rocksdb/file/writable_file_writer.cc
Zhichao Cao 699f45049d Introduce a mechanism to dump out blocks from block cache and re-insert to secondary cache (#8912)
Summary:
Background: Cache warming up will cause potential read performance degradation due to reading blocks from storage to the block cache. Since in production, the workload and access pattern to a certain DB is stable, it is a potential solution to dump out the blocks belonging to a certain DB to persist storage (e.g., to a file) and bulk-load the blocks to Secondary cache before the DB is relaunched. For example, when migrating a DB form host A to host B, it will take a short period of time, the access pattern to blocks in the block cache will not change much. It is efficient to dump out the blocks of certain DB, migrate to the destination host and insert them to the Secondary cache before we relaunch the DB.

Design: we introduce the interface of CacheDumpWriter and CacheDumpRead for user to store the blocks dumped out from block cache. RocksDB will encode all the information and send the string to the writer. User can implement their own writer it they want. CacheDumper and CacheLoad are introduced to save the blocks and load the blocks respectively.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/8912

Test Plan: add new tests to lru_cache_test and pass make check.

Reviewed By: pdillinger

Differential Revision: D31452871

Pulled By: zhichao-cao

fbshipit-source-id: 11ab4f5d03e383f476947116361d54188d36ec48
2021-10-07 11:42:31 -07:00

797 lines
26 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "file/writable_file_writer.h"
#include <algorithm>
#include <mutex>
#include "db/version_edit.h"
#include "monitoring/histogram.h"
#include "monitoring/iostats_context_imp.h"
#include "port/port.h"
#include "rocksdb/system_clock.h"
#include "test_util/sync_point.h"
#include "util/crc32c.h"
#include "util/random.h"
#include "util/rate_limiter.h"
namespace ROCKSDB_NAMESPACE {
IOStatus WritableFileWriter::Create(const std::shared_ptr<FileSystem>& fs,
const std::string& fname,
const FileOptions& file_opts,
std::unique_ptr<WritableFileWriter>* writer,
IODebugContext* dbg) {
std::unique_ptr<FSWritableFile> file;
IOStatus io_s = fs->NewWritableFile(fname, file_opts, &file, dbg);
if (io_s.ok()) {
writer->reset(new WritableFileWriter(std::move(file), fname, file_opts));
}
return io_s;
}
IOStatus WritableFileWriter::Append(const Slice& data,
uint32_t crc32c_checksum) {
const char* src = data.data();
size_t left = data.size();
IOStatus s;
pending_sync_ = true;
TEST_KILL_RANDOM_WITH_WEIGHT("WritableFileWriter::Append:0", REDUCE_ODDS2);
// Calculate the checksum of appended data
UpdateFileChecksum(data);
{
IOSTATS_TIMER_GUARD(prepare_write_nanos);
TEST_SYNC_POINT("WritableFileWriter::Append:BeforePrepareWrite");
writable_file_->PrepareWrite(static_cast<size_t>(GetFileSize()), left,
IOOptions(), nullptr);
}
// See whether we need to enlarge the buffer to avoid the flush
if (buf_.Capacity() - buf_.CurrentSize() < left) {
for (size_t cap = buf_.Capacity();
cap < max_buffer_size_; // There is still room to increase
cap *= 2) {
// See whether the next available size is large enough.
// Buffer will never be increased to more than max_buffer_size_.
size_t desired_capacity = std::min(cap * 2, max_buffer_size_);
if (desired_capacity - buf_.CurrentSize() >= left ||
(use_direct_io() && desired_capacity == max_buffer_size_)) {
buf_.AllocateNewBuffer(desired_capacity, true);
break;
}
}
}
// Flush only when buffered I/O
if (!use_direct_io() && (buf_.Capacity() - buf_.CurrentSize()) < left) {
if (buf_.CurrentSize() > 0) {
s = Flush();
if (!s.ok()) {
return s;
}
}
assert(buf_.CurrentSize() == 0);
}
if (perform_data_verification_ && buffered_data_with_checksum_ &&
crc32c_checksum != 0) {
// Since we want to use the checksum of the input data, we cannot break it
// into several pieces. We will only write them in the buffer when buffer
// size is enough. Otherwise, we will directly write it down.
if (use_direct_io() || (buf_.Capacity() - buf_.CurrentSize()) >= left) {
if ((buf_.Capacity() - buf_.CurrentSize()) >= left) {
size_t appended = buf_.Append(src, left);
if (appended != left) {
s = IOStatus::Corruption("Write buffer append failure");
}
buffered_data_crc32c_checksum_ = crc32c::Crc32cCombine(
buffered_data_crc32c_checksum_, crc32c_checksum, appended);
} else {
while (left > 0) {
size_t appended = buf_.Append(src, left);
buffered_data_crc32c_checksum_ =
crc32c::Extend(buffered_data_crc32c_checksum_, src, appended);
left -= appended;
src += appended;
if (left > 0) {
s = Flush();
if (!s.ok()) {
break;
}
}
}
}
} else {
assert(buf_.CurrentSize() == 0);
buffered_data_crc32c_checksum_ = crc32c_checksum;
s = WriteBufferedWithChecksum(src, left);
}
} else {
// In this case, either we do not need to do the data verification or
// caller does not provide the checksum of the data (crc32c_checksum = 0).
//
// We never write directly to disk with direct I/O on.
// or we simply use it for its original purpose to accumulate many small
// chunks
if (use_direct_io() || (buf_.Capacity() >= left)) {
while (left > 0) {
size_t appended = buf_.Append(src, left);
if (perform_data_verification_ && buffered_data_with_checksum_) {
buffered_data_crc32c_checksum_ =
crc32c::Extend(buffered_data_crc32c_checksum_, src, appended);
}
left -= appended;
src += appended;
if (left > 0) {
s = Flush();
if (!s.ok()) {
break;
}
}
}
} else {
// Writing directly to file bypassing the buffer
assert(buf_.CurrentSize() == 0);
if (perform_data_verification_ && buffered_data_with_checksum_) {
buffered_data_crc32c_checksum_ = crc32c::Value(src, left);
s = WriteBufferedWithChecksum(src, left);
} else {
s = WriteBuffered(src, left);
}
}
}
TEST_KILL_RANDOM("WritableFileWriter::Append:1");
if (s.ok()) {
filesize_ += data.size();
}
return s;
}
IOStatus WritableFileWriter::Pad(const size_t pad_bytes) {
assert(pad_bytes < kDefaultPageSize);
size_t left = pad_bytes;
size_t cap = buf_.Capacity() - buf_.CurrentSize();
size_t pad_start = buf_.CurrentSize();
// Assume pad_bytes is small compared to buf_ capacity. So we always
// use buf_ rather than write directly to file in certain cases like
// Append() does.
while (left) {
size_t append_bytes = std::min(cap, left);
buf_.PadWith(append_bytes, 0);
left -= append_bytes;
if (left > 0) {
IOStatus s = Flush();
if (!s.ok()) {
return s;
}
}
cap = buf_.Capacity() - buf_.CurrentSize();
}
pending_sync_ = true;
filesize_ += pad_bytes;
if (perform_data_verification_) {
buffered_data_crc32c_checksum_ =
crc32c::Extend(buffered_data_crc32c_checksum_,
buf_.BufferStart() + pad_start, pad_bytes);
}
return IOStatus::OK();
}
IOStatus WritableFileWriter::Close() {
// Do not quit immediately on failure the file MUST be closed
IOStatus s;
// Possible to close it twice now as we MUST close
// in __dtor, simply flushing is not enough
// Windows when pre-allocating does not fill with zeros
// also with unbuffered access we also set the end of data.
if (writable_file_.get() == nullptr) {
return s;
}
s = Flush(); // flush cache to OS
IOStatus interim;
// In direct I/O mode we write whole pages so
// we need to let the file know where data ends.
if (use_direct_io()) {
{
#ifndef ROCKSDB_LITE
FileOperationInfo::StartTimePoint start_ts;
if (ShouldNotifyListeners()) {
start_ts = FileOperationInfo::StartNow();
}
#endif
interim = writable_file_->Truncate(filesize_, IOOptions(), nullptr);
#ifndef ROCKSDB_LITE
if (ShouldNotifyListeners()) {
auto finish_ts = FileOperationInfo::FinishNow();
NotifyOnFileTruncateFinish(start_ts, finish_ts, s);
}
#endif
}
if (interim.ok()) {
{
#ifndef ROCKSDB_LITE
FileOperationInfo::StartTimePoint start_ts;
if (ShouldNotifyListeners()) {
start_ts = FileOperationInfo::StartNow();
}
#endif
interim = writable_file_->Fsync(IOOptions(), nullptr);
#ifndef ROCKSDB_LITE
if (ShouldNotifyListeners()) {
auto finish_ts = FileOperationInfo::FinishNow();
NotifyOnFileSyncFinish(start_ts, finish_ts, s,
FileOperationType::kFsync);
}
#endif
}
}
if (!interim.ok() && s.ok()) {
s = interim;
}
}
TEST_KILL_RANDOM("WritableFileWriter::Close:0");
{
#ifndef ROCKSDB_LITE
FileOperationInfo::StartTimePoint start_ts;
if (ShouldNotifyListeners()) {
start_ts = FileOperationInfo::StartNow();
}
#endif
interim = writable_file_->Close(IOOptions(), nullptr);
#ifndef ROCKSDB_LITE
if (ShouldNotifyListeners()) {
auto finish_ts = FileOperationInfo::FinishNow();
NotifyOnFileCloseFinish(start_ts, finish_ts, s);
}
#endif
}
if (!interim.ok() && s.ok()) {
s = interim;
}
writable_file_.reset();
TEST_KILL_RANDOM("WritableFileWriter::Close:1");
if (s.ok() && checksum_generator_ != nullptr && !checksum_finalized_) {
checksum_generator_->Finalize();
checksum_finalized_ = true;
}
return s;
}
// write out the cached data to the OS cache or storage if direct I/O
// enabled
IOStatus WritableFileWriter::Flush() {
IOStatus s;
TEST_KILL_RANDOM_WITH_WEIGHT("WritableFileWriter::Flush:0", REDUCE_ODDS2);
if (buf_.CurrentSize() > 0) {
if (use_direct_io()) {
#ifndef ROCKSDB_LITE
if (pending_sync_) {
if (perform_data_verification_ && buffered_data_with_checksum_) {
s = WriteDirectWithChecksum();
} else {
s = WriteDirect();
}
}
#endif // !ROCKSDB_LITE
} else {
if (perform_data_verification_ && buffered_data_with_checksum_) {
s = WriteBufferedWithChecksum(buf_.BufferStart(), buf_.CurrentSize());
} else {
s = WriteBuffered(buf_.BufferStart(), buf_.CurrentSize());
}
}
if (!s.ok()) {
return s;
}
}
{
#ifndef ROCKSDB_LITE
FileOperationInfo::StartTimePoint start_ts;
if (ShouldNotifyListeners()) {
start_ts = FileOperationInfo::StartNow();
}
#endif
s = writable_file_->Flush(IOOptions(), nullptr);
#ifndef ROCKSDB_LITE
if (ShouldNotifyListeners()) {
auto finish_ts = std::chrono::steady_clock::now();
NotifyOnFileFlushFinish(start_ts, finish_ts, s);
}
#endif
}
if (!s.ok()) {
return s;
}
// sync OS cache to disk for every bytes_per_sync_
// TODO: give log file and sst file different options (log
// files could be potentially cached in OS for their whole
// life time, thus we might not want to flush at all).
// We try to avoid sync to the last 1MB of data. For two reasons:
// (1) avoid rewrite the same page that is modified later.
// (2) for older version of OS, write can block while writing out
// the page.
// Xfs does neighbor page flushing outside of the specified ranges. We
// need to make sure sync range is far from the write offset.
if (!use_direct_io() && bytes_per_sync_) {
const uint64_t kBytesNotSyncRange =
1024 * 1024; // recent 1MB is not synced.
const uint64_t kBytesAlignWhenSync = 4 * 1024; // Align 4KB.
if (filesize_ > kBytesNotSyncRange) {
uint64_t offset_sync_to = filesize_ - kBytesNotSyncRange;
offset_sync_to -= offset_sync_to % kBytesAlignWhenSync;
assert(offset_sync_to >= last_sync_size_);
if (offset_sync_to > 0 &&
offset_sync_to - last_sync_size_ >= bytes_per_sync_) {
s = RangeSync(last_sync_size_, offset_sync_to - last_sync_size_);
last_sync_size_ = offset_sync_to;
}
}
}
return s;
}
std::string WritableFileWriter::GetFileChecksum() {
if (checksum_generator_ != nullptr) {
assert(checksum_finalized_);
return checksum_generator_->GetChecksum();
} else {
return kUnknownFileChecksum;
}
}
const char* WritableFileWriter::GetFileChecksumFuncName() const {
if (checksum_generator_ != nullptr) {
return checksum_generator_->Name();
} else {
return kUnknownFileChecksumFuncName;
}
}
IOStatus WritableFileWriter::Sync(bool use_fsync) {
IOStatus s = Flush();
if (!s.ok()) {
return s;
}
TEST_KILL_RANDOM("WritableFileWriter::Sync:0");
if (!use_direct_io() && pending_sync_) {
s = SyncInternal(use_fsync);
if (!s.ok()) {
return s;
}
}
TEST_KILL_RANDOM("WritableFileWriter::Sync:1");
pending_sync_ = false;
return IOStatus::OK();
}
IOStatus WritableFileWriter::SyncWithoutFlush(bool use_fsync) {
if (!writable_file_->IsSyncThreadSafe()) {
return IOStatus::NotSupported(
"Can't WritableFileWriter::SyncWithoutFlush() because "
"WritableFile::IsSyncThreadSafe() is false");
}
TEST_SYNC_POINT("WritableFileWriter::SyncWithoutFlush:1");
IOStatus s = SyncInternal(use_fsync);
TEST_SYNC_POINT("WritableFileWriter::SyncWithoutFlush:2");
return s;
}
IOStatus WritableFileWriter::SyncInternal(bool use_fsync) {
IOStatus s;
IOSTATS_TIMER_GUARD(fsync_nanos);
TEST_SYNC_POINT("WritableFileWriter::SyncInternal:0");
auto prev_perf_level = GetPerfLevel();
IOSTATS_CPU_TIMER_GUARD(cpu_write_nanos, clock_);
#ifndef ROCKSDB_LITE
FileOperationInfo::StartTimePoint start_ts;
if (ShouldNotifyListeners()) {
start_ts = FileOperationInfo::StartNow();
}
#endif
if (use_fsync) {
s = writable_file_->Fsync(IOOptions(), nullptr);
} else {
s = writable_file_->Sync(IOOptions(), nullptr);
}
#ifndef ROCKSDB_LITE
if (ShouldNotifyListeners()) {
auto finish_ts = std::chrono::steady_clock::now();
NotifyOnFileSyncFinish(
start_ts, finish_ts, s,
use_fsync ? FileOperationType::kFsync : FileOperationType::kSync);
}
#endif
SetPerfLevel(prev_perf_level);
return s;
}
IOStatus WritableFileWriter::RangeSync(uint64_t offset, uint64_t nbytes) {
IOSTATS_TIMER_GUARD(range_sync_nanos);
TEST_SYNC_POINT("WritableFileWriter::RangeSync:0");
#ifndef ROCKSDB_LITE
FileOperationInfo::StartTimePoint start_ts;
if (ShouldNotifyListeners()) {
start_ts = FileOperationInfo::StartNow();
}
#endif
IOStatus s = writable_file_->RangeSync(offset, nbytes, IOOptions(), nullptr);
#ifndef ROCKSDB_LITE
if (ShouldNotifyListeners()) {
auto finish_ts = std::chrono::steady_clock::now();
NotifyOnFileRangeSyncFinish(offset, nbytes, start_ts, finish_ts, s);
}
#endif
return s;
}
// This method writes to disk the specified data and makes use of the rate
// limiter if available
IOStatus WritableFileWriter::WriteBuffered(const char* data, size_t size) {
IOStatus s;
assert(!use_direct_io());
const char* src = data;
size_t left = size;
DataVerificationInfo v_info;
char checksum_buf[sizeof(uint32_t)];
while (left > 0) {
size_t allowed;
if (rate_limiter_ != nullptr) {
allowed = rate_limiter_->RequestToken(
left, 0 /* alignment */, writable_file_->GetIOPriority(), stats_,
RateLimiter::OpType::kWrite);
} else {
allowed = left;
}
{
IOSTATS_TIMER_GUARD(write_nanos);
TEST_SYNC_POINT("WritableFileWriter::Flush:BeforeAppend");
#ifndef ROCKSDB_LITE
FileOperationInfo::StartTimePoint start_ts;
uint64_t old_size = writable_file_->GetFileSize(IOOptions(), nullptr);
if (ShouldNotifyListeners()) {
start_ts = FileOperationInfo::StartNow();
old_size = next_write_offset_;
}
#endif
{
auto prev_perf_level = GetPerfLevel();
IOSTATS_CPU_TIMER_GUARD(cpu_write_nanos, clock_);
if (perform_data_verification_) {
Crc32cHandoffChecksumCalculation(src, allowed, checksum_buf);
v_info.checksum = Slice(checksum_buf, sizeof(uint32_t));
s = writable_file_->Append(Slice(src, allowed), IOOptions(), v_info,
nullptr);
} else {
s = writable_file_->Append(Slice(src, allowed), IOOptions(), nullptr);
}
SetPerfLevel(prev_perf_level);
}
#ifndef ROCKSDB_LITE
if (ShouldNotifyListeners()) {
auto finish_ts = std::chrono::steady_clock::now();
NotifyOnFileWriteFinish(old_size, allowed, start_ts, finish_ts, s);
}
#endif
if (!s.ok()) {
return s;
}
}
IOSTATS_ADD(bytes_written, allowed);
TEST_KILL_RANDOM("WritableFileWriter::WriteBuffered:0");
left -= allowed;
src += allowed;
}
buf_.Size(0);
buffered_data_crc32c_checksum_ = 0;
return s;
}
IOStatus WritableFileWriter::WriteBufferedWithChecksum(const char* data,
size_t size) {
IOStatus s;
assert(!use_direct_io());
assert(perform_data_verification_ && buffered_data_with_checksum_);
const char* src = data;
size_t left = size;
DataVerificationInfo v_info;
char checksum_buf[sizeof(uint32_t)];
// Check how much is allowed. Here, we loop until the rate limiter allows to
// write the entire buffer.
// TODO: need to be improved since it sort of defeats the purpose of the rate
// limiter
size_t data_size = left;
if (rate_limiter_ != nullptr) {
while (data_size > 0) {
size_t tmp_size;
tmp_size = rate_limiter_->RequestToken(
data_size, buf_.Alignment(), writable_file_->GetIOPriority(), stats_,
RateLimiter::OpType::kWrite);
data_size -= tmp_size;
}
}
{
IOSTATS_TIMER_GUARD(write_nanos);
TEST_SYNC_POINT("WritableFileWriter::Flush:BeforeAppend");
#ifndef ROCKSDB_LITE
FileOperationInfo::StartTimePoint start_ts;
uint64_t old_size = writable_file_->GetFileSize(IOOptions(), nullptr);
if (ShouldNotifyListeners()) {
start_ts = FileOperationInfo::StartNow();
old_size = next_write_offset_;
}
#endif
{
auto prev_perf_level = GetPerfLevel();
IOSTATS_CPU_TIMER_GUARD(cpu_write_nanos, clock_);
EncodeFixed32(checksum_buf, buffered_data_crc32c_checksum_);
v_info.checksum = Slice(checksum_buf, sizeof(uint32_t));
s = writable_file_->Append(Slice(src, left), IOOptions(), v_info,
nullptr);
SetPerfLevel(prev_perf_level);
}
#ifndef ROCKSDB_LITE
if (ShouldNotifyListeners()) {
auto finish_ts = std::chrono::steady_clock::now();
NotifyOnFileWriteFinish(old_size, left, start_ts, finish_ts, s);
}
#endif
if (!s.ok()) {
return s;
}
}
IOSTATS_ADD(bytes_written, left);
TEST_KILL_RANDOM("WritableFileWriter::WriteBuffered:0");
// Buffer write is successful, reset the buffer current size to 0 and reset
// the corresponding checksum value
buf_.Size(0);
buffered_data_crc32c_checksum_ = 0;
return s;
}
void WritableFileWriter::UpdateFileChecksum(const Slice& data) {
if (checksum_generator_ != nullptr) {
checksum_generator_->Update(data.data(), data.size());
}
}
// Currently, crc32c checksum is used to calculate the checksum value of the
// content in the input buffer for handoff. In the future, the checksum might be
// calculated from the existing crc32c checksums of the in WAl and Manifest
// records, or even SST file blocks.
// TODO: effectively use the existing checksum of the data being writing to
// generate the crc32c checksum instead of a raw calculation.
void WritableFileWriter::Crc32cHandoffChecksumCalculation(const char* data,
size_t size,
char* buf) {
uint32_t v_crc32c = crc32c::Extend(0, data, size);
EncodeFixed32(buf, v_crc32c);
}
// This flushes the accumulated data in the buffer. We pad data with zeros if
// necessary to the whole page.
// However, during automatic flushes padding would not be necessary.
// We always use RateLimiter if available. We move (Refit) any buffer bytes
// that are left over the
// whole number of pages to be written again on the next flush because we can
// only write on aligned
// offsets.
#ifndef ROCKSDB_LITE
IOStatus WritableFileWriter::WriteDirect() {
assert(use_direct_io());
IOStatus s;
const size_t alignment = buf_.Alignment();
assert((next_write_offset_ % alignment) == 0);
// Calculate whole page final file advance if all writes succeed
size_t file_advance = TruncateToPageBoundary(alignment, buf_.CurrentSize());
// Calculate the leftover tail, we write it here padded with zeros BUT we
// will write
// it again in the future either on Close() OR when the current whole page
// fills out
size_t leftover_tail = buf_.CurrentSize() - file_advance;
// Round up and pad
buf_.PadToAlignmentWith(0);
const char* src = buf_.BufferStart();
uint64_t write_offset = next_write_offset_;
size_t left = buf_.CurrentSize();
DataVerificationInfo v_info;
char checksum_buf[sizeof(uint32_t)];
while (left > 0) {
// Check how much is allowed
size_t size;
if (rate_limiter_ != nullptr) {
size = rate_limiter_->RequestToken(left, buf_.Alignment(),
writable_file_->GetIOPriority(),
stats_, RateLimiter::OpType::kWrite);
} else {
size = left;
}
{
IOSTATS_TIMER_GUARD(write_nanos);
TEST_SYNC_POINT("WritableFileWriter::Flush:BeforeAppend");
FileOperationInfo::StartTimePoint start_ts;
if (ShouldNotifyListeners()) {
start_ts = FileOperationInfo::StartNow();
}
// direct writes must be positional
if (perform_data_verification_) {
Crc32cHandoffChecksumCalculation(src, size, checksum_buf);
v_info.checksum = Slice(checksum_buf, sizeof(uint32_t));
s = writable_file_->PositionedAppend(Slice(src, size), write_offset,
IOOptions(), v_info, nullptr);
} else {
s = writable_file_->PositionedAppend(Slice(src, size), write_offset,
IOOptions(), nullptr);
}
if (ShouldNotifyListeners()) {
auto finish_ts = std::chrono::steady_clock::now();
NotifyOnFileWriteFinish(write_offset, size, start_ts, finish_ts, s);
}
if (!s.ok()) {
buf_.Size(file_advance + leftover_tail);
return s;
}
}
IOSTATS_ADD(bytes_written, size);
left -= size;
src += size;
write_offset += size;
assert((next_write_offset_ % alignment) == 0);
}
if (s.ok()) {
// Move the tail to the beginning of the buffer
// This never happens during normal Append but rather during
// explicit call to Flush()/Sync() or Close()
buf_.RefitTail(file_advance, leftover_tail);
// This is where we start writing next time which may or not be
// the actual file size on disk. They match if the buffer size
// is a multiple of whole pages otherwise filesize_ is leftover_tail
// behind
next_write_offset_ += file_advance;
}
return s;
}
IOStatus WritableFileWriter::WriteDirectWithChecksum() {
assert(use_direct_io());
assert(perform_data_verification_ && buffered_data_with_checksum_);
IOStatus s;
const size_t alignment = buf_.Alignment();
assert((next_write_offset_ % alignment) == 0);
// Calculate whole page final file advance if all writes succeed
size_t file_advance = TruncateToPageBoundary(alignment, buf_.CurrentSize());
// Calculate the leftover tail, we write it here padded with zeros BUT we
// will write
// it again in the future either on Close() OR when the current whole page
// fills out
size_t leftover_tail = buf_.CurrentSize() - file_advance;
// Round up, pad, and combine the checksum.
size_t last_cur_size = buf_.CurrentSize();
buf_.PadToAlignmentWith(0);
size_t padded_size = buf_.CurrentSize() - last_cur_size;
const char* padded_start = buf_.BufferStart() + last_cur_size;
uint32_t padded_checksum = crc32c::Value(padded_start, padded_size);
buffered_data_crc32c_checksum_ = crc32c::Crc32cCombine(
buffered_data_crc32c_checksum_, padded_checksum, padded_size);
const char* src = buf_.BufferStart();
uint64_t write_offset = next_write_offset_;
size_t left = buf_.CurrentSize();
DataVerificationInfo v_info;
char checksum_buf[sizeof(uint32_t)];
// Check how much is allowed. Here, we loop until the rate limiter allows to
// write the entire buffer.
// TODO: need to be improved since it sort of defeats the purpose of the rate
// limiter
size_t data_size = left;
if (rate_limiter_ != nullptr) {
while (data_size > 0) {
size_t size;
size = rate_limiter_->RequestToken(data_size, buf_.Alignment(),
writable_file_->GetIOPriority(),
stats_, RateLimiter::OpType::kWrite);
data_size -= size;
}
}
{
IOSTATS_TIMER_GUARD(write_nanos);
TEST_SYNC_POINT("WritableFileWriter::Flush:BeforeAppend");
FileOperationInfo::StartTimePoint start_ts;
if (ShouldNotifyListeners()) {
start_ts = FileOperationInfo::StartNow();
}
// direct writes must be positional
EncodeFixed32(checksum_buf, buffered_data_crc32c_checksum_);
v_info.checksum = Slice(checksum_buf, sizeof(uint32_t));
s = writable_file_->PositionedAppend(Slice(src, left), write_offset,
IOOptions(), v_info, nullptr);
if (ShouldNotifyListeners()) {
auto finish_ts = std::chrono::steady_clock::now();
NotifyOnFileWriteFinish(write_offset, left, start_ts, finish_ts, s);
}
if (!s.ok()) {
// In this case, we do not change buffered_data_crc32c_checksum_ because
// it still aligns with the data in the buffer.
buf_.Size(file_advance + leftover_tail);
buffered_data_crc32c_checksum_ =
crc32c::Value(buf_.BufferStart(), buf_.CurrentSize());
return s;
}
}
IOSTATS_ADD(bytes_written, left);
assert((next_write_offset_ % alignment) == 0);
if (s.ok()) {
// Move the tail to the beginning of the buffer
// This never happens during normal Append but rather during
// explicit call to Flush()/Sync() or Close(). Also the buffer checksum will
// recalculated accordingly.
buf_.RefitTail(file_advance, leftover_tail);
// Adjust the checksum value to align with the data in the buffer
buffered_data_crc32c_checksum_ =
crc32c::Value(buf_.BufferStart(), buf_.CurrentSize());
// This is where we start writing next time which may or not be
// the actual file size on disk. They match if the buffer size
// is a multiple of whole pages otherwise filesize_ is leftover_tail
// behind
next_write_offset_ += file_advance;
}
return s;
}
#endif // !ROCKSDB_LITE
} // namespace ROCKSDB_NAMESPACE