufferManagerTest, ShouldFlush) {
// A write buffer manager of size 10MB
std::unique_ptr<WriteBufferManager> wbf(
new WriteBufferManager(10 * 1024 * 1024));
wbf->ReserveMem(8 * 1024 * 1024);
ASSERT_FALSE(wbf->ShouldFlush());
// 90% of the hard limit will hit the condition
wbf->ReserveMem(1 * 1024 * 1024);
ASSERT_TRUE(wbf->ShouldFlush());
// Scheduling for freeing will release the condition
wbf->ScheduleFreeMem(1 * 1024 * 1024);
ASSERT_FALSE(wbf->ShouldFlush());
wbf->ReserveMem(2 * 1024 * 1024);
ASSERT_TRUE(wbf->ShouldFlush());
wbf->ScheduleFreeMem(4 * 1024 * 1024);
// 11MB total, 6MB mutable. hard limit still hit
ASSERT_TRUE(wbf->ShouldFlush());
wbf->ScheduleFreeMem(2 * 1024 * 1024);
// 11MB total, 4MB mutable. hard limit stills but won't flush because more
// than half data is already being flushed.
ASSERT_FALSE(wbf->ShouldFlush());
wbf->ReserveMem(4 * 1024 * 1024);
// 15 MB total, 8MB mutable.
ASSERT_TRUE(wbf->ShouldFlush());
wbf->FreeMem(7 * 1024 * 1024);
// 9MB total, 8MB mutable.
ASSERT_FALSE(wbf->ShouldFlush());
}
TEST_F(WriteBufferManagerTest, CacheCost) {
// 1GB cache
std::shared_ptr<Cache> cache = NewLRUCache(1024 * 1024 * 1024, 4);
// A write buffer manager of size 50MB
std::unique_ptr<WriteBufferManager> wbf(
new WriteBufferManager(50 * 1024 * 1024, cache));
// Allocate 333KB will allocate 512KB
wbf->ReserveMem(333 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 2 * 256 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 2 * 256 * 1024 + 10000);
// Allocate another 512KB
wbf->ReserveMem(512 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 4 * 256 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 4 * 256 * 1024 + 10000);
// Allocate another 10MB
wbf->ReserveMem(10 * 1024 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 11 * 1024 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 11 * 1024 * 1024 + 10000);
// Free 1MB will not cause any change in cache cost
wbf->FreeMem(1024 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 11 * 1024 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 11 * 1024 * 1024 + 10000);
ASSERT_FALSE(wbf->ShouldFlush());
// Allocate another 41MB
wbf->ReserveMem(41 * 1024 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 51 * 1024 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 51 * 1024 * 1024 + 10000);
ASSERT_TRUE(wbf->ShouldFlush());
ASSERT_TRUE(wbf->ShouldFlush());
wbf->ScheduleFreeMem(20 * 1024 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 51 * 1024 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 51 * 1024 * 1024 + 10000);
// Still need flush as the hard limit hits
ASSERT_TRUE(wbf->ShouldFlush());
// Free 20MB will releae 256KB from cache
wbf->FreeMem(20 * 1024 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 51 * 1024 * 1024 - 256 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 51 * 1024 * 1024 - 256 * 1024 + 10000);
ASSERT_FALSE(wbf->ShouldFlush());
// Every free will release 256KB if still not hit 3/4
wbf->FreeMem(16 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 51 * 1024 * 1024 - 2 * 256 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 51 * 1024 * 1024 - 2 * 256 * 1024 + 10000);
wbf->FreeMem(16 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 51 * 1024 * 1024 - 3 * 256 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 51 * 1024 * 1024 - 3 * 256 * 1024 + 10000);
// Reserve 512KB will not cause any change in cache cost
wbf->ReserveMem(512 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 51 * 1024 * 1024 - 3 * 256 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 51 * 1024 * 1024 - 3 * 256 * 1024 + 10000);
wbf->FreeMem(16 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 51 * 1024 * 1024 - 4 * 256 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 51 * 1024 * 1024 - 4 * 256 * 1024 + 10000);
// Destory write buffer manger should free everything
wbf.reset();
ASSERT_LT(cache->GetPinnedUsage(), 1024 * 1024);
}
TEST_F(WriteBufferManagerTest, NoCapCacheCost) {
// 1GB cache
std::shared_ptr<Cache> cache = NewLRUCache(1024 * 1024 * 1024, 4);
// A write buffer manager of size 256MB
std::unique_ptr<WriteBufferManager> wbf(new WriteBufferManager(0, cache));
// Allocate 1.5MB will allocate 2MB
wbf->ReserveMem(10 * 1024 * 1024);
ASSERT_GE(cache->GetPinnedUsage(), 10 * 1024 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 10 * 1024 * 1024 + 10000);
ASSERT_FALSE(wbf->ShouldFlush());
wbf->FreeMem(9 * 1024 * 1024);
for (int i = 0; i < 40; i++) {
wbf->FreeMem(4 * 1024);
}
ASSERT_GE(cache->GetPinnedUsage(), 1024 * 1024);
ASSERT_LT(cache->GetPinnedUsage(), 1024 * 1024 + 10000);
}
#endif // ROCKSDB_LITE
} // namespace rocksdb
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}