rocksdb/util/env_posix.cc
Dhruba Borthakur 38671c4d54 Fix a race condition while processing tasks by background threads.
Summary:
Suppose you submit 100 background tasks one after another. The first
enqueu task finds that the queue is empty and wakes up one worker thread.
Now suppose that all remaining 99 work items are enqueued, they do not
wake up any worker threads because the queue is already non-empty.
This causes a situation when there are 99 tasks in the task queue but
only one worker thread is processing a task while the remaining
worker threads are waiting.
The fix is to always wakeup one worker thread while enqueuing a task.

I also added a check to count the number of elements in the queue
to help in debugging.

Test Plan: make clean check.

Reviewers: chip

Reviewed By: chip

CC: leveldb

Differential Revision: https://reviews.facebook.net/D7203
2012-12-09 17:15:27 -08:00

904 lines
23 KiB
C++

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <deque>
#include <set>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
#if defined(LEVELDB_PLATFORM_ANDROID)
#include <sys/stat.h>
#endif
#include "leveldb/env.h"
#include "leveldb/slice.h"
#include "port/port.h"
#include "util/logging.h"
#include "util/posix_logger.h"
bool useOsBuffer = 1; // cache data in OS buffers
bool useFsReadAhead = 1; // allow filesystem to do readaheads
bool useMmapRead = 0; // do not use mmaps for reading files
bool useMmapWrite = 1; // use mmaps for appending to files
namespace leveldb {
namespace {
// list of pathnames that are locked
static std::set<std::string> lockedFiles;
static port::Mutex mutex_lockedFiles;
static Status IOError(const std::string& context, int err_number) {
return Status::IOError(context, strerror(err_number));
}
class PosixSequentialFile: public SequentialFile {
private:
std::string filename_;
FILE* file_;
public:
PosixSequentialFile(const std::string& fname, FILE* f)
: filename_(fname), file_(f) { }
virtual ~PosixSequentialFile() { fclose(file_); }
virtual Status Read(size_t n, Slice* result, char* scratch) {
Status s;
size_t r = fread_unlocked(scratch, 1, n, file_);
*result = Slice(scratch, r);
if (r < n) {
if (feof(file_)) {
// We leave status as ok if we hit the end of the file
} else {
// A partial read with an error: return a non-ok status
s = IOError(filename_, errno);
}
}
return s;
}
virtual Status Skip(uint64_t n) {
if (fseek(file_, n, SEEK_CUR)) {
return IOError(filename_, errno);
}
return Status::OK();
}
};
// pread() based random-access
class PosixRandomAccessFile: public RandomAccessFile {
private:
std::string filename_;
int fd_;
public:
PosixRandomAccessFile(const std::string& fname, int fd)
: filename_(fname), fd_(fd) {
if (!useFsReadAhead) {
// disable read-aheads
posix_fadvise(fd, 0, 0, POSIX_FADV_RANDOM);
}
}
virtual ~PosixRandomAccessFile() { close(fd_); }
virtual Status Read(uint64_t offset, size_t n, Slice* result,
char* scratch) const {
Status s;
ssize_t r = pread(fd_, scratch, n, static_cast<off_t>(offset));
*result = Slice(scratch, (r < 0) ? 0 : r);
if (r < 0) {
// An error: return a non-ok status
s = IOError(filename_, errno);
}
if (!useOsBuffer) {
// we need to fadvise away the entire range of pages because
// we do not want readahead pages to be cached.
posix_fadvise(fd_, 0, 0, POSIX_FADV_DONTNEED); // free OS pages
}
return s;
}
};
// mmap() based random-access
class PosixMmapReadableFile: public RandomAccessFile {
private:
std::string filename_;
void* mmapped_region_;
size_t length_;
public:
// base[0,length-1] contains the mmapped contents of the file.
PosixMmapReadableFile(const std::string& fname, void* base, size_t length)
: filename_(fname), mmapped_region_(base), length_(length) { }
virtual ~PosixMmapReadableFile() { munmap(mmapped_region_, length_); }
virtual Status Read(uint64_t offset, size_t n, Slice* result,
char* scratch) const {
Status s;
if (offset + n > length_) {
*result = Slice();
s = IOError(filename_, EINVAL);
} else {
*result = Slice(reinterpret_cast<char*>(mmapped_region_) + offset, n);
}
return s;
}
};
// We preallocate up to an extra megabyte and use memcpy to append new
// data to the file. This is safe since we either properly close the
// file before reading from it, or for log files, the reading code
// knows enough to skip zero suffixes.
class PosixMmapFile : public WritableFile {
private:
std::string filename_;
int fd_;
size_t page_size_;
size_t map_size_; // How much extra memory to map at a time
char* base_; // The mapped region
char* limit_; // Limit of the mapped region
char* dst_; // Where to write next (in range [base_,limit_])
char* last_sync_; // Where have we synced up to
uint64_t file_offset_; // Offset of base_ in file
// Have we done an munmap of unsynced data?
bool pending_sync_;
// Roundup x to a multiple of y
static size_t Roundup(size_t x, size_t y) {
return ((x + y - 1) / y) * y;
}
size_t TruncateToPageBoundary(size_t s) {
s -= (s & (page_size_ - 1));
assert((s % page_size_) == 0);
return s;
}
bool UnmapCurrentRegion() {
bool result = true;
if (base_ != NULL) {
if (last_sync_ < limit_) {
// Defer syncing this data until next Sync() call, if any
pending_sync_ = true;
}
if (munmap(base_, limit_ - base_) != 0) {
result = false;
}
file_offset_ += limit_ - base_;
base_ = NULL;
limit_ = NULL;
last_sync_ = NULL;
dst_ = NULL;
// Increase the amount we map the next time, but capped at 1MB
if (map_size_ < (1<<20)) {
map_size_ *= 2;
}
}
return result;
}
bool MapNewRegion() {
assert(base_ == NULL);
if (ftruncate(fd_, file_offset_ + map_size_) < 0) {
return false;
}
void* ptr = mmap(NULL, map_size_, PROT_READ | PROT_WRITE, MAP_SHARED,
fd_, file_offset_);
if (ptr == MAP_FAILED) {
return false;
}
base_ = reinterpret_cast<char*>(ptr);
limit_ = base_ + map_size_;
dst_ = base_;
last_sync_ = base_;
return true;
}
public:
PosixMmapFile(const std::string& fname, int fd, size_t page_size)
: filename_(fname),
fd_(fd),
page_size_(page_size),
map_size_(Roundup(65536, page_size)),
base_(NULL),
limit_(NULL),
dst_(NULL),
last_sync_(NULL),
file_offset_(0),
pending_sync_(false) {
assert((page_size & (page_size - 1)) == 0);
}
~PosixMmapFile() {
if (fd_ >= 0) {
PosixMmapFile::Close();
}
}
virtual Status Append(const Slice& data) {
const char* src = data.data();
size_t left = data.size();
while (left > 0) {
assert(base_ <= dst_);
assert(dst_ <= limit_);
size_t avail = limit_ - dst_;
if (avail == 0) {
if (!UnmapCurrentRegion() ||
!MapNewRegion()) {
return IOError(filename_, errno);
}
}
size_t n = (left <= avail) ? left : avail;
memcpy(dst_, src, n);
dst_ += n;
src += n;
left -= n;
}
return Status::OK();
}
virtual Status Close() {
Status s;
size_t unused = limit_ - dst_;
if (!UnmapCurrentRegion()) {
s = IOError(filename_, errno);
} else if (unused > 0) {
// Trim the extra space at the end of the file
if (ftruncate(fd_, file_offset_ - unused) < 0) {
s = IOError(filename_, errno);
}
}
if (close(fd_) < 0) {
if (s.ok()) {
s = IOError(filename_, errno);
}
}
fd_ = -1;
base_ = NULL;
limit_ = NULL;
return s;
}
virtual Status Flush() {
return Status::OK();
}
virtual Status Sync() {
Status s;
if (pending_sync_) {
// Some unmapped data was not synced
pending_sync_ = false;
if (fdatasync(fd_) < 0) {
s = IOError(filename_, errno);
}
}
if (dst_ > last_sync_) {
// Find the beginnings of the pages that contain the first and last
// bytes to be synced.
size_t p1 = TruncateToPageBoundary(last_sync_ - base_);
size_t p2 = TruncateToPageBoundary(dst_ - base_ - 1);
last_sync_ = dst_;
if (msync(base_ + p1, p2 - p1 + page_size_, MS_SYNC) < 0) {
s = IOError(filename_, errno);
}
}
return s;
}
/**
* Flush data as well as metadata to stable storage.
*/
virtual Status Fsync() {
if (pending_sync_) {
// Some unmapped data was not synced
pending_sync_ = false;
if (fsync(fd_) < 0) {
return IOError(filename_, errno);
}
}
// This invocation to Sync will not issue the call to
// fdatasync because pending_sync_ has already been cleared.
return Sync();
}
/**
* Get the size of valid data in the file. This will not match the
* size that is returned from the filesystem because we use mmap
* to extend file by map_size every time.
*/
virtual uint64_t GetFileSize() {
size_t used = dst_ - base_;
return file_offset_ + used;
}
};
// Use posix write to write data to a file.
class PosixWritableFile : public WritableFile {
private:
const std::string filename_;
int fd_;
size_t cursize_; // current size of cached data in buf_
size_t capacity_; // max size of buf_
char* buf_; // a buffer to cache writes
uint64_t filesize_;
bool pending_sync_;
bool pending_fsync_;
public:
PosixWritableFile(const std::string& fname, int fd, size_t capacity) :
filename_(fname),
fd_(fd),
cursize_(0),
capacity_(capacity),
buf_(new char[capacity]),
filesize_(0),
pending_sync_(false),
pending_fsync_(false) {
}
~PosixWritableFile() {
if (fd_ >= 0) {
PosixWritableFile::Close();
}
delete buf_;
buf_ = 0;
}
virtual Status Append(const Slice& data) {
char* src = (char *)data.data();
size_t left = data.size();
Status s;
pending_sync_ = true;
pending_fsync_ = true;
// if there is no space in the cache, then flush
if (cursize_ + left > capacity_) {
s = Flush();
if (!s.ok()) {
return s;
}
// Increase the buffer size, but capped at 1MB
if (capacity_ < (1<<20)) {
delete buf_;
capacity_ *= 2;
buf_ = new char[capacity_];
}
assert(cursize_ == 0);
}
// if the write fits into the cache, then write to cache
// otherwise do a write() syscall to write to OS buffers.
if (cursize_ + left <= capacity_) {
memcpy(buf_+cursize_, src, left);
cursize_ += left;
} else {
while (left != 0) {
size_t done = write(fd_, src, left);
if (done < 0) {
return IOError(filename_, errno);
}
left -= done;
src += done;
}
}
filesize_ += data.size();
return Status::OK();
}
virtual Status Close() {
Status s;
s = Flush(); // flush cache to OS
if (!s.ok()) {
}
if (close(fd_) < 0) {
if (s.ok()) {
s = IOError(filename_, errno);
}
}
fd_ = -1;
return s;
}
// write out the cached data to the OS cache
virtual Status Flush() {
size_t left = cursize_;
char* src = buf_;
while (left != 0) {
size_t done = write(fd_, src, left);
if (done < 0) {
return IOError(filename_, errno);
}
left -= done;
src += done;
}
cursize_ = 0;
return Status::OK();
}
virtual Status Sync() {
if (pending_sync_ && fdatasync(fd_) < 0) {
return IOError(filename_, errno);
}
pending_sync_ = false;
return Status::OK();
}
virtual Status Fsync() {
if (pending_fsync_ && fsync(fd_) < 0) {
return IOError(filename_, errno);
}
pending_fsync_ = false;
pending_sync_ = false;
return Status::OK();
}
virtual uint64_t GetFileSize() {
return filesize_;
}
};
static int LockOrUnlock(const std::string& fname, int fd, bool lock) {
mutex_lockedFiles.Lock();
if (lock) {
// If it already exists in the lockedFiles set, then it is already locked,
// and fail this lock attempt. Otherwise, insert it into lockedFiles.
// This check is needed because fcntl() does not detect lock conflict
// if the fcntl is issued by the same thread that earlier acquired
// this lock.
if (lockedFiles.insert(fname).second == false) {
mutex_lockedFiles.Unlock();
errno = ENOLCK;
return -1;
}
} else {
// If we are unlocking, then verify that we had locked it earlier,
// it should already exist in lockedFiles. Remove it from lockedFiles.
if (lockedFiles.erase(fname) != 1) {
mutex_lockedFiles.Unlock();
errno = ENOLCK;
return -1;
}
}
errno = 0;
struct flock f;
memset(&f, 0, sizeof(f));
f.l_type = (lock ? F_WRLCK : F_UNLCK);
f.l_whence = SEEK_SET;
f.l_start = 0;
f.l_len = 0; // Lock/unlock entire file
int value = fcntl(fd, F_SETLK, &f);
if (value == -1 && lock) {
// if there is an error in locking, then remove the pathname from lockedfiles
lockedFiles.erase(fname);
}
mutex_lockedFiles.Unlock();
return value;
}
class PosixFileLock : public FileLock {
public:
int fd_;
std::string filename;
};
class PosixEnv : public Env {
public:
PosixEnv();
virtual ~PosixEnv() {
fprintf(stderr, "Destroying Env::Default()\n");
exit(1);
}
virtual Status NewSequentialFile(const std::string& fname,
SequentialFile** result) {
FILE* f = fopen(fname.c_str(), "r");
if (f == NULL) {
*result = NULL;
return IOError(fname, errno);
} else {
*result = new PosixSequentialFile(fname, f);
return Status::OK();
}
}
virtual Status NewRandomAccessFile(const std::string& fname,
RandomAccessFile** result) {
*result = NULL;
Status s;
int fd = open(fname.c_str(), O_RDONLY);
if (fd < 0) {
s = IOError(fname, errno);
} else if (useMmapRead && sizeof(void*) >= 8) {
// Use of mmap for random reads has been removed because it
// kills performance when storage is fast.
// Use mmap when virtual address-space is plentiful.
uint64_t size;
s = GetFileSize(fname, &size);
if (s.ok()) {
void* base = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, 0);
if (base != MAP_FAILED) {
*result = new PosixMmapReadableFile(fname, base, size);
} else {
s = IOError(fname, errno);
}
}
close(fd);
} else {
*result = new PosixRandomAccessFile(fname, fd);
}
return s;
}
virtual Status NewWritableFile(const std::string& fname,
WritableFile** result) {
Status s;
const int fd = open(fname.c_str(), O_CREAT | O_RDWR | O_TRUNC, 0644);
if (fd < 0) {
*result = NULL;
s = IOError(fname, errno);
} else {
if (useMmapWrite) {
*result = new PosixMmapFile(fname, fd, page_size_);
} else {
*result = new PosixWritableFile(fname, fd, 65536);
}
}
return s;
}
virtual bool FileExists(const std::string& fname) {
return access(fname.c_str(), F_OK) == 0;
}
virtual Status GetChildren(const std::string& dir,
std::vector<std::string>* result) {
result->clear();
DIR* d = opendir(dir.c_str());
if (d == NULL) {
return IOError(dir, errno);
}
struct dirent* entry;
while ((entry = readdir(d)) != NULL) {
result->push_back(entry->d_name);
}
closedir(d);
return Status::OK();
}
virtual Status DeleteFile(const std::string& fname) {
Status result;
if (unlink(fname.c_str()) != 0) {
result = IOError(fname, errno);
}
return result;
};
virtual Status CreateDir(const std::string& name) {
Status result;
if (mkdir(name.c_str(), 0755) != 0) {
result = IOError(name, errno);
}
return result;
};
virtual Status CreateDirIfMissing(const std::string& name) {
Status result;
if (mkdir(name.c_str(), 0755) != 0) {
if (errno != EEXIST) {
result = IOError(name, errno);
}
}
return result;
};
virtual Status DeleteDir(const std::string& name) {
Status result;
if (rmdir(name.c_str()) != 0) {
result = IOError(name, errno);
}
return result;
};
virtual Status GetFileSize(const std::string& fname, uint64_t* size) {
Status s;
struct stat sbuf;
if (stat(fname.c_str(), &sbuf) != 0) {
*size = 0;
s = IOError(fname, errno);
} else {
*size = sbuf.st_size;
}
return s;
}
virtual Status GetFileModificationTime(const std::string& fname,
uint64_t* file_mtime) {
struct stat s;
if (stat(fname.c_str(), &s) !=0) {
return IOError(fname, errno);
}
*file_mtime = static_cast<uint64_t>(s.st_mtime);
return Status::OK();
}
virtual Status RenameFile(const std::string& src, const std::string& target) {
Status result;
if (rename(src.c_str(), target.c_str()) != 0) {
result = IOError(src, errno);
}
return result;
}
virtual Status LockFile(const std::string& fname, FileLock** lock) {
*lock = NULL;
Status result;
int fd = open(fname.c_str(), O_RDWR | O_CREAT, 0644);
if (fd < 0) {
result = IOError(fname, errno);
} else if (LockOrUnlock(fname, fd, true) == -1) {
result = IOError("lock " + fname, errno);
close(fd);
} else {
PosixFileLock* my_lock = new PosixFileLock;
my_lock->fd_ = fd;
my_lock->filename = fname;
*lock = my_lock;
}
return result;
}
virtual Status UnlockFile(FileLock* lock) {
PosixFileLock* my_lock = reinterpret_cast<PosixFileLock*>(lock);
Status result;
if (LockOrUnlock(my_lock->filename, my_lock->fd_, false) == -1) {
result = IOError("unlock", errno);
}
close(my_lock->fd_);
delete my_lock;
return result;
}
virtual void Schedule(void (*function)(void*), void* arg);
virtual void StartThread(void (*function)(void* arg), void* arg);
virtual Status GetTestDirectory(std::string* result) {
const char* env = getenv("TEST_TMPDIR");
if (env && env[0] != '\0') {
*result = env;
} else {
char buf[100];
snprintf(buf, sizeof(buf), "/tmp/leveldbtest-%d", int(geteuid()));
*result = buf;
}
// Directory may already exist
CreateDir(*result);
return Status::OK();
}
static uint64_t gettid() {
pthread_t tid = pthread_self();
uint64_t thread_id = 0;
memcpy(&thread_id, &tid, std::min(sizeof(thread_id), sizeof(tid)));
return thread_id;
}
virtual Status NewLogger(const std::string& fname, Logger** result) {
FILE* f = fopen(fname.c_str(), "w");
if (f == NULL) {
*result = NULL;
return IOError(fname, errno);
} else {
*result = new PosixLogger(f, &PosixEnv::gettid);
return Status::OK();
}
}
virtual uint64_t NowMicros() {
struct timeval tv;
gettimeofday(&tv, NULL);
return static_cast<uint64_t>(tv.tv_sec) * 1000000 + tv.tv_usec;
}
virtual void SleepForMicroseconds(int micros) {
usleep(micros);
}
virtual Status GetHostName(char* name, uint64_t len) {
int ret = gethostname(name, len);
if (ret < 0) {
if (errno == EFAULT || errno == EINVAL)
return Status::InvalidArgument(strerror(errno));
else
return IOError("GetHostName", errno);
}
return Status::OK();
}
virtual Status GetCurrentTime(int64_t* unix_time) {
time_t ret = time(NULL);
if (ret == (time_t) -1) {
return IOError("GetCurrentTime", errno);
}
*unix_time = (int64_t) ret;
return Status::OK();
}
virtual Status GetAbsolutePath(const std::string& db_path,
std::string* output_path) {
if (db_path.find('/') == 0) {
*output_path = db_path;
return Status::OK();
}
char the_path[256];
char* ret = getcwd(the_path, 256);
if (ret == NULL) {
return Status::IOError(strerror(errno));
}
*output_path = ret;
return Status::OK();
}
// Allow increasing the number of worker threads.
virtual void SetBackgroundThreads(int num) {
if (num > num_threads_) {
num_threads_ = num;
bgthread_.resize(num_threads_);
}
}
virtual std::string TimeToString(uint64_t secondsSince1970) {
const time_t seconds = (time_t)secondsSince1970;
struct tm t;
int maxsize = 64;
std::string dummy;
dummy.reserve(maxsize);
dummy.resize(maxsize);
char* p = &dummy[0];
localtime_r(&seconds, &t);
snprintf(p, maxsize,
"%04d/%02d/%02d-%02d:%02d:%02d ",
t.tm_year + 1900,
t.tm_mon + 1,
t.tm_mday,
t.tm_hour,
t.tm_min,
t.tm_sec);
return dummy;
}
private:
void PthreadCall(const char* label, int result) {
if (result != 0) {
fprintf(stderr, "pthread %s: %s\n", label, strerror(result));
exit(1);
}
}
// BGThread() is the body of the background thread
void BGThread();
static void* BGThreadWrapper(void* arg) {
reinterpret_cast<PosixEnv*>(arg)->BGThread();
return NULL;
}
size_t page_size_;
pthread_mutex_t mu_;
pthread_cond_t bgsignal_;
std::vector<pthread_t> bgthread_;
int started_bgthread_;
int num_threads_;
// Entry per Schedule() call
struct BGItem { void* arg; void (*function)(void*); };
typedef std::deque<BGItem> BGQueue;
int queue_size_; // number of items in BGQueue
BGQueue queue_;
};
PosixEnv::PosixEnv() : page_size_(getpagesize()),
started_bgthread_(0),
num_threads_(1),
queue_size_(0) {
PthreadCall("mutex_init", pthread_mutex_init(&mu_, NULL));
PthreadCall("cvar_init", pthread_cond_init(&bgsignal_, NULL));
bgthread_.resize(num_threads_);
}
void PosixEnv::Schedule(void (*function)(void*), void* arg) {
PthreadCall("lock", pthread_mutex_lock(&mu_));
// Start background thread if necessary
for (; started_bgthread_ < num_threads_; started_bgthread_++) {
PthreadCall(
"create thread",
pthread_create(&bgthread_[started_bgthread_], NULL, &PosixEnv::BGThreadWrapper, this));
fprintf(stdout, "Created bg thread 0x%lx\n", bgthread_[started_bgthread_]);
}
// always wake up at least one waiting thread.
PthreadCall("signal", pthread_cond_signal(&bgsignal_));
// Add to priority queue
queue_.push_back(BGItem());
queue_.back().function = function;
queue_.back().arg = arg;
queue_size_++;
PthreadCall("unlock", pthread_mutex_unlock(&mu_));
}
void PosixEnv::BGThread() {
while (true) {
// Wait until there is an item that is ready to run
PthreadCall("lock", pthread_mutex_lock(&mu_));
while (queue_.empty()) {
PthreadCall("wait", pthread_cond_wait(&bgsignal_, &mu_));
}
void (*function)(void*) = queue_.front().function;
void* arg = queue_.front().arg;
queue_.pop_front();
queue_size_--;
PthreadCall("unlock", pthread_mutex_unlock(&mu_));
(*function)(arg);
}
}
namespace {
struct StartThreadState {
void (*user_function)(void*);
void* arg;
};
}
static void* StartThreadWrapper(void* arg) {
StartThreadState* state = reinterpret_cast<StartThreadState*>(arg);
state->user_function(state->arg);
delete state;
return NULL;
}
void PosixEnv::StartThread(void (*function)(void* arg), void* arg) {
pthread_t t;
StartThreadState* state = new StartThreadState;
state->user_function = function;
state->arg = arg;
PthreadCall("start thread",
pthread_create(&t, NULL, &StartThreadWrapper, state));
}
} // namespace
static pthread_once_t once = PTHREAD_ONCE_INIT;
static Env* default_env;
static void InitDefaultEnv() { default_env = new PosixEnv; }
Env* Env::Default() {
pthread_once(&once, InitDefaultEnv);
return default_env;
}
} // namespace leveldb