rocksdb/util/hash.cc
Peter Dillinger 13ded69484 Built-in support for generating unique IDs, bug fix (#8708)
Summary:
Env::GenerateUniqueId() works fine on Windows and on POSIX
where /proc/sys/kernel/random/uuid exists. Our other implementation is
flawed and easily produces collision in a new multi-threaded test.
As we rely more heavily on DB session ID uniqueness, this becomes a
serious issue.

This change combines several individually suitable entropy sources
for reliable generation of random unique IDs, with goal of uniqueness
and portability, not cryptographic strength nor maximum speed.

Specifically:
* Moves code for getting UUIDs from the OS to port::GenerateRfcUuid
rather than in Env implementation details. Callers are now told whether
the operation fails or succeeds.
* Adds an internal API GenerateRawUniqueId for generating high-quality
128-bit unique identifiers, by combining entropy from three "tracks":
  * Lots of info from default Env like time, process id, and hostname.
  * std::random_device
  * port::GenerateRfcUuid (when working)
* Built-in implementations of Env::GenerateUniqueId() will now always
produce an RFC 4122 UUID string, either from platform-specific API or
by converting the output of GenerateRawUniqueId.

DB session IDs now use GenerateRawUniqueId while DB IDs (not as
critical) try to use port::GenerateRfcUuid but fall back on
GenerateRawUniqueId with conversion to an RFC 4122 UUID.

GenerateRawUniqueId is declared and defined under env/ rather than util/
or even port/ because of the Env dependency.

Likely follow-up: enhance GenerateRawUniqueId to be faster after the
first call and to guarantee uniqueness within the lifetime of a single
process (imparting the same property onto DB session IDs).

Pull Request resolved: https://github.com/facebook/rocksdb/pull/8708

Test Plan:
A new mini-stress test in env_test checks the various public
and internal APIs for uniqueness, including each track of
GenerateRawUniqueId individually. We can't hope to verify anywhere close
to 128 bits of entropy, but it can at least detect flaws as bad as the
old code. Serial execution of the new tests takes about 350 ms on
my machine.

Reviewed By: zhichao-cao, mrambacher

Differential Revision: D30563780

Pulled By: pdillinger

fbshipit-source-id: de4c9ff4b2f581cf784fcedb5f39f16e5185c364
2021-08-30 15:20:41 -07:00

124 lines
4.1 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "util/hash.h"
#include <string.h>
#include "port/lang.h"
#include "util/coding.h"
#include "util/hash128.h"
#include "util/math128.h"
#include "util/xxhash.h"
#include "util/xxph3.h"
namespace ROCKSDB_NAMESPACE {
uint64_t (*kGetSliceNPHash64UnseededFnPtr)(const Slice&) = &GetSliceHash64;
uint32_t Hash(const char* data, size_t n, uint32_t seed) {
// MurmurHash1 - fast but mediocre quality
// https://github.com/aappleby/smhasher/wiki/MurmurHash1
//
const uint32_t m = 0xc6a4a793;
const uint32_t r = 24;
const char* limit = data + n;
uint32_t h = static_cast<uint32_t>(seed ^ (n * m));
// Pick up four bytes at a time
while (data + 4 <= limit) {
uint32_t w = DecodeFixed32(data);
data += 4;
h += w;
h *= m;
h ^= (h >> 16);
}
// Pick up remaining bytes
switch (limit - data) {
// Note: The original hash implementation used data[i] << shift, which
// promotes the char to int and then performs the shift. If the char is
// negative, the shift is undefined behavior in C++. The hash algorithm is
// part of the format definition, so we cannot change it; to obtain the same
// behavior in a legal way we just cast to uint32_t, which will do
// sign-extension. To guarantee compatibility with architectures where chars
// are unsigned we first cast the char to int8_t.
case 3:
h += static_cast<uint32_t>(static_cast<int8_t>(data[2])) << 16;
FALLTHROUGH_INTENDED;
case 2:
h += static_cast<uint32_t>(static_cast<int8_t>(data[1])) << 8;
FALLTHROUGH_INTENDED;
case 1:
h += static_cast<uint32_t>(static_cast<int8_t>(data[0]));
h *= m;
h ^= (h >> r);
break;
}
return h;
}
// We are standardizing on a preview release of XXH3, because that's
// the best available at time of standardizing.
//
// In testing (mostly Intel Skylake), this hash function is much more
// thorough than Hash32 and is almost universally faster. Hash() only
// seems faster when passing runtime-sized keys of the same small size
// (less than about 24 bytes) thousands of times in a row; this seems
// to allow the branch predictor to work some magic. XXH3's speed is
// much less dependent on branch prediction.
//
// Hashing with a prefix extractor is potentially a common case of
// hashing objects of small, predictable size. We could consider
// bundling hash functions specialized for particular lengths with
// the prefix extractors.
uint64_t Hash64(const char* data, size_t n, uint64_t seed) {
return XXPH3_64bits_withSeed(data, n, seed);
}
uint64_t Hash64(const char* data, size_t n) {
// Same as seed = 0
return XXPH3_64bits(data, n);
}
uint64_t GetSlicePartsNPHash64(const SliceParts& data, uint64_t seed) {
// TODO(ajkr): use XXH3 streaming APIs to avoid the copy/allocation.
size_t concat_len = 0;
for (int i = 0; i < data.num_parts; ++i) {
concat_len += data.parts[i].size();
}
std::string concat_data;
concat_data.reserve(concat_len);
for (int i = 0; i < data.num_parts; ++i) {
concat_data.append(data.parts[i].data(), data.parts[i].size());
}
assert(concat_data.size() == concat_len);
return NPHash64(concat_data.data(), concat_len, seed);
}
Unsigned128 Hash128(const char* data, size_t n, uint64_t seed) {
auto h = XXH3_128bits_withSeed(data, n, seed);
return (Unsigned128{h.high64} << 64) | (h.low64);
}
Unsigned128 Hash128(const char* data, size_t n) {
// Same as seed = 0
auto h = XXH3_128bits(data, n);
return (Unsigned128{h.high64} << 64) | (h.low64);
}
void Hash2x64(const char* data, size_t n, uint64_t* high64, uint64_t* low64) {
// Same as seed = 0
auto h = XXH3_128bits(data, n);
*high64 = h.high64;
*low64 = h.low64;
}
} // namespace ROCKSDB_NAMESPACE