rocksdb/tools/db_bench_tool.cc
Andrew Kryczka c217e0b9c7 Call RateLimiter for compaction reads
Summary:
Allow users to rate limit background work based on read bytes, written bytes, or sum of read and written bytes. Support these by changing the RateLimiter API, so no additional options were needed.
Closes https://github.com/facebook/rocksdb/pull/2433

Differential Revision: D5216946

Pulled By: ajkr

fbshipit-source-id: aec57a8357dbb4bfde2003261094d786d94f724e
2017-06-13 14:56:46 -07:00

5223 lines
183 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
// This source code is also licensed under the GPLv2 license found in the
// COPYING file in the root directory of this source tree.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#ifdef GFLAGS
#ifdef NUMA
#include <numa.h>
#include <numaif.h>
#endif
#ifndef OS_WIN
#include <unistd.h>
#endif
#include <fcntl.h>
#include <gflags/gflags.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <atomic>
#include <condition_variable>
#include <cstddef>
#include <mutex>
#include <thread>
#include <unordered_map>
#include "db/db_impl.h"
#include "db/version_set.h"
#include "hdfs/env_hdfs.h"
#include "monitoring/histogram.h"
#include "monitoring/statistics.h"
#include "port/port.h"
#include "port/stack_trace.h"
#include "rocksdb/cache.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/filter_policy.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/options.h"
#include "rocksdb/perf_context.h"
#include "rocksdb/persistent_cache.h"
#include "rocksdb/rate_limiter.h"
#include "rocksdb/slice.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/utilities/object_registry.h"
#include "rocksdb/utilities/optimistic_transaction_db.h"
#include "rocksdb/utilities/options_util.h"
#include "rocksdb/utilities/sim_cache.h"
#include "rocksdb/utilities/transaction.h"
#include "rocksdb/utilities/transaction_db.h"
#include "rocksdb/write_batch.h"
#include "util/compression.h"
#include "util/crc32c.h"
#include "util/mutexlock.h"
#include "util/random.h"
#include "util/stderr_logger.h"
#include "util/string_util.h"
#include "util/testutil.h"
#include "util/transaction_test_util.h"
#include "util/xxhash.h"
#include "utilities/blob_db/blob_db.h"
#include "utilities/merge_operators.h"
#include "utilities/persistent_cache/block_cache_tier.h"
#ifdef OS_WIN
#include <io.h> // open/close
#endif
using GFLAGS::ParseCommandLineFlags;
using GFLAGS::RegisterFlagValidator;
using GFLAGS::SetUsageMessage;
DEFINE_string(
benchmarks,
"fillseq,"
"fillseqdeterministic,"
"fillsync,"
"fillrandom,"
"filluniquerandomdeterministic,"
"overwrite,"
"readrandom,"
"newiterator,"
"newiteratorwhilewriting,"
"seekrandom,"
"seekrandomwhilewriting,"
"seekrandomwhilemerging,"
"readseq,"
"readreverse,"
"compact,"
"compactall,"
"readrandom,"
"multireadrandom,"
"readseq,"
"readtocache,"
"readreverse,"
"readwhilewriting,"
"readwhilemerging,"
"readrandomwriterandom,"
"updaterandom,"
"randomwithverify,"
"fill100K,"
"crc32c,"
"xxhash,"
"compress,"
"uncompress,"
"acquireload,"
"fillseekseq,"
"randomtransaction,"
"randomreplacekeys,"
"timeseries",
"Comma-separated list of operations to run in the specified"
" order. Available benchmarks:\n"
"\tfillseq -- write N values in sequential key"
" order in async mode\n"
"\tfillseqdeterministic -- write N values in the specified"
" key order and keep the shape of the LSM tree\n"
"\tfillrandom -- write N values in random key order in async"
" mode\n"
"\tfilluniquerandomdeterministic -- write N values in a random"
" key order and keep the shape of the LSM tree\n"
"\toverwrite -- overwrite N values in random key order in"
" async mode\n"
"\tfillsync -- write N/100 values in random key order in "
"sync mode\n"
"\tfill100K -- write N/1000 100K values in random order in"
" async mode\n"
"\tdeleteseq -- delete N keys in sequential order\n"
"\tdeleterandom -- delete N keys in random order\n"
"\treadseq -- read N times sequentially\n"
"\treadtocache -- 1 thread reading database sequentially\n"
"\treadreverse -- read N times in reverse order\n"
"\treadrandom -- read N times in random order\n"
"\treadmissing -- read N missing keys in random order\n"
"\treadwhilewriting -- 1 writer, N threads doing random "
"reads\n"
"\treadwhilemerging -- 1 merger, N threads doing random "
"reads\n"
"\treadrandomwriterandom -- N threads doing random-read, "
"random-write\n"
"\tprefixscanrandom -- prefix scan N times in random order\n"
"\tupdaterandom -- N threads doing read-modify-write for random "
"keys\n"
"\tappendrandom -- N threads doing read-modify-write with "
"growing values\n"
"\tmergerandom -- same as updaterandom/appendrandom using merge"
" operator. "
"Must be used with merge_operator\n"
"\treadrandommergerandom -- perform N random read-or-merge "
"operations. Must be used with merge_operator\n"
"\tnewiterator -- repeated iterator creation\n"
"\tseekrandom -- N random seeks, call Next seek_nexts times "
"per seek\n"
"\tseekrandomwhilewriting -- seekrandom and 1 thread doing "
"overwrite\n"
"\tseekrandomwhilemerging -- seekrandom and 1 thread doing "
"merge\n"
"\tcrc32c -- repeated crc32c of 4K of data\n"
"\txxhash -- repeated xxHash of 4K of data\n"
"\tacquireload -- load N*1000 times\n"
"\tfillseekseq -- write N values in sequential key, then read "
"them by seeking to each key\n"
"\trandomtransaction -- execute N random transactions and "
"verify correctness\n"
"\trandomreplacekeys -- randomly replaces N keys by deleting "
"the old version and putting the new version\n\n"
"\ttimeseries -- 1 writer generates time series data "
"and multiple readers doing random reads on id\n\n"
"Meta operations:\n"
"\tcompact -- Compact the entire DB; If multiple, randomly choose one\n"
"\tcompactall -- Compact the entire DB\n"
"\tstats -- Print DB stats\n"
"\tresetstats -- Reset DB stats\n"
"\tlevelstats -- Print the number of files and bytes per level\n"
"\tsstables -- Print sstable info\n"
"\theapprofile -- Dump a heap profile (if supported by this"
" port)\n");
DEFINE_int64(num, 1000000, "Number of key/values to place in database");
DEFINE_int64(numdistinct, 1000,
"Number of distinct keys to use. Used in RandomWithVerify to "
"read/write on fewer keys so that gets are more likely to find the"
" key and puts are more likely to update the same key");
DEFINE_int64(merge_keys, -1,
"Number of distinct keys to use for MergeRandom and "
"ReadRandomMergeRandom. "
"If negative, there will be FLAGS_num keys.");
DEFINE_int32(num_column_families, 1, "Number of Column Families to use.");
DEFINE_int32(
num_hot_column_families, 0,
"Number of Hot Column Families. If more than 0, only write to this "
"number of column families. After finishing all the writes to them, "
"create new set of column families and insert to them. Only used "
"when num_column_families > 1.");
DEFINE_int64(reads, -1, "Number of read operations to do. "
"If negative, do FLAGS_num reads.");
DEFINE_int64(deletes, -1, "Number of delete operations to do. "
"If negative, do FLAGS_num deletions.");
DEFINE_int32(bloom_locality, 0, "Control bloom filter probes locality");
DEFINE_int64(seed, 0, "Seed base for random number generators. "
"When 0 it is deterministic.");
DEFINE_int32(threads, 1, "Number of concurrent threads to run.");
DEFINE_int32(duration, 0, "Time in seconds for the random-ops tests to run."
" When 0 then num & reads determine the test duration");
DEFINE_int32(value_size, 100, "Size of each value");
DEFINE_int32(seek_nexts, 0,
"How many times to call Next() after Seek() in "
"fillseekseq, seekrandom, seekrandomwhilewriting and "
"seekrandomwhilemerging");
DEFINE_bool(reverse_iterator, false,
"When true use Prev rather than Next for iterators that do "
"Seek and then Next");
DEFINE_bool(use_uint64_comparator, false, "use Uint64 user comparator");
DEFINE_bool(pin_slice, true, "use pinnable slice for point lookup");
DEFINE_int64(batch_size, 1, "Batch size");
static bool ValidateKeySize(const char* flagname, int32_t value) {
return true;
}
static bool ValidateUint32Range(const char* flagname, uint64_t value) {
if (value > std::numeric_limits<uint32_t>::max()) {
fprintf(stderr, "Invalid value for --%s: %lu, overflow\n", flagname,
(unsigned long)value);
return false;
}
return true;
}
DEFINE_int32(key_size, 16, "size of each key");
DEFINE_int32(num_multi_db, 0,
"Number of DBs used in the benchmark. 0 means single DB.");
DEFINE_double(compression_ratio, 0.5, "Arrange to generate values that shrink"
" to this fraction of their original size after compression");
DEFINE_double(read_random_exp_range, 0.0,
"Read random's key will be generated using distribution of "
"num * exp(-r) where r is uniform number from 0 to this value. "
"The larger the number is, the more skewed the reads are. "
"Only used in readrandom and multireadrandom benchmarks.");
DEFINE_bool(histogram, false, "Print histogram of operation timings");
DEFINE_bool(enable_numa, false,
"Make operations aware of NUMA architecture and bind memory "
"and cpus corresponding to nodes together. In NUMA, memory "
"in same node as CPUs are closer when compared to memory in "
"other nodes. Reads can be faster when the process is bound to "
"CPU and memory of same node. Use \"$numactl --hardware\" command "
"to see NUMA memory architecture.");
DEFINE_int64(db_write_buffer_size, rocksdb::Options().db_write_buffer_size,
"Number of bytes to buffer in all memtables before compacting");
DEFINE_bool(cost_write_buffer_to_cache, false,
"The usage of memtable is costed to the block cache");
DEFINE_int64(write_buffer_size, rocksdb::Options().write_buffer_size,
"Number of bytes to buffer in memtable before compacting");
DEFINE_int32(max_write_buffer_number,
rocksdb::Options().max_write_buffer_number,
"The number of in-memory memtables. Each memtable is of size"
"write_buffer_size.");
DEFINE_int32(min_write_buffer_number_to_merge,
rocksdb::Options().min_write_buffer_number_to_merge,
"The minimum number of write buffers that will be merged together"
"before writing to storage. This is cheap because it is an"
"in-memory merge. If this feature is not enabled, then all these"
"write buffers are flushed to L0 as separate files and this "
"increases read amplification because a get request has to check"
" in all of these files. Also, an in-memory merge may result in"
" writing less data to storage if there are duplicate records "
" in each of these individual write buffers.");
DEFINE_int32(max_write_buffer_number_to_maintain,
rocksdb::Options().max_write_buffer_number_to_maintain,
"The total maximum number of write buffers to maintain in memory "
"including copies of buffers that have already been flushed. "
"Unlike max_write_buffer_number, this parameter does not affect "
"flushing. This controls the minimum amount of write history "
"that will be available in memory for conflict checking when "
"Transactions are used. If this value is too low, some "
"transactions may fail at commit time due to not being able to "
"determine whether there were any write conflicts. Setting this "
"value to 0 will cause write buffers to be freed immediately "
"after they are flushed. If this value is set to -1, "
"'max_write_buffer_number' will be used.");
DEFINE_int32(max_background_compactions,
rocksdb::Options().max_background_compactions,
"The maximum number of concurrent background compactions"
" that can occur in parallel.");
DEFINE_int32(base_background_compactions, -1, "DEPRECATED");
DEFINE_uint64(subcompactions, 1,
"Maximum number of subcompactions to divide L0-L1 compactions "
"into.");
static const bool FLAGS_subcompactions_dummy
__attribute__((unused)) = RegisterFlagValidator(&FLAGS_subcompactions,
&ValidateUint32Range);
DEFINE_int32(max_background_flushes,
rocksdb::Options().max_background_flushes,
"The maximum number of concurrent background flushes"
" that can occur in parallel.");
static rocksdb::CompactionStyle FLAGS_compaction_style_e;
DEFINE_int32(compaction_style, (int32_t) rocksdb::Options().compaction_style,
"style of compaction: level-based, universal and fifo");
static rocksdb::CompactionPri FLAGS_compaction_pri_e;
DEFINE_int32(compaction_pri, (int32_t)rocksdb::Options().compaction_pri,
"priority of files to compaction: by size or by data age");
DEFINE_int32(universal_size_ratio, 0,
"Percentage flexibility while comparing file size"
" (for universal compaction only).");
DEFINE_int32(universal_min_merge_width, 0, "The minimum number of files in a"
" single compaction run (for universal compaction only).");
DEFINE_int32(universal_max_merge_width, 0, "The max number of files to compact"
" in universal style compaction");
DEFINE_int32(universal_max_size_amplification_percent, 0,
"The max size amplification for universal style compaction");
DEFINE_int32(universal_compression_size_percent, -1,
"The percentage of the database to compress for universal "
"compaction. -1 means compress everything.");
DEFINE_bool(universal_allow_trivial_move, false,
"Allow trivial move in universal compaction.");
DEFINE_int64(cache_size, 8 << 20, // 8MB
"Number of bytes to use as a cache of uncompressed data");
DEFINE_int32(cache_numshardbits, 6,
"Number of shards for the block cache"
" is 2 ** cache_numshardbits. Negative means use default settings."
" This is applied only if FLAGS_cache_size is non-negative.");
DEFINE_double(cache_high_pri_pool_ratio, 0.0,
"Ratio of block cache reserve for high pri blocks. "
"If > 0.0, we also enable "
"cache_index_and_filter_blocks_with_high_priority.");
DEFINE_bool(use_clock_cache, false,
"Replace default LRU block cache with clock cache.");
DEFINE_int64(simcache_size, -1,
"Number of bytes to use as a simcache of "
"uncompressed data. Nagative value disables simcache.");
DEFINE_bool(cache_index_and_filter_blocks, false,
"Cache index/filter blocks in block cache.");
DEFINE_bool(pin_l0_filter_and_index_blocks_in_cache, false,
"Pin index/filter blocks of L0 files in block cache.");
DEFINE_int32(block_size,
static_cast<int32_t>(rocksdb::BlockBasedTableOptions().block_size),
"Number of bytes in a block.");
DEFINE_int32(block_restart_interval,
rocksdb::BlockBasedTableOptions().block_restart_interval,
"Number of keys between restart points "
"for delta encoding of keys in data block.");
DEFINE_int32(index_block_restart_interval,
rocksdb::BlockBasedTableOptions().index_block_restart_interval,
"Number of keys between restart points "
"for delta encoding of keys in index block.");
DEFINE_int32(read_amp_bytes_per_bit,
rocksdb::BlockBasedTableOptions().read_amp_bytes_per_bit,
"Number of bytes per bit to be used in block read-amp bitmap");
DEFINE_int64(compressed_cache_size, -1,
"Number of bytes to use as a cache of compressed data.");
DEFINE_int64(row_cache_size, 0,
"Number of bytes to use as a cache of individual rows"
" (0 = disabled).");
DEFINE_int32(open_files, rocksdb::Options().max_open_files,
"Maximum number of files to keep open at the same time"
" (use default if == 0)");
DEFINE_int32(file_opening_threads, rocksdb::Options().max_file_opening_threads,
"If open_files is set to -1, this option set the number of "
"threads that will be used to open files during DB::Open()");
DEFINE_int32(new_table_reader_for_compaction_inputs, true,
"If true, uses a separate file handle for compaction inputs");
DEFINE_int32(compaction_readahead_size, 0, "Compaction readahead size");
DEFINE_int32(random_access_max_buffer_size, 1024 * 1024,
"Maximum windows randomaccess buffer size");
DEFINE_int32(writable_file_max_buffer_size, 1024 * 1024,
"Maximum write buffer for Writable File");
DEFINE_int32(bloom_bits, -1, "Bloom filter bits per key. Negative means"
" use default settings.");
DEFINE_double(memtable_bloom_size_ratio, 0,
"Ratio of memtable size used for bloom filter. 0 means no bloom "
"filter.");
DEFINE_bool(memtable_use_huge_page, false,
"Try to use huge page in memtables.");
DEFINE_bool(use_existing_db, false, "If true, do not destroy the existing"
" database. If you set this flag and also specify a benchmark that"
" wants a fresh database, that benchmark will fail.");
DEFINE_bool(show_table_properties, false,
"If true, then per-level table"
" properties will be printed on every stats-interval when"
" stats_interval is set and stats_per_interval is on.");
DEFINE_string(db, "", "Use the db with the following name.");
// Read cache flags
DEFINE_string(read_cache_path, "",
"If not empty string, a read cache will be used in this path");
DEFINE_int64(read_cache_size, 4LL * 1024 * 1024 * 1024,
"Maximum size of the read cache");
DEFINE_bool(read_cache_direct_write, true,
"Whether to use Direct IO for writing to the read cache");
DEFINE_bool(read_cache_direct_read, true,
"Whether to use Direct IO for reading from read cache");
static bool ValidateCacheNumshardbits(const char* flagname, int32_t value) {
if (value >= 20) {
fprintf(stderr, "Invalid value for --%s: %d, must be < 20\n",
flagname, value);
return false;
}
return true;
}
DEFINE_bool(verify_checksum, false, "Verify checksum for every block read"
" from storage");
DEFINE_bool(statistics, false, "Database statistics");
DEFINE_string(statistics_string, "", "Serialized statistics string");
static class std::shared_ptr<rocksdb::Statistics> dbstats;
DEFINE_int64(writes, -1, "Number of write operations to do. If negative, do"
" --num reads.");
DEFINE_bool(finish_after_writes, false, "Write thread terminates after all writes are finished");
DEFINE_bool(sync, false, "Sync all writes to disk");
DEFINE_bool(use_fsync, false, "If true, issue fsync instead of fdatasync");
DEFINE_bool(disable_wal, false, "If true, do not write WAL for write.");
DEFINE_string(wal_dir, "", "If not empty, use the given dir for WAL");
DEFINE_string(truth_db, "/dev/shm/truth_db/dbbench",
"Truth key/values used when using verify");
DEFINE_int32(num_levels, 7, "The total number of levels");
DEFINE_int64(target_file_size_base, rocksdb::Options().target_file_size_base,
"Target file size at level-1");
DEFINE_int32(target_file_size_multiplier,
rocksdb::Options().target_file_size_multiplier,
"A multiplier to compute target level-N file size (N >= 2)");
DEFINE_uint64(max_bytes_for_level_base,
rocksdb::Options().max_bytes_for_level_base,
"Max bytes for level-1");
DEFINE_bool(level_compaction_dynamic_level_bytes, false,
"Whether level size base is dynamic");
DEFINE_double(max_bytes_for_level_multiplier, 10,
"A multiplier to compute max bytes for level-N (N >= 2)");
static std::vector<int> FLAGS_max_bytes_for_level_multiplier_additional_v;
DEFINE_string(max_bytes_for_level_multiplier_additional, "",
"A vector that specifies additional fanout per level");
DEFINE_int32(level0_stop_writes_trigger,
rocksdb::Options().level0_stop_writes_trigger,
"Number of files in level-0"
" that will trigger put stop.");
DEFINE_int32(level0_slowdown_writes_trigger,
rocksdb::Options().level0_slowdown_writes_trigger,
"Number of files in level-0"
" that will slow down writes.");
DEFINE_int32(level0_file_num_compaction_trigger,
rocksdb::Options().level0_file_num_compaction_trigger,
"Number of files in level-0"
" when compactions start");
static bool ValidateInt32Percent(const char* flagname, int32_t value) {
if (value <= 0 || value>=100) {
fprintf(stderr, "Invalid value for --%s: %d, 0< pct <100 \n",
flagname, value);
return false;
}
return true;
}
DEFINE_int32(readwritepercent, 90, "Ratio of reads to reads/writes (expressed"
" as percentage) for the ReadRandomWriteRandom workload. The "
"default value 90 means 90% operations out of all reads and writes"
" operations are reads. In other words, 9 gets for every 1 put.");
DEFINE_int32(mergereadpercent, 70, "Ratio of merges to merges&reads (expressed"
" as percentage) for the ReadRandomMergeRandom workload. The"
" default value 70 means 70% out of all read and merge operations"
" are merges. In other words, 7 merges for every 3 gets.");
DEFINE_int32(deletepercent, 2, "Percentage of deletes out of reads/writes/"
"deletes (used in RandomWithVerify only). RandomWithVerify "
"calculates writepercent as (100 - FLAGS_readwritepercent - "
"deletepercent), so deletepercent must be smaller than (100 - "
"FLAGS_readwritepercent)");
DEFINE_bool(optimize_filters_for_hits, false,
"Optimizes bloom filters for workloads for most lookups return "
"a value. For now this doesn't create bloom filters for the max "
"level of the LSM to reduce metadata that should fit in RAM. ");
DEFINE_uint64(delete_obsolete_files_period_micros, 0,
"Ignored. Left here for backward compatibility");
DEFINE_int64(writes_per_range_tombstone, 0,
"Number of writes between range "
"tombstones");
DEFINE_int64(range_tombstone_width, 100, "Number of keys in tombstone's range");
DEFINE_int64(max_num_range_tombstones, 0,
"Maximum number of range tombstones "
"to insert.");
DEFINE_bool(expand_range_tombstones, false,
"Expand range tombstone into sequential regular tombstones.");
#ifndef ROCKSDB_LITE
DEFINE_bool(optimistic_transaction_db, false,
"Open a OptimisticTransactionDB instance. "
"Required for randomtransaction benchmark.");
DEFINE_bool(use_blob_db, false,
"Open a BlobDB instance. "
"Required for largevalue benchmark.");
DEFINE_bool(transaction_db, false,
"Open a TransactionDB instance. "
"Required for randomtransaction benchmark.");
DEFINE_uint64(transaction_sets, 2,
"Number of keys each transaction will "
"modify (use in RandomTransaction only). Max: 9999");
DEFINE_bool(transaction_set_snapshot, false,
"Setting to true will have each transaction call SetSnapshot()"
" upon creation.");
DEFINE_int32(transaction_sleep, 0,
"Max microseconds to sleep in between "
"reading and writing a value (used in RandomTransaction only). ");
DEFINE_uint64(transaction_lock_timeout, 100,
"If using a transaction_db, specifies the lock wait timeout in"
" milliseconds before failing a transaction waiting on a lock");
DEFINE_string(
options_file, "",
"The path to a RocksDB options file. If specified, then db_bench will "
"run with the RocksDB options in the default column family of the "
"specified options file. "
"Note that with this setting, db_bench will ONLY accept the following "
"RocksDB options related command-line arguments, all other arguments "
"that are related to RocksDB options will be ignored:\n"
"\t--use_existing_db\n"
"\t--statistics\n"
"\t--row_cache_size\n"
"\t--row_cache_numshardbits\n"
"\t--enable_io_prio\n"
"\t--dump_malloc_stats\n"
"\t--num_multi_db\n");
DEFINE_uint64(fifo_compaction_max_table_files_size_mb, 0,
"The limit of total table file sizes to trigger FIFO compaction");
DEFINE_bool(fifo_compaction_allow_compaction, true,
"Allow compaction in FIFO compaction.");
#endif // ROCKSDB_LITE
DEFINE_bool(report_bg_io_stats, false,
"Measure times spents on I/Os while in compactions. ");
DEFINE_bool(use_stderr_info_logger, false,
"Write info logs to stderr instead of to LOG file. ");
static enum rocksdb::CompressionType StringToCompressionType(const char* ctype) {
assert(ctype);
if (!strcasecmp(ctype, "none"))
return rocksdb::kNoCompression;
else if (!strcasecmp(ctype, "snappy"))
return rocksdb::kSnappyCompression;
else if (!strcasecmp(ctype, "zlib"))
return rocksdb::kZlibCompression;
else if (!strcasecmp(ctype, "bzip2"))
return rocksdb::kBZip2Compression;
else if (!strcasecmp(ctype, "lz4"))
return rocksdb::kLZ4Compression;
else if (!strcasecmp(ctype, "lz4hc"))
return rocksdb::kLZ4HCCompression;
else if (!strcasecmp(ctype, "xpress"))
return rocksdb::kXpressCompression;
else if (!strcasecmp(ctype, "zstd"))
return rocksdb::kZSTD;
fprintf(stdout, "Cannot parse compression type '%s'\n", ctype);
return rocksdb::kSnappyCompression; // default value
}
static std::string ColumnFamilyName(size_t i) {
if (i == 0) {
return rocksdb::kDefaultColumnFamilyName;
} else {
char name[100];
snprintf(name, sizeof(name), "column_family_name_%06zu", i);
return std::string(name);
}
}
DEFINE_string(compression_type, "snappy",
"Algorithm to use to compress the database");
static enum rocksdb::CompressionType FLAGS_compression_type_e =
rocksdb::kSnappyCompression;
DEFINE_int32(compression_level, -1,
"Compression level. For zlib this should be -1 for the "
"default level, or between 0 and 9.");
DEFINE_int32(compression_max_dict_bytes, 0,
"Maximum size of dictionary used to prime the compression "
"library.");
static bool ValidateCompressionLevel(const char* flagname, int32_t value) {
if (value < -1 || value > 9) {
fprintf(stderr, "Invalid value for --%s: %d, must be between -1 and 9\n",
flagname, value);
return false;
}
return true;
}
static const bool FLAGS_compression_level_dummy __attribute__((unused)) =
RegisterFlagValidator(&FLAGS_compression_level, &ValidateCompressionLevel);
DEFINE_int32(min_level_to_compress, -1, "If non-negative, compression starts"
" from this level. Levels with number < min_level_to_compress are"
" not compressed. Otherwise, apply compression_type to "
"all levels.");
static bool ValidateTableCacheNumshardbits(const char* flagname,
int32_t value) {
if (0 >= value || value > 20) {
fprintf(stderr, "Invalid value for --%s: %d, must be 0 < val <= 20\n",
flagname, value);
return false;
}
return true;
}
DEFINE_int32(table_cache_numshardbits, 4, "");
#ifndef ROCKSDB_LITE
DEFINE_string(env_uri, "", "URI for registry Env lookup. Mutually exclusive"
" with --hdfs.");
#endif // ROCKSDB_LITE
DEFINE_string(hdfs, "", "Name of hdfs environment. Mutually exclusive with"
" --env_uri.");
static rocksdb::Env* FLAGS_env = rocksdb::Env::Default();
DEFINE_int64(stats_interval, 0, "Stats are reported every N operations when "
"this is greater than zero. When 0 the interval grows over time.");
DEFINE_int64(stats_interval_seconds, 0, "Report stats every N seconds. This "
"overrides stats_interval when both are > 0.");
DEFINE_int32(stats_per_interval, 0, "Reports additional stats per interval when"
" this is greater than 0.");
DEFINE_int64(report_interval_seconds, 0,
"If greater than zero, it will write simple stats in CVS format "
"to --report_file every N seconds");
DEFINE_string(report_file, "report.csv",
"Filename where some simple stats are reported to (if "
"--report_interval_seconds is bigger than 0)");
DEFINE_int32(thread_status_per_interval, 0,
"Takes and report a snapshot of the current status of each thread"
" when this is greater than 0.");
DEFINE_int32(perf_level, rocksdb::PerfLevel::kDisable, "Level of perf collection");
static bool ValidateRateLimit(const char* flagname, double value) {
const double EPSILON = 1e-10;
if ( value < -EPSILON ) {
fprintf(stderr, "Invalid value for --%s: %12.6f, must be >= 0.0\n",
flagname, value);
return false;
}
return true;
}
DEFINE_double(soft_rate_limit, 0.0, "DEPRECATED");
DEFINE_double(hard_rate_limit, 0.0, "DEPRECATED");
DEFINE_uint64(soft_pending_compaction_bytes_limit, 64ull * 1024 * 1024 * 1024,
"Slowdown writes if pending compaction bytes exceed this number");
DEFINE_uint64(hard_pending_compaction_bytes_limit, 128ull * 1024 * 1024 * 1024,
"Stop writes if pending compaction bytes exceed this number");
DEFINE_uint64(delayed_write_rate, 8388608u,
"Limited bytes allowed to DB when soft_rate_limit or "
"level0_slowdown_writes_trigger triggers");
DEFINE_bool(allow_concurrent_memtable_write, false,
"Allow multi-writers to update mem tables in parallel.");
DEFINE_bool(enable_write_thread_adaptive_yield, false,
"Use a yielding spin loop for brief writer thread waits.");
DEFINE_uint64(
write_thread_max_yield_usec, 100,
"Maximum microseconds for enable_write_thread_adaptive_yield operation.");
DEFINE_uint64(write_thread_slow_yield_usec, 3,
"The threshold at which a slow yield is considered a signal that "
"other processes or threads want the core.");
DEFINE_int32(rate_limit_delay_max_milliseconds, 1000,
"When hard_rate_limit is set then this is the max time a put will"
" be stalled.");
DEFINE_uint64(rate_limiter_bytes_per_sec, 0, "Set options.rate_limiter value.");
DEFINE_bool(rate_limit_bg_reads, false,
"Use options.rate_limiter on compaction reads");
DEFINE_uint64(
benchmark_write_rate_limit, 0,
"If non-zero, db_bench will rate-limit the writes going into RocksDB. This "
"is the global rate in bytes/second.");
DEFINE_uint64(
benchmark_read_rate_limit, 0,
"If non-zero, db_bench will rate-limit the reads from RocksDB. This "
"is the global rate in ops/second.");
DEFINE_uint64(max_compaction_bytes, rocksdb::Options().max_compaction_bytes,
"Max bytes allowed in one compaction");
#ifndef ROCKSDB_LITE
DEFINE_bool(readonly, false, "Run read only benchmarks.");
#endif // ROCKSDB_LITE
DEFINE_bool(disable_auto_compactions, false, "Do not auto trigger compactions");
DEFINE_uint64(wal_ttl_seconds, 0, "Set the TTL for the WAL Files in seconds.");
DEFINE_uint64(wal_size_limit_MB, 0, "Set the size limit for the WAL Files"
" in MB.");
DEFINE_uint64(max_total_wal_size, 0, "Set total max WAL size");
DEFINE_bool(mmap_read, rocksdb::Options().allow_mmap_reads,
"Allow reads to occur via mmap-ing files");
DEFINE_bool(mmap_write, rocksdb::Options().allow_mmap_writes,
"Allow writes to occur via mmap-ing files");
DEFINE_bool(use_direct_reads, rocksdb::Options().use_direct_reads,
"Use O_DIRECT for reading data");
DEFINE_bool(use_direct_io_for_flush_and_compaction,
rocksdb::Options().use_direct_io_for_flush_and_compaction,
"Use O_DIRECT for background flush and compaction I/O");
DEFINE_bool(advise_random_on_open, rocksdb::Options().advise_random_on_open,
"Advise random access on table file open");
DEFINE_string(compaction_fadvice, "NORMAL",
"Access pattern advice when a file is compacted");
static auto FLAGS_compaction_fadvice_e =
rocksdb::Options().access_hint_on_compaction_start;
DEFINE_bool(use_tailing_iterator, false,
"Use tailing iterator to access a series of keys instead of get");
DEFINE_bool(use_adaptive_mutex, rocksdb::Options().use_adaptive_mutex,
"Use adaptive mutex");
DEFINE_uint64(bytes_per_sync, rocksdb::Options().bytes_per_sync,
"Allows OS to incrementally sync SST files to disk while they are"
" being written, in the background. Issue one request for every"
" bytes_per_sync written. 0 turns it off.");
DEFINE_uint64(wal_bytes_per_sync, rocksdb::Options().wal_bytes_per_sync,
"Allows OS to incrementally sync WAL files to disk while they are"
" being written, in the background. Issue one request for every"
" wal_bytes_per_sync written. 0 turns it off.");
DEFINE_bool(use_single_deletes, true,
"Use single deletes (used in RandomReplaceKeys only).");
DEFINE_double(stddev, 2000.0,
"Standard deviation of normal distribution used for picking keys"
" (used in RandomReplaceKeys only).");
DEFINE_int32(key_id_range, 100000,
"Range of possible value of key id (used in TimeSeries only).");
DEFINE_string(expire_style, "none",
"Style to remove expired time entries. Can be one of the options "
"below: none (do not expired data), compaction_filter (use a "
"compaction filter to remove expired data), delete (seek IDs and "
"remove expired data) (used in TimeSeries only).");
DEFINE_uint64(
time_range, 100000,
"Range of timestamp that store in the database (used in TimeSeries"
" only).");
DEFINE_int32(num_deletion_threads, 1,
"Number of threads to do deletion (used in TimeSeries and delete "
"expire_style only).");
DEFINE_int32(max_successive_merges, 0, "Maximum number of successive merge"
" operations on a key in the memtable");
static bool ValidatePrefixSize(const char* flagname, int32_t value) {
if (value < 0 || value>=2000000000) {
fprintf(stderr, "Invalid value for --%s: %d. 0<= PrefixSize <=2000000000\n",
flagname, value);
return false;
}
return true;
}
DEFINE_int32(prefix_size, 0, "control the prefix size for HashSkipList and "
"plain table");
DEFINE_int64(keys_per_prefix, 0, "control average number of keys generated "
"per prefix, 0 means no special handling of the prefix, "
"i.e. use the prefix comes with the generated random number.");
DEFINE_int32(memtable_insert_with_hint_prefix_size, 0,
"If non-zero, enable "
"memtable insert with hint with the given prefix size.");
DEFINE_bool(enable_io_prio, false, "Lower the background flush/compaction "
"threads' IO priority");
DEFINE_bool(identity_as_first_hash, false, "the first hash function of cuckoo "
"table becomes an identity function. This is only valid when key "
"is 8 bytes");
DEFINE_bool(dump_malloc_stats, true, "Dump malloc stats in LOG ");
enum RepFactory {
kSkipList,
kPrefixHash,
kVectorRep,
kHashLinkedList,
kCuckoo
};
static enum RepFactory StringToRepFactory(const char* ctype) {
assert(ctype);
if (!strcasecmp(ctype, "skip_list"))
return kSkipList;
else if (!strcasecmp(ctype, "prefix_hash"))
return kPrefixHash;
else if (!strcasecmp(ctype, "vector"))
return kVectorRep;
else if (!strcasecmp(ctype, "hash_linkedlist"))
return kHashLinkedList;
else if (!strcasecmp(ctype, "cuckoo"))
return kCuckoo;
fprintf(stdout, "Cannot parse memreptable %s\n", ctype);
return kSkipList;
}
static enum RepFactory FLAGS_rep_factory;
DEFINE_string(memtablerep, "skip_list", "");
DEFINE_int64(hash_bucket_count, 1024 * 1024, "hash bucket count");
DEFINE_bool(use_plain_table, false, "if use plain table "
"instead of block-based table format");
DEFINE_bool(use_cuckoo_table, false, "if use cuckoo table format");
DEFINE_double(cuckoo_hash_ratio, 0.9, "Hash ratio for Cuckoo SST table.");
DEFINE_bool(use_hash_search, false, "if use kHashSearch "
"instead of kBinarySearch. "
"This is valid if only we use BlockTable");
DEFINE_bool(use_block_based_filter, false, "if use kBlockBasedFilter "
"instead of kFullFilter for filter block. "
"This is valid if only we use BlockTable");
DEFINE_string(merge_operator, "", "The merge operator to use with the database."
"If a new merge operator is specified, be sure to use fresh"
" database The possible merge operators are defined in"
" utilities/merge_operators.h");
DEFINE_int32(skip_list_lookahead, 0, "Used with skip_list memtablerep; try "
"linear search first for this many steps from the previous "
"position");
DEFINE_bool(report_file_operations, false, "if report number of file "
"operations");
static const bool FLAGS_soft_rate_limit_dummy __attribute__((unused)) =
RegisterFlagValidator(&FLAGS_soft_rate_limit, &ValidateRateLimit);
static const bool FLAGS_hard_rate_limit_dummy __attribute__((unused)) =
RegisterFlagValidator(&FLAGS_hard_rate_limit, &ValidateRateLimit);
static const bool FLAGS_prefix_size_dummy __attribute__((unused)) =
RegisterFlagValidator(&FLAGS_prefix_size, &ValidatePrefixSize);
static const bool FLAGS_key_size_dummy __attribute__((unused)) =
RegisterFlagValidator(&FLAGS_key_size, &ValidateKeySize);
static const bool FLAGS_cache_numshardbits_dummy __attribute__((unused)) =
RegisterFlagValidator(&FLAGS_cache_numshardbits,
&ValidateCacheNumshardbits);
static const bool FLAGS_readwritepercent_dummy __attribute__((unused)) =
RegisterFlagValidator(&FLAGS_readwritepercent, &ValidateInt32Percent);
DEFINE_int32(disable_seek_compaction, false,
"Not used, left here for backwards compatibility");
static const bool FLAGS_deletepercent_dummy __attribute__((unused)) =
RegisterFlagValidator(&FLAGS_deletepercent, &ValidateInt32Percent);
static const bool FLAGS_table_cache_numshardbits_dummy __attribute__((unused)) =
RegisterFlagValidator(&FLAGS_table_cache_numshardbits,
&ValidateTableCacheNumshardbits);
namespace rocksdb {
namespace {
struct ReportFileOpCounters {
std::atomic<int> open_counter_;
std::atomic<int> read_counter_;
std::atomic<int> append_counter_;
std::atomic<uint64_t> bytes_read_;
std::atomic<uint64_t> bytes_written_;
};
// A special Env to records and report file operations in db_bench
class ReportFileOpEnv : public EnvWrapper {
public:
explicit ReportFileOpEnv(Env* base) : EnvWrapper(base) { reset(); }
void reset() {
counters_.open_counter_ = 0;
counters_.read_counter_ = 0;
counters_.append_counter_ = 0;
counters_.bytes_read_ = 0;
counters_.bytes_written_ = 0;
}
Status NewSequentialFile(const std::string& f, unique_ptr<SequentialFile>* r,
const EnvOptions& soptions) override {
class CountingFile : public SequentialFile {
private:
unique_ptr<SequentialFile> target_;
ReportFileOpCounters* counters_;
public:
CountingFile(unique_ptr<SequentialFile>&& target,
ReportFileOpCounters* counters)
: target_(std::move(target)), counters_(counters) {}
virtual Status Read(size_t n, Slice* result, char* scratch) override {
counters_->read_counter_.fetch_add(1, std::memory_order_relaxed);
Status rv = target_->Read(n, result, scratch);
counters_->bytes_read_.fetch_add(result->size(),
std::memory_order_relaxed);
return rv;
}
virtual Status Skip(uint64_t n) override { return target_->Skip(n); }
};
Status s = target()->NewSequentialFile(f, r, soptions);
if (s.ok()) {
counters()->open_counter_.fetch_add(1, std::memory_order_relaxed);
r->reset(new CountingFile(std::move(*r), counters()));
}
return s;
}
Status NewRandomAccessFile(const std::string& f,
unique_ptr<RandomAccessFile>* r,
const EnvOptions& soptions) override {
class CountingFile : public RandomAccessFile {
private:
unique_ptr<RandomAccessFile> target_;
ReportFileOpCounters* counters_;
public:
CountingFile(unique_ptr<RandomAccessFile>&& target,
ReportFileOpCounters* counters)
: target_(std::move(target)), counters_(counters) {}
virtual Status Read(uint64_t offset, size_t n, Slice* result,
char* scratch) const override {
counters_->read_counter_.fetch_add(1, std::memory_order_relaxed);
Status rv = target_->Read(offset, n, result, scratch);
counters_->bytes_read_.fetch_add(result->size(),
std::memory_order_relaxed);
return rv;
}
};
Status s = target()->NewRandomAccessFile(f, r, soptions);
if (s.ok()) {
counters()->open_counter_.fetch_add(1, std::memory_order_relaxed);
r->reset(new CountingFile(std::move(*r), counters()));
}
return s;
}
Status NewWritableFile(const std::string& f, unique_ptr<WritableFile>* r,
const EnvOptions& soptions) override {
class CountingFile : public WritableFile {
private:
unique_ptr<WritableFile> target_;
ReportFileOpCounters* counters_;
public:
CountingFile(unique_ptr<WritableFile>&& target,
ReportFileOpCounters* counters)
: target_(std::move(target)), counters_(counters) {}
Status Append(const Slice& data) override {
counters_->append_counter_.fetch_add(1, std::memory_order_relaxed);
Status rv = target_->Append(data);
counters_->bytes_written_.fetch_add(data.size(),
std::memory_order_relaxed);
return rv;
}
Status Truncate(uint64_t size) override { return target_->Truncate(size); }
Status Close() override { return target_->Close(); }
Status Flush() override { return target_->Flush(); }
Status Sync() override { return target_->Sync(); }
};
Status s = target()->NewWritableFile(f, r, soptions);
if (s.ok()) {
counters()->open_counter_.fetch_add(1, std::memory_order_relaxed);
r->reset(new CountingFile(std::move(*r), counters()));
}
return s;
}
// getter
ReportFileOpCounters* counters() { return &counters_; }
private:
ReportFileOpCounters counters_;
};
} // namespace
// Helper for quickly generating random data.
class RandomGenerator {
private:
std::string data_;
unsigned int pos_;
public:
RandomGenerator() {
// We use a limited amount of data over and over again and ensure
// that it is larger than the compression window (32KB), and also
// large enough to serve all typical value sizes we want to write.
Random rnd(301);
std::string piece;
while (data_.size() < (unsigned)std::max(1048576, FLAGS_value_size)) {
// Add a short fragment that is as compressible as specified
// by FLAGS_compression_ratio.
test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece);
data_.append(piece);
}
pos_ = 0;
}
Slice Generate(unsigned int len) {
assert(len <= data_.size());
if (pos_ + len > data_.size()) {
pos_ = 0;
}
pos_ += len;
return Slice(data_.data() + pos_ - len, len);
}
Slice GenerateWithTTL(unsigned int len) {
assert(len <= data_.size());
if (pos_ + len > data_.size()) {
pos_ = 0;
}
pos_ += len;
return Slice(data_.data() + pos_ - len, len);
}
};
static void AppendWithSpace(std::string* str, Slice msg) {
if (msg.empty()) return;
if (!str->empty()) {
str->push_back(' ');
}
str->append(msg.data(), msg.size());
}
struct DBWithColumnFamilies {
std::vector<ColumnFamilyHandle*> cfh;
DB* db;
#ifndef ROCKSDB_LITE
OptimisticTransactionDB* opt_txn_db;
#endif // ROCKSDB_LITE
std::atomic<size_t> num_created; // Need to be updated after all the
// new entries in cfh are set.
size_t num_hot; // Number of column families to be queried at each moment.
// After each CreateNewCf(), another num_hot number of new
// Column families will be created and used to be queried.
port::Mutex create_cf_mutex; // Only one thread can execute CreateNewCf()
DBWithColumnFamilies()
: db(nullptr)
#ifndef ROCKSDB_LITE
, opt_txn_db(nullptr)
#endif // ROCKSDB_LITE
{
cfh.clear();
num_created = 0;
num_hot = 0;
}
DBWithColumnFamilies(const DBWithColumnFamilies& other)
: cfh(other.cfh),
db(other.db),
#ifndef ROCKSDB_LITE
opt_txn_db(other.opt_txn_db),
#endif // ROCKSDB_LITE
num_created(other.num_created.load()),
num_hot(other.num_hot) {}
void DeleteDBs() {
std::for_each(cfh.begin(), cfh.end(),
[](ColumnFamilyHandle* cfhi) { delete cfhi; });
cfh.clear();
#ifndef ROCKSDB_LITE
if (opt_txn_db) {
delete opt_txn_db;
opt_txn_db = nullptr;
} else {
delete db;
db = nullptr;
}
#else
delete db;
db = nullptr;
#endif // ROCKSDB_LITE
}
ColumnFamilyHandle* GetCfh(int64_t rand_num) {
assert(num_hot > 0);
return cfh[num_created.load(std::memory_order_acquire) - num_hot +
rand_num % num_hot];
}
// stage: assume CF from 0 to stage * num_hot has be created. Need to create
// stage * num_hot + 1 to stage * (num_hot + 1).
void CreateNewCf(ColumnFamilyOptions options, int64_t stage) {
MutexLock l(&create_cf_mutex);
if ((stage + 1) * num_hot <= num_created) {
// Already created.
return;
}
auto new_num_created = num_created + num_hot;
assert(new_num_created <= cfh.size());
for (size_t i = num_created; i < new_num_created; i++) {
Status s =
db->CreateColumnFamily(options, ColumnFamilyName(i), &(cfh[i]));
if (!s.ok()) {
fprintf(stderr, "create column family error: %s\n",
s.ToString().c_str());
abort();
}
}
num_created.store(new_num_created, std::memory_order_release);
}
};
// a class that reports stats to CSV file
class ReporterAgent {
public:
ReporterAgent(Env* env, const std::string& fname,
uint64_t report_interval_secs)
: env_(env),
total_ops_done_(0),
last_report_(0),
report_interval_secs_(report_interval_secs),
stop_(false) {
auto s = env_->NewWritableFile(fname, &report_file_, EnvOptions());
if (s.ok()) {
s = report_file_->Append(Header() + "\n");
}
if (s.ok()) {
s = report_file_->Flush();
}
if (!s.ok()) {
fprintf(stderr, "Can't open %s: %s\n", fname.c_str(),
s.ToString().c_str());
abort();
}
reporting_thread_ = port::Thread([&]() { SleepAndReport(); });
}
~ReporterAgent() {
{
std::unique_lock<std::mutex> lk(mutex_);
stop_ = true;
stop_cv_.notify_all();
}
reporting_thread_.join();
}
// thread safe
void ReportFinishedOps(int64_t num_ops) {
total_ops_done_.fetch_add(num_ops);
}
private:
std::string Header() const { return "secs_elapsed,interval_qps"; }
void SleepAndReport() {
uint64_t kMicrosInSecond = 1000 * 1000;
auto time_started = env_->NowMicros();
while (true) {
{
std::unique_lock<std::mutex> lk(mutex_);
if (stop_ ||
stop_cv_.wait_for(lk, std::chrono::seconds(report_interval_secs_),
[&]() { return stop_; })) {
// stopping
break;
}
// else -> timeout, which means time for a report!
}
auto total_ops_done_snapshot = total_ops_done_.load();
// round the seconds elapsed
auto secs_elapsed =
(env_->NowMicros() - time_started + kMicrosInSecond / 2) /
kMicrosInSecond;
std::string report = ToString(secs_elapsed) + "," +
ToString(total_ops_done_snapshot - last_report_) +
"\n";
auto s = report_file_->Append(report);
if (s.ok()) {
s = report_file_->Flush();
}
if (!s.ok()) {
fprintf(stderr,
"Can't write to report file (%s), stopping the reporting\n",
s.ToString().c_str());
break;
}
last_report_ = total_ops_done_snapshot;
}
}
Env* env_;
std::unique_ptr<WritableFile> report_file_;
std::atomic<int64_t> total_ops_done_;
int64_t last_report_;
const uint64_t report_interval_secs_;
rocksdb::port::Thread reporting_thread_;
std::mutex mutex_;
// will notify on stop
std::condition_variable stop_cv_;
bool stop_;
};
enum OperationType : unsigned char {
kRead = 0,
kWrite,
kDelete,
kSeek,
kMerge,
kUpdate,
kCompress,
kUncompress,
kCrc,
kHash,
kOthers
};
static std::unordered_map<OperationType, std::string, std::hash<unsigned char>>
OperationTypeString = {
{kRead, "read"},
{kWrite, "write"},
{kDelete, "delete"},
{kSeek, "seek"},
{kMerge, "merge"},
{kUpdate, "update"},
{kCompress, "compress"},
{kCompress, "uncompress"},
{kCrc, "crc"},
{kHash, "hash"},
{kOthers, "op"}
};
class CombinedStats;
class Stats {
private:
int id_;
uint64_t start_;
uint64_t finish_;
double seconds_;
uint64_t done_;
uint64_t last_report_done_;
uint64_t next_report_;
uint64_t bytes_;
uint64_t last_op_finish_;
uint64_t last_report_finish_;
std::unordered_map<OperationType, std::shared_ptr<HistogramImpl>,
std::hash<unsigned char>> hist_;
std::string message_;
bool exclude_from_merge_;
ReporterAgent* reporter_agent_; // does not own
friend class CombinedStats;
public:
Stats() { Start(-1); }
void SetReporterAgent(ReporterAgent* reporter_agent) {
reporter_agent_ = reporter_agent;
}
void Start(int id) {
id_ = id;
next_report_ = FLAGS_stats_interval ? FLAGS_stats_interval : 100;
last_op_finish_ = start_;
hist_.clear();
done_ = 0;
last_report_done_ = 0;
bytes_ = 0;
seconds_ = 0;
start_ = FLAGS_env->NowMicros();
finish_ = start_;
last_report_finish_ = start_;
message_.clear();
// When set, stats from this thread won't be merged with others.
exclude_from_merge_ = false;
}
void Merge(const Stats& other) {
if (other.exclude_from_merge_)
return;
for (auto it = other.hist_.begin(); it != other.hist_.end(); ++it) {
auto this_it = hist_.find(it->first);
if (this_it != hist_.end()) {
this_it->second->Merge(*(other.hist_.at(it->first)));
} else {
hist_.insert({ it->first, it->second });
}
}
done_ += other.done_;
bytes_ += other.bytes_;
seconds_ += other.seconds_;
if (other.start_ < start_) start_ = other.start_;
if (other.finish_ > finish_) finish_ = other.finish_;
// Just keep the messages from one thread
if (message_.empty()) message_ = other.message_;
}
void Stop() {
finish_ = FLAGS_env->NowMicros();
seconds_ = (finish_ - start_) * 1e-6;
}
void AddMessage(Slice msg) {
AppendWithSpace(&message_, msg);
}
void SetId(int id) { id_ = id; }
void SetExcludeFromMerge() { exclude_from_merge_ = true; }
void PrintThreadStatus() {
std::vector<ThreadStatus> thread_list;
FLAGS_env->GetThreadList(&thread_list);
fprintf(stderr, "\n%18s %10s %12s %20s %13s %45s %12s %s\n",
"ThreadID", "ThreadType", "cfName", "Operation",
"ElapsedTime", "Stage", "State", "OperationProperties");
int64_t current_time = 0;
Env::Default()->GetCurrentTime(&current_time);
for (auto ts : thread_list) {
fprintf(stderr, "%18" PRIu64 " %10s %12s %20s %13s %45s %12s",
ts.thread_id,
ThreadStatus::GetThreadTypeName(ts.thread_type).c_str(),
ts.cf_name.c_str(),
ThreadStatus::GetOperationName(ts.operation_type).c_str(),
ThreadStatus::MicrosToString(ts.op_elapsed_micros).c_str(),
ThreadStatus::GetOperationStageName(ts.operation_stage).c_str(),
ThreadStatus::GetStateName(ts.state_type).c_str());
auto op_properties = ThreadStatus::InterpretOperationProperties(
ts.operation_type, ts.op_properties);
for (const auto& op_prop : op_properties) {
fprintf(stderr, " %s %" PRIu64" |",
op_prop.first.c_str(), op_prop.second);
}
fprintf(stderr, "\n");
}
}
void ResetLastOpTime() {
// Set to now to avoid latency from calls to SleepForMicroseconds
last_op_finish_ = FLAGS_env->NowMicros();
}
void FinishedOps(DBWithColumnFamilies* db_with_cfh, DB* db, int64_t num_ops,
enum OperationType op_type = kOthers) {
if (reporter_agent_) {
reporter_agent_->ReportFinishedOps(num_ops);
}
if (FLAGS_histogram) {
uint64_t now = FLAGS_env->NowMicros();
uint64_t micros = now - last_op_finish_;
if (hist_.find(op_type) == hist_.end())
{
auto hist_temp = std::make_shared<HistogramImpl>();
hist_.insert({op_type, std::move(hist_temp)});
}
hist_[op_type]->Add(micros);
if (micros > 20000 && !FLAGS_stats_interval) {
fprintf(stderr, "long op: %" PRIu64 " micros%30s\r", micros, "");
fflush(stderr);
}
last_op_finish_ = now;
}
done_ += num_ops;
if (done_ >= next_report_) {
if (!FLAGS_stats_interval) {
if (next_report_ < 1000) next_report_ += 100;
else if (next_report_ < 5000) next_report_ += 500;
else if (next_report_ < 10000) next_report_ += 1000;
else if (next_report_ < 50000) next_report_ += 5000;
else if (next_report_ < 100000) next_report_ += 10000;
else if (next_report_ < 500000) next_report_ += 50000;
else next_report_ += 100000;
fprintf(stderr, "... finished %" PRIu64 " ops%30s\r", done_, "");
} else {
uint64_t now = FLAGS_env->NowMicros();
int64_t usecs_since_last = now - last_report_finish_;
// Determine whether to print status where interval is either
// each N operations or each N seconds.
if (FLAGS_stats_interval_seconds &&
usecs_since_last < (FLAGS_stats_interval_seconds * 1000000)) {
// Don't check again for this many operations
next_report_ += FLAGS_stats_interval;
} else {
fprintf(stderr,
"%s ... thread %d: (%" PRIu64 ",%" PRIu64 ") ops and "
"(%.1f,%.1f) ops/second in (%.6f,%.6f) seconds\n",
FLAGS_env->TimeToString(now/1000000).c_str(),
id_,
done_ - last_report_done_, done_,
(done_ - last_report_done_) /
(usecs_since_last / 1000000.0),
done_ / ((now - start_) / 1000000.0),
(now - last_report_finish_) / 1000000.0,
(now - start_) / 1000000.0);
if (id_ == 0 && FLAGS_stats_per_interval) {
std::string stats;
if (db_with_cfh && db_with_cfh->num_created.load()) {
for (size_t i = 0; i < db_with_cfh->num_created.load(); ++i) {
if (db->GetProperty(db_with_cfh->cfh[i], "rocksdb.cfstats",
&stats))
fprintf(stderr, "%s\n", stats.c_str());
if (FLAGS_show_table_properties) {
for (int level = 0; level < FLAGS_num_levels; ++level) {
if (db->GetProperty(
db_with_cfh->cfh[i],
"rocksdb.aggregated-table-properties-at-level" +
ToString(level),
&stats)) {
if (stats.find("# entries=0") == std::string::npos) {
fprintf(stderr, "Level[%d]: %s\n", level,
stats.c_str());
}
}
}
}
}
} else if (db) {
if (db->GetProperty("rocksdb.stats", &stats)) {
fprintf(stderr, "%s\n", stats.c_str());
}
if (FLAGS_show_table_properties) {
for (int level = 0; level < FLAGS_num_levels; ++level) {
if (db->GetProperty(
"rocksdb.aggregated-table-properties-at-level" +
ToString(level),
&stats)) {
if (stats.find("# entries=0") == std::string::npos) {
fprintf(stderr, "Level[%d]: %s\n", level, stats.c_str());
}
}
}
}
}
}
next_report_ += FLAGS_stats_interval;
last_report_finish_ = now;
last_report_done_ = done_;
}
}
if (id_ == 0 && FLAGS_thread_status_per_interval) {
PrintThreadStatus();
}
fflush(stderr);
}
}
void AddBytes(int64_t n) {
bytes_ += n;
}
void Report(const Slice& name) {
// Pretend at least one op was done in case we are running a benchmark
// that does not call FinishedOps().
if (done_ < 1) done_ = 1;
std::string extra;
if (bytes_ > 0) {
// Rate is computed on actual elapsed time, not the sum of per-thread
// elapsed times.
double elapsed = (finish_ - start_) * 1e-6;
char rate[100];
snprintf(rate, sizeof(rate), "%6.1f MB/s",
(bytes_ / 1048576.0) / elapsed);
extra = rate;
}
AppendWithSpace(&extra, message_);
double elapsed = (finish_ - start_) * 1e-6;
double throughput = (double)done_/elapsed;
fprintf(stdout, "%-12s : %11.3f micros/op %ld ops/sec;%s%s\n",
name.ToString().c_str(),
elapsed * 1e6 / done_,
(long)throughput,
(extra.empty() ? "" : " "),
extra.c_str());
if (FLAGS_histogram) {
for (auto it = hist_.begin(); it != hist_.end(); ++it) {
fprintf(stdout, "Microseconds per %s:\n%s\n",
OperationTypeString[it->first].c_str(),
it->second->ToString().c_str());
}
}
if (FLAGS_report_file_operations) {
ReportFileOpEnv* env = static_cast<ReportFileOpEnv*>(FLAGS_env);
ReportFileOpCounters* counters = env->counters();
fprintf(stdout, "Num files opened: %d\n",
counters->open_counter_.load(std::memory_order_relaxed));
fprintf(stdout, "Num Read(): %d\n",
counters->read_counter_.load(std::memory_order_relaxed));
fprintf(stdout, "Num Append(): %d\n",
counters->append_counter_.load(std::memory_order_relaxed));
fprintf(stdout, "Num bytes read: %" PRIu64 "\n",
counters->bytes_read_.load(std::memory_order_relaxed));
fprintf(stdout, "Num bytes written: %" PRIu64 "\n",
counters->bytes_written_.load(std::memory_order_relaxed));
env->reset();
}
fflush(stdout);
}
};
class CombinedStats {
public:
void AddStats(const Stats& stat) {
uint64_t total_ops = stat.done_;
uint64_t total_bytes_ = stat.bytes_;
double elapsed;
if (total_ops < 1) {
total_ops = 1;
}
elapsed = (stat.finish_ - stat.start_) * 1e-6;
throughput_ops_.emplace_back(total_ops / elapsed);
if (total_bytes_ > 0) {
double mbs = (total_bytes_ / 1048576.0);
throughput_mbs_.emplace_back(mbs / elapsed);
}
}
void Report(const std::string& bench_name) {
const char* name = bench_name.c_str();
int num_runs = static_cast<int>(throughput_ops_.size());
if (throughput_mbs_.size() == throughput_ops_.size()) {
fprintf(stdout,
"%s [AVG %d runs] : %d ops/sec; %6.1f MB/sec\n"
"%s [MEDIAN %d runs] : %d ops/sec; %6.1f MB/sec\n",
name, num_runs, static_cast<int>(CalcAvg(throughput_ops_)),
CalcAvg(throughput_mbs_), name, num_runs,
static_cast<int>(CalcMedian(throughput_ops_)),
CalcMedian(throughput_mbs_));
} else {
fprintf(stdout,
"%s [AVG %d runs] : %d ops/sec\n"
"%s [MEDIAN %d runs] : %d ops/sec\n",
name, num_runs, static_cast<int>(CalcAvg(throughput_ops_)), name,
num_runs, static_cast<int>(CalcMedian(throughput_ops_)));
}
}
private:
double CalcAvg(std::vector<double> data) {
double avg = 0;
for (double x : data) {
avg += x;
}
avg = avg / data.size();
return avg;
}
double CalcMedian(std::vector<double> data) {
assert(data.size() > 0);
std::sort(data.begin(), data.end());
size_t mid = data.size() / 2;
if (data.size() % 2 == 1) {
// Odd number of entries
return data[mid];
} else {
// Even number of entries
return (data[mid] + data[mid - 1]) / 2;
}
}
std::vector<double> throughput_ops_;
std::vector<double> throughput_mbs_;
};
class TimestampEmulator {
private:
std::atomic<uint64_t> timestamp_;
public:
TimestampEmulator() : timestamp_(0) {}
uint64_t Get() const { return timestamp_.load(); }
void Inc() { timestamp_++; }
};
// State shared by all concurrent executions of the same benchmark.
struct SharedState {
port::Mutex mu;
port::CondVar cv;
int total;
int perf_level;
std::shared_ptr<RateLimiter> write_rate_limiter;
std::shared_ptr<RateLimiter> read_rate_limiter;
// Each thread goes through the following states:
// (1) initializing
// (2) waiting for others to be initialized
// (3) running
// (4) done
long num_initialized;
long num_done;
bool start;
SharedState() : cv(&mu), perf_level(FLAGS_perf_level) { }
};
// Per-thread state for concurrent executions of the same benchmark.
struct ThreadState {
int tid; // 0..n-1 when running in n threads
Random64 rand; // Has different seeds for different threads
Stats stats;
SharedState* shared;
/* implicit */ ThreadState(int index)
: tid(index),
rand((FLAGS_seed ? FLAGS_seed : 1000) + index) {
}
};
class Duration {
public:
Duration(uint64_t max_seconds, int64_t max_ops, int64_t ops_per_stage = 0) {
max_seconds_ = max_seconds;
max_ops_= max_ops;
ops_per_stage_ = (ops_per_stage > 0) ? ops_per_stage : max_ops;
ops_ = 0;
start_at_ = FLAGS_env->NowMicros();
}
int64_t GetStage() { return std::min(ops_, max_ops_ - 1) / ops_per_stage_; }
bool Done(int64_t increment) {
if (increment <= 0) increment = 1; // avoid Done(0) and infinite loops
ops_ += increment;
if (max_seconds_) {
// Recheck every appx 1000 ops (exact iff increment is factor of 1000)
if ((ops_/1000) != ((ops_-increment)/1000)) {
uint64_t now = FLAGS_env->NowMicros();
return ((now - start_at_) / 1000000) >= max_seconds_;
} else {
return false;
}
} else {
return ops_ > max_ops_;
}
}
private:
uint64_t max_seconds_;
int64_t max_ops_;
int64_t ops_per_stage_;
int64_t ops_;
uint64_t start_at_;
};
class Benchmark {
private:
std::shared_ptr<Cache> cache_;
std::shared_ptr<Cache> compressed_cache_;
std::shared_ptr<const FilterPolicy> filter_policy_;
const SliceTransform* prefix_extractor_;
DBWithColumnFamilies db_;
std::vector<DBWithColumnFamilies> multi_dbs_;
int64_t num_;
int value_size_;
int key_size_;
int prefix_size_;
int64_t keys_per_prefix_;
int64_t entries_per_batch_;
int64_t writes_per_range_tombstone_;
int64_t range_tombstone_width_;
int64_t max_num_range_tombstones_;
WriteOptions write_options_;
Options open_options_; // keep options around to properly destroy db later
int64_t reads_;
int64_t deletes_;
double read_random_exp_range_;
int64_t writes_;
int64_t readwrites_;
int64_t merge_keys_;
bool report_file_operations_;
bool use_blob_db_;
bool SanityCheck() {
if (FLAGS_compression_ratio > 1) {
fprintf(stderr, "compression_ratio should be between 0 and 1\n");
return false;
}
return true;
}
inline bool CompressSlice(const Slice& input, std::string* compressed) {
bool ok = true;
switch (FLAGS_compression_type_e) {
case rocksdb::kSnappyCompression:
ok = Snappy_Compress(Options().compression_opts, input.data(),
input.size(), compressed);
break;
case rocksdb::kZlibCompression:
ok = Zlib_Compress(Options().compression_opts, 2, input.data(),
input.size(), compressed);
break;
case rocksdb::kBZip2Compression:
ok = BZip2_Compress(Options().compression_opts, 2, input.data(),
input.size(), compressed);
break;
case rocksdb::kLZ4Compression:
ok = LZ4_Compress(Options().compression_opts, 2, input.data(),
input.size(), compressed);
break;
case rocksdb::kLZ4HCCompression:
ok = LZ4HC_Compress(Options().compression_opts, 2, input.data(),
input.size(), compressed);
break;
case rocksdb::kXpressCompression:
ok = XPRESS_Compress(input.data(),
input.size(), compressed);
break;
case rocksdb::kZSTD:
ok = ZSTD_Compress(Options().compression_opts, input.data(),
input.size(), compressed);
break;
default:
ok = false;
}
return ok;
}
void PrintHeader() {
PrintEnvironment();
fprintf(stdout, "Keys: %d bytes each\n", FLAGS_key_size);
fprintf(stdout, "Values: %d bytes each (%d bytes after compression)\n",
FLAGS_value_size,
static_cast<int>(FLAGS_value_size * FLAGS_compression_ratio + 0.5));
fprintf(stdout, "Entries: %" PRIu64 "\n", num_);
fprintf(stdout, "Prefix: %d bytes\n", FLAGS_prefix_size);
fprintf(stdout, "Keys per prefix: %" PRIu64 "\n", keys_per_prefix_);
fprintf(stdout, "RawSize: %.1f MB (estimated)\n",
((static_cast<int64_t>(FLAGS_key_size + FLAGS_value_size) * num_)
/ 1048576.0));
fprintf(stdout, "FileSize: %.1f MB (estimated)\n",
(((FLAGS_key_size + FLAGS_value_size * FLAGS_compression_ratio)
* num_)
/ 1048576.0));
fprintf(stdout, "Write rate: %" PRIu64 " bytes/second\n",
FLAGS_benchmark_write_rate_limit);
fprintf(stdout, "Read rate: %" PRIu64 " ops/second\n",
FLAGS_benchmark_read_rate_limit);
if (FLAGS_enable_numa) {
fprintf(stderr, "Running in NUMA enabled mode.\n");
#ifndef NUMA
fprintf(stderr, "NUMA is not defined in the system.\n");
exit(1);
#else
if (numa_available() == -1) {
fprintf(stderr, "NUMA is not supported by the system.\n");
exit(1);
}
#endif
}
auto compression = CompressionTypeToString(FLAGS_compression_type_e);
fprintf(stdout, "Compression: %s\n", compression.c_str());
switch (FLAGS_rep_factory) {
case kPrefixHash:
fprintf(stdout, "Memtablerep: prefix_hash\n");
break;
case kSkipList:
fprintf(stdout, "Memtablerep: skip_list\n");
break;
case kVectorRep:
fprintf(stdout, "Memtablerep: vector\n");
break;
case kHashLinkedList:
fprintf(stdout, "Memtablerep: hash_linkedlist\n");
break;
case kCuckoo:
fprintf(stdout, "Memtablerep: cuckoo\n");
break;
}
fprintf(stdout, "Perf Level: %d\n", FLAGS_perf_level);
PrintWarnings(compression.c_str());
fprintf(stdout, "------------------------------------------------\n");
}
void PrintWarnings(const char* compression) {
#if defined(__GNUC__) && !defined(__OPTIMIZE__)
fprintf(stdout,
"WARNING: Optimization is disabled: benchmarks unnecessarily slow\n"
);
#endif
#ifndef NDEBUG
fprintf(stdout,
"WARNING: Assertions are enabled; benchmarks unnecessarily slow\n");
#endif
if (FLAGS_compression_type_e != rocksdb::kNoCompression) {
// The test string should not be too small.
const int len = FLAGS_block_size;
std::string input_str(len, 'y');
std::string compressed;
bool result = CompressSlice(Slice(input_str), &compressed);
if (!result) {
fprintf(stdout, "WARNING: %s compression is not enabled\n",
compression);
} else if (compressed.size() >= input_str.size()) {
fprintf(stdout, "WARNING: %s compression is not effective\n",
compression);
}
}
}
// Current the following isn't equivalent to OS_LINUX.
#if defined(__linux)
static Slice TrimSpace(Slice s) {
unsigned int start = 0;
while (start < s.size() && isspace(s[start])) {
start++;
}
unsigned int limit = static_cast<unsigned int>(s.size());
while (limit > start && isspace(s[limit-1])) {
limit--;
}
return Slice(s.data() + start, limit - start);
}
#endif
void PrintEnvironment() {
fprintf(stderr, "RocksDB: version %d.%d\n",
kMajorVersion, kMinorVersion);
#if defined(__linux)
time_t now = time(nullptr);
char buf[52];
// Lint complains about ctime() usage, so replace it with ctime_r(). The
// requirement is to provide a buffer which is at least 26 bytes.
fprintf(stderr, "Date: %s",
ctime_r(&now, buf)); // ctime_r() adds newline
FILE* cpuinfo = fopen("/proc/cpuinfo", "r");
if (cpuinfo != nullptr) {
char line[1000];
int num_cpus = 0;
std::string cpu_type;
std::string cache_size;
while (fgets(line, sizeof(line), cpuinfo) != nullptr) {
const char* sep = strchr(line, ':');
if (sep == nullptr) {
continue;
}
Slice key = TrimSpace(Slice(line, sep - 1 - line));
Slice val = TrimSpace(Slice(sep + 1));
if (key == "model name") {
++num_cpus;
cpu_type = val.ToString();
} else if (key == "cache size") {
cache_size = val.ToString();
}
}
fclose(cpuinfo);
fprintf(stderr, "CPU: %d * %s\n", num_cpus, cpu_type.c_str());
fprintf(stderr, "CPUCache: %s\n", cache_size.c_str());
}
#endif
}
static bool KeyExpired(const TimestampEmulator* timestamp_emulator,
const Slice& key) {
const char* pos = key.data();
pos += 8;
uint64_t timestamp = 0;
if (port::kLittleEndian) {
int bytes_to_fill = 8;
for (int i = 0; i < bytes_to_fill; ++i) {
timestamp |= (static_cast<uint64_t>(static_cast<unsigned char>(pos[i]))
<< ((bytes_to_fill - i - 1) << 3));
}
} else {
memcpy(&timestamp, pos, sizeof(timestamp));
}
return timestamp_emulator->Get() - timestamp > FLAGS_time_range;
}
class ExpiredTimeFilter : public CompactionFilter {
public:
explicit ExpiredTimeFilter(
const std::shared_ptr<TimestampEmulator>& timestamp_emulator)
: timestamp_emulator_(timestamp_emulator) {}
bool Filter(int level, const Slice& key, const Slice& existing_value,
std::string* new_value, bool* value_changed) const override {
return KeyExpired(timestamp_emulator_.get(), key);
}
const char* Name() const override { return "ExpiredTimeFilter"; }
private:
std::shared_ptr<TimestampEmulator> timestamp_emulator_;
};
std::shared_ptr<Cache> NewCache(int64_t capacity) {
if (capacity <= 0) {
return nullptr;
}
if (FLAGS_use_clock_cache) {
auto cache = NewClockCache((size_t)capacity, FLAGS_cache_numshardbits);
if (!cache) {
fprintf(stderr, "Clock cache not supported.");
exit(1);
}
return cache;
} else {
return NewLRUCache((size_t)capacity, FLAGS_cache_numshardbits,
false /*strict_capacity_limit*/,
FLAGS_cache_high_pri_pool_ratio);
}
}
public:
Benchmark()
: cache_(NewCache(FLAGS_cache_size)),
compressed_cache_(NewCache(FLAGS_compressed_cache_size)),
filter_policy_(FLAGS_bloom_bits >= 0
? NewBloomFilterPolicy(FLAGS_bloom_bits,
FLAGS_use_block_based_filter)
: nullptr),
prefix_extractor_(NewFixedPrefixTransform(FLAGS_prefix_size)),
num_(FLAGS_num),
value_size_(FLAGS_value_size),
key_size_(FLAGS_key_size),
prefix_size_(FLAGS_prefix_size),
keys_per_prefix_(FLAGS_keys_per_prefix),
entries_per_batch_(1),
reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads),
read_random_exp_range_(0.0),
writes_(FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes),
readwrites_(
(FLAGS_writes < 0 && FLAGS_reads < 0)
? FLAGS_num
: ((FLAGS_writes > FLAGS_reads) ? FLAGS_writes : FLAGS_reads)),
merge_keys_(FLAGS_merge_keys < 0 ? FLAGS_num : FLAGS_merge_keys),
report_file_operations_(FLAGS_report_file_operations),
#ifndef ROCKSDB_LITE
use_blob_db_(FLAGS_use_blob_db) {
#else
use_blob_db_(false) {
#endif // !ROCKSDB_LITE
// use simcache instead of cache
if (FLAGS_simcache_size >= 0) {
if (FLAGS_cache_numshardbits >= 1) {
cache_ =
NewSimCache(cache_, FLAGS_simcache_size, FLAGS_cache_numshardbits);
} else {
cache_ = NewSimCache(cache_, FLAGS_simcache_size, 0);
}
}
if (report_file_operations_) {
if (!FLAGS_hdfs.empty()) {
fprintf(stderr,
"--hdfs and --report_file_operations cannot be enabled "
"at the same time");
exit(1);
}
FLAGS_env = new ReportFileOpEnv(rocksdb::Env::Default());
}
if (FLAGS_prefix_size > FLAGS_key_size) {
fprintf(stderr, "prefix size is larger than key size");
exit(1);
}
std::vector<std::string> files;
FLAGS_env->GetChildren(FLAGS_db, &files);
for (size_t i = 0; i < files.size(); i++) {
if (Slice(files[i]).starts_with("heap-")) {
FLAGS_env->DeleteFile(FLAGS_db + "/" + files[i]);
}
}
if (!FLAGS_use_existing_db) {
Options options;
if (!FLAGS_wal_dir.empty()) {
options.wal_dir = FLAGS_wal_dir;
}
DestroyDB(FLAGS_db, options);
if (!FLAGS_wal_dir.empty()) {
FLAGS_env->DeleteDir(FLAGS_wal_dir);
}
if (FLAGS_num_multi_db > 1) {
FLAGS_env->CreateDir(FLAGS_db);
if (!FLAGS_wal_dir.empty()) {
FLAGS_env->CreateDir(FLAGS_wal_dir);
}
}
}
}
~Benchmark() {
db_.DeleteDBs();
delete prefix_extractor_;
if (cache_.get() != nullptr) {
// this will leak, but we're shutting down so nobody cares
cache_->DisownData();
}
}
Slice AllocateKey(std::unique_ptr<const char[]>* key_guard) {
char* data = new char[key_size_];
const char* const_data = data;
key_guard->reset(const_data);
return Slice(key_guard->get(), key_size_);
}
// Generate key according to the given specification and random number.
// The resulting key will have the following format (if keys_per_prefix_
// is positive), extra trailing bytes are either cut off or padded with '0'.
// The prefix value is derived from key value.
// ----------------------------
// | prefix 00000 | key 00000 |
// ----------------------------
// If keys_per_prefix_ is 0, the key is simply a binary representation of
// random number followed by trailing '0's
// ----------------------------
// | key 00000 |
// ----------------------------
void GenerateKeyFromInt(uint64_t v, int64_t num_keys, Slice* key) {
char* start = const_cast<char*>(key->data());
char* pos = start;
if (keys_per_prefix_ > 0) {
int64_t num_prefix = num_keys / keys_per_prefix_;
int64_t prefix = v % num_prefix;
int bytes_to_fill = std::min(prefix_size_, 8);
if (port::kLittleEndian) {
for (int i = 0; i < bytes_to_fill; ++i) {
pos[i] = (prefix >> ((bytes_to_fill - i - 1) << 3)) & 0xFF;
}
} else {
memcpy(pos, static_cast<void*>(&prefix), bytes_to_fill);
}
if (prefix_size_ > 8) {
// fill the rest with 0s
memset(pos + 8, '0', prefix_size_ - 8);
}
pos += prefix_size_;
}
int bytes_to_fill = std::min(key_size_ - static_cast<int>(pos - start), 8);
if (port::kLittleEndian) {
for (int i = 0; i < bytes_to_fill; ++i) {
pos[i] = (v >> ((bytes_to_fill - i - 1) << 3)) & 0xFF;
}
} else {
memcpy(pos, static_cast<void*>(&v), bytes_to_fill);
}
pos += bytes_to_fill;
if (key_size_ > pos - start) {
memset(pos, '0', key_size_ - (pos - start));
}
}
std::string GetPathForMultiple(std::string base_name, size_t id) {
if (!base_name.empty()) {
#ifndef OS_WIN
if (base_name.back() != '/') {
base_name += '/';
}
#else
if (base_name.back() != '\\') {
base_name += '\\';
}
#endif
}
return base_name + ToString(id);
}
void VerifyDBFromDB(std::string& truth_db_name) {
DBWithColumnFamilies truth_db;
auto s = DB::OpenForReadOnly(open_options_, truth_db_name, &truth_db.db);
if (!s.ok()) {
fprintf(stderr, "open error: %s\n", s.ToString().c_str());
exit(1);
}
ReadOptions ro;
ro.total_order_seek = true;
std::unique_ptr<Iterator> truth_iter(truth_db.db->NewIterator(ro));
std::unique_ptr<Iterator> db_iter(db_.db->NewIterator(ro));
// Verify that all the key/values in truth_db are retrivable in db with ::Get
fprintf(stderr, "Verifying db >= truth_db with ::Get...\n");
for (truth_iter->SeekToFirst(); truth_iter->Valid(); truth_iter->Next()) {
std::string value;
s = db_.db->Get(ro, truth_iter->key(), &value);
assert(s.ok());
// TODO(myabandeh): provide debugging hints
assert(Slice(value) == truth_iter->value());
}
// Verify that the db iterator does not give any extra key/value
fprintf(stderr, "Verifying db == truth_db...\n");
for (db_iter->SeekToFirst(), truth_iter->SeekToFirst(); db_iter->Valid(); db_iter->Next(), truth_iter->Next()) {
assert(truth_iter->Valid());
assert(truth_iter->value() == db_iter->value());
}
// No more key should be left unchecked in truth_db
assert(!truth_iter->Valid());
fprintf(stderr, "...Verified\n");
}
void Run() {
if (!SanityCheck()) {
exit(1);
}
Open(&open_options_);
PrintHeader();
std::stringstream benchmark_stream(FLAGS_benchmarks);
std::string name;
std::unique_ptr<ExpiredTimeFilter> filter;
while (std::getline(benchmark_stream, name, ',')) {
// Sanitize parameters
num_ = FLAGS_num;
reads_ = (FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads);
writes_ = (FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes);
deletes_ = (FLAGS_deletes < 0 ? FLAGS_num : FLAGS_deletes);
value_size_ = FLAGS_value_size;
key_size_ = FLAGS_key_size;
entries_per_batch_ = FLAGS_batch_size;
writes_per_range_tombstone_ = FLAGS_writes_per_range_tombstone;
range_tombstone_width_ = FLAGS_range_tombstone_width;
max_num_range_tombstones_ = FLAGS_max_num_range_tombstones;
write_options_ = WriteOptions();
read_random_exp_range_ = FLAGS_read_random_exp_range;
if (FLAGS_sync) {
write_options_.sync = true;
}
write_options_.disableWAL = FLAGS_disable_wal;
void (Benchmark::*method)(ThreadState*) = nullptr;
void (Benchmark::*post_process_method)() = nullptr;
bool fresh_db = false;
int num_threads = FLAGS_threads;
int num_repeat = 1;
int num_warmup = 0;
if (!name.empty() && *name.rbegin() == ']') {
auto it = name.find('[');
if (it == std::string::npos) {
fprintf(stderr, "unknown benchmark arguments '%s'\n", name.c_str());
exit(1);
}
std::string args = name.substr(it + 1);
args.resize(args.size() - 1);
name.resize(it);
std::string bench_arg;
std::stringstream args_stream(args);
while (std::getline(args_stream, bench_arg, '-')) {
if (bench_arg.empty()) {
continue;
}
if (bench_arg[0] == 'X') {
// Repeat the benchmark n times
std::string num_str = bench_arg.substr(1);
num_repeat = std::stoi(num_str);
} else if (bench_arg[0] == 'W') {
// Warm up the benchmark for n times
std::string num_str = bench_arg.substr(1);
num_warmup = std::stoi(num_str);
}
}
}
// Both fillseqdeterministic and filluniquerandomdeterministic
// fill the levels except the max level with UNIQUE_RANDOM
// and fill the max level with fillseq and filluniquerandom, respectively
if (name == "fillseqdeterministic" ||
name == "filluniquerandomdeterministic") {
if (!FLAGS_disable_auto_compactions) {
fprintf(stderr,
"Please disable_auto_compactions in FillDeterministic "
"benchmark\n");
exit(1);
}
if (num_threads > 1) {
fprintf(stderr,
"filldeterministic multithreaded not supported"
", use 1 thread\n");
num_threads = 1;
}
fresh_db = true;
if (name == "fillseqdeterministic") {
method = &Benchmark::WriteSeqDeterministic;
} else {
method = &Benchmark::WriteUniqueRandomDeterministic;
}
} else if (name == "fillseq") {
fresh_db = true;
method = &Benchmark::WriteSeq;
} else if (name == "fillbatch") {
fresh_db = true;
entries_per_batch_ = 1000;
method = &Benchmark::WriteSeq;
} else if (name == "fillrandom") {
fresh_db = true;
method = &Benchmark::WriteRandom;
} else if (name == "filluniquerandom") {
fresh_db = true;
if (num_threads > 1) {
fprintf(stderr,
"filluniquerandom multithreaded not supported"
", use 1 thread");
num_threads = 1;
}
method = &Benchmark::WriteUniqueRandom;
} else if (name == "overwrite") {
method = &Benchmark::WriteRandom;
} else if (name == "fillsync") {
fresh_db = true;
num_ /= 1000;
write_options_.sync = true;
method = &Benchmark::WriteRandom;
} else if (name == "fill100K") {
fresh_db = true;
num_ /= 1000;
value_size_ = 100 * 1000;
method = &Benchmark::WriteRandom;
} else if (name == "readseq") {
method = &Benchmark::ReadSequential;
} else if (name == "readtocache") {
method = &Benchmark::ReadSequential;
num_threads = 1;
reads_ = num_;
} else if (name == "readreverse") {
method = &Benchmark::ReadReverse;
} else if (name == "readrandom") {
method = &Benchmark::ReadRandom;
} else if (name == "readrandomfast") {
method = &Benchmark::ReadRandomFast;
} else if (name == "multireadrandom") {
fprintf(stderr, "entries_per_batch = %" PRIi64 "\n",
entries_per_batch_);
method = &Benchmark::MultiReadRandom;
} else if (name == "readmissing") {
++key_size_;
method = &Benchmark::ReadRandom;
} else if (name == "newiterator") {
method = &Benchmark::IteratorCreation;
} else if (name == "newiteratorwhilewriting") {
num_threads++; // Add extra thread for writing
method = &Benchmark::IteratorCreationWhileWriting;
} else if (name == "seekrandom") {
method = &Benchmark::SeekRandom;
} else if (name == "seekrandomwhilewriting") {
num_threads++; // Add extra thread for writing
method = &Benchmark::SeekRandomWhileWriting;
} else if (name == "seekrandomwhilemerging") {
num_threads++; // Add extra thread for merging
method = &Benchmark::SeekRandomWhileMerging;
} else if (name == "readrandomsmall") {
reads_ /= 1000;
method = &Benchmark::ReadRandom;
} else if (name == "deleteseq") {
method = &Benchmark::DeleteSeq;
} else if (name == "deleterandom") {
method = &Benchmark::DeleteRandom;
} else if (name == "readwhilewriting") {
num_threads++; // Add extra thread for writing
method = &Benchmark::ReadWhileWriting;
} else if (name == "readwhilemerging") {
num_threads++; // Add extra thread for writing
method = &Benchmark::ReadWhileMerging;
} else if (name == "readrandomwriterandom") {
method = &Benchmark::ReadRandomWriteRandom;
} else if (name == "readrandommergerandom") {
if (FLAGS_merge_operator.empty()) {
fprintf(stdout, "%-12s : skipped (--merge_operator is unknown)\n",
name.c_str());
exit(1);
}
method = &Benchmark::ReadRandomMergeRandom;
} else if (name == "updaterandom") {
method = &Benchmark::UpdateRandom;
} else if (name == "appendrandom") {
method = &Benchmark::AppendRandom;
} else if (name == "mergerandom") {
if (FLAGS_merge_operator.empty()) {
fprintf(stdout, "%-12s : skipped (--merge_operator is unknown)\n",
name.c_str());
exit(1);
}
method = &Benchmark::MergeRandom;
} else if (name == "randomwithverify") {
method = &Benchmark::RandomWithVerify;
} else if (name == "fillseekseq") {
method = &Benchmark::WriteSeqSeekSeq;
} else if (name == "compact") {
method = &Benchmark::Compact;
} else if (name == "compactall") {
CompactAll();
} else if (name == "crc32c") {
method = &Benchmark::Crc32c;
} else if (name == "xxhash") {
method = &Benchmark::xxHash;
} else if (name == "acquireload") {
method = &Benchmark::AcquireLoad;
} else if (name == "compress") {
method = &Benchmark::Compress;
} else if (name == "uncompress") {
method = &Benchmark::Uncompress;
#ifndef ROCKSDB_LITE
} else if (name == "randomtransaction") {
method = &Benchmark::RandomTransaction;
post_process_method = &Benchmark::RandomTransactionVerify;
#endif // ROCKSDB_LITE
} else if (name == "randomreplacekeys") {
fresh_db = true;
method = &Benchmark::RandomReplaceKeys;
} else if (name == "timeseries") {
timestamp_emulator_.reset(new TimestampEmulator());
if (FLAGS_expire_style == "compaction_filter") {
filter.reset(new ExpiredTimeFilter(timestamp_emulator_));
fprintf(stdout, "Compaction filter is used to remove expired data");
open_options_.compaction_filter = filter.get();
}
fresh_db = true;
method = &Benchmark::TimeSeries;
} else if (name == "stats") {
PrintStats("rocksdb.stats");
} else if (name == "resetstats") {
ResetStats();
} else if (name == "verify") {
VerifyDBFromDB(FLAGS_truth_db);
} else if (name == "levelstats") {
PrintStats("rocksdb.levelstats");
} else if (name == "sstables") {
PrintStats("rocksdb.sstables");
} else if (!name.empty()) { // No error message for empty name
fprintf(stderr, "unknown benchmark '%s'\n", name.c_str());
exit(1);
}
if (fresh_db) {
if (FLAGS_use_existing_db) {
fprintf(stdout, "%-12s : skipped (--use_existing_db is true)\n",
name.c_str());
method = nullptr;
} else {
if (db_.db != nullptr) {
db_.DeleteDBs();
DestroyDB(FLAGS_db, open_options_);
}
Options options = open_options_;
for (size_t i = 0; i < multi_dbs_.size(); i++) {
delete multi_dbs_[i].db;
if (!open_options_.wal_dir.empty()) {
options.wal_dir = GetPathForMultiple(open_options_.wal_dir, i);
}
DestroyDB(GetPathForMultiple(FLAGS_db, i), options);
}
multi_dbs_.clear();
}
Open(&open_options_); // use open_options for the last accessed
}
if (method != nullptr) {
fprintf(stdout, "DB path: [%s]\n", FLAGS_db.c_str());
if (num_warmup > 0) {
printf("Warming up benchmark by running %d times\n", num_warmup);
}
for (int i = 0; i < num_warmup; i++) {
RunBenchmark(num_threads, name, method);
}
if (num_repeat > 1) {
printf("Running benchmark for %d times\n", num_repeat);
}
CombinedStats combined_stats;
for (int i = 0; i < num_repeat; i++) {
Stats stats = RunBenchmark(num_threads, name, method);
combined_stats.AddStats(stats);
}
if (num_repeat > 1) {
combined_stats.Report(name);
}
}
if (post_process_method != nullptr) {
(this->*post_process_method)();
}
}
if (FLAGS_statistics) {
fprintf(stdout, "STATISTICS:\n%s\n", dbstats->ToString().c_str());
}
if (FLAGS_simcache_size >= 0) {
fprintf(stdout, "SIMULATOR CACHE STATISTICS:\n%s\n",
std::dynamic_pointer_cast<SimCache>(cache_)->ToString().c_str());
}
}
private:
std::shared_ptr<TimestampEmulator> timestamp_emulator_;
struct ThreadArg {
Benchmark* bm;
SharedState* shared;
ThreadState* thread;
void (Benchmark::*method)(ThreadState*);
};
static void ThreadBody(void* v) {
ThreadArg* arg = reinterpret_cast<ThreadArg*>(v);
SharedState* shared = arg->shared;
ThreadState* thread = arg->thread;
{
MutexLock l(&shared->mu);
shared->num_initialized++;
if (shared->num_initialized >= shared->total) {
shared->cv.SignalAll();
}
while (!shared->start) {
shared->cv.Wait();
}
}
SetPerfLevel(static_cast<PerfLevel> (shared->perf_level));
thread->stats.Start(thread->tid);
(arg->bm->*(arg->method))(thread);
thread->stats.Stop();
{
MutexLock l(&shared->mu);
shared->num_done++;
if (shared->num_done >= shared->total) {
shared->cv.SignalAll();
}
}
}
Stats RunBenchmark(int n, Slice name,
void (Benchmark::*method)(ThreadState*)) {
SharedState shared;
shared.total = n;
shared.num_initialized = 0;
shared.num_done = 0;
shared.start = false;
if (FLAGS_benchmark_write_rate_limit > 0) {
shared.write_rate_limiter.reset(
NewGenericRateLimiter(FLAGS_benchmark_write_rate_limit));
}
if (FLAGS_benchmark_read_rate_limit > 0) {
shared.read_rate_limiter.reset(NewGenericRateLimiter(
FLAGS_benchmark_read_rate_limit, 100000 /* refill_period_us */,
10 /* fairness */, RateLimiter::Mode::kReadsOnly));
}
std::unique_ptr<ReporterAgent> reporter_agent;
if (FLAGS_report_interval_seconds > 0) {
reporter_agent.reset(new ReporterAgent(FLAGS_env, FLAGS_report_file,
FLAGS_report_interval_seconds));
}
ThreadArg* arg = new ThreadArg[n];
for (int i = 0; i < n; i++) {
#ifdef NUMA
if (FLAGS_enable_numa) {
// Performs a local allocation of memory to threads in numa node.
int n_nodes = numa_num_task_nodes(); // Number of nodes in NUMA.
numa_exit_on_error = 1;
int numa_node = i % n_nodes;
bitmask* nodes = numa_allocate_nodemask();
numa_bitmask_clearall(nodes);
numa_bitmask_setbit(nodes, numa_node);
// numa_bind() call binds the process to the node and these
// properties are passed on to the thread that is created in
// StartThread method called later in the loop.
numa_bind(nodes);
numa_set_strict(1);
numa_free_nodemask(nodes);
}
#endif
arg[i].bm = this;
arg[i].method = method;
arg[i].shared = &shared;
arg[i].thread = new ThreadState(i);
arg[i].thread->stats.SetReporterAgent(reporter_agent.get());
arg[i].thread->shared = &shared;
FLAGS_env->StartThread(ThreadBody, &arg[i]);
}
shared.mu.Lock();
while (shared.num_initialized < n) {
shared.cv.Wait();
}
shared.start = true;
shared.cv.SignalAll();
while (shared.num_done < n) {
shared.cv.Wait();
}
shared.mu.Unlock();
// Stats for some threads can be excluded.
Stats merge_stats;
for (int i = 0; i < n; i++) {
merge_stats.Merge(arg[i].thread->stats);
}
merge_stats.Report(name);
for (int i = 0; i < n; i++) {
delete arg[i].thread;
}
delete[] arg;
return merge_stats;
}
void Crc32c(ThreadState* thread) {
// Checksum about 500MB of data total
const int size = 4096;
const char* label = "(4K per op)";
std::string data(size, 'x');
int64_t bytes = 0;
uint32_t crc = 0;
while (bytes < 500 * 1048576) {
crc = crc32c::Value(data.data(), size);
thread->stats.FinishedOps(nullptr, nullptr, 1, kCrc);
bytes += size;
}
// Print so result is not dead
fprintf(stderr, "... crc=0x%x\r", static_cast<unsigned int>(crc));
thread->stats.AddBytes(bytes);
thread->stats.AddMessage(label);
}
void xxHash(ThreadState* thread) {
// Checksum about 500MB of data total
const int size = 4096;
const char* label = "(4K per op)";
std::string data(size, 'x');
int64_t bytes = 0;
unsigned int xxh32 = 0;
while (bytes < 500 * 1048576) {
xxh32 = XXH32(data.data(), size, 0);
thread->stats.FinishedOps(nullptr, nullptr, 1, kHash);
bytes += size;
}
// Print so result is not dead
fprintf(stderr, "... xxh32=0x%x\r", static_cast<unsigned int>(xxh32));
thread->stats.AddBytes(bytes);
thread->stats.AddMessage(label);
}
void AcquireLoad(ThreadState* thread) {
int dummy;
std::atomic<void*> ap(&dummy);
int count = 0;
void *ptr = nullptr;
thread->stats.AddMessage("(each op is 1000 loads)");
while (count < 100000) {
for (int i = 0; i < 1000; i++) {
ptr = ap.load(std::memory_order_acquire);
}
count++;
thread->stats.FinishedOps(nullptr, nullptr, 1, kOthers);
}
if (ptr == nullptr) exit(1); // Disable unused variable warning.
}
void Compress(ThreadState *thread) {
RandomGenerator gen;
Slice input = gen.Generate(FLAGS_block_size);
int64_t bytes = 0;
int64_t produced = 0;
bool ok = true;
std::string compressed;
// Compress 1G
while (ok && bytes < int64_t(1) << 30) {
compressed.clear();
ok = CompressSlice(input, &compressed);
produced += compressed.size();
bytes += input.size();
thread->stats.FinishedOps(nullptr, nullptr, 1, kCompress);
}
if (!ok) {
thread->stats.AddMessage("(compression failure)");
} else {
char buf[340];
snprintf(buf, sizeof(buf), "(output: %.1f%%)",
(produced * 100.0) / bytes);
thread->stats.AddMessage(buf);
thread->stats.AddBytes(bytes);
}
}
void Uncompress(ThreadState *thread) {
RandomGenerator gen;
Slice input = gen.Generate(FLAGS_block_size);
std::string compressed;
bool ok = CompressSlice(input, &compressed);
int64_t bytes = 0;
int decompress_size;
while (ok && bytes < 1024 * 1048576) {
char *uncompressed = nullptr;
switch (FLAGS_compression_type_e) {
case rocksdb::kSnappyCompression: {
// get size and allocate here to make comparison fair
size_t ulength = 0;
if (!Snappy_GetUncompressedLength(compressed.data(),
compressed.size(), &ulength)) {
ok = false;
break;
}
uncompressed = new char[ulength];
ok = Snappy_Uncompress(compressed.data(), compressed.size(),
uncompressed);
break;
}
case rocksdb::kZlibCompression:
uncompressed = Zlib_Uncompress(compressed.data(), compressed.size(),
&decompress_size, 2);
ok = uncompressed != nullptr;
break;
case rocksdb::kBZip2Compression:
uncompressed = BZip2_Uncompress(compressed.data(), compressed.size(),
&decompress_size, 2);
ok = uncompressed != nullptr;
break;
case rocksdb::kLZ4Compression:
uncompressed = LZ4_Uncompress(compressed.data(), compressed.size(),
&decompress_size, 2);
ok = uncompressed != nullptr;
break;
case rocksdb::kLZ4HCCompression:
uncompressed = LZ4_Uncompress(compressed.data(), compressed.size(),
&decompress_size, 2);
ok = uncompressed != nullptr;
break;
case rocksdb::kXpressCompression:
uncompressed = XPRESS_Uncompress(compressed.data(), compressed.size(),
&decompress_size);
ok = uncompressed != nullptr;
break;
case rocksdb::kZSTD:
uncompressed = ZSTD_Uncompress(compressed.data(), compressed.size(),
&decompress_size);
ok = uncompressed != nullptr;
break;
default:
ok = false;
}
delete[] uncompressed;
bytes += input.size();
thread->stats.FinishedOps(nullptr, nullptr, 1, kUncompress);
}
if (!ok) {
thread->stats.AddMessage("(compression failure)");
} else {
thread->stats.AddBytes(bytes);
}
}
// Returns true if the options is initialized from the specified
// options file.
bool InitializeOptionsFromFile(Options* opts) {
#ifndef ROCKSDB_LITE
printf("Initializing RocksDB Options from the specified file\n");
DBOptions db_opts;
std::vector<ColumnFamilyDescriptor> cf_descs;
if (FLAGS_options_file != "") {
auto s = LoadOptionsFromFile(FLAGS_options_file, Env::Default(), &db_opts,
&cf_descs);
if (s.ok()) {
*opts = Options(db_opts, cf_descs[0].options);
return true;
}
fprintf(stderr, "Unable to load options file %s --- %s\n",
FLAGS_options_file.c_str(), s.ToString().c_str());
exit(1);
}
#endif
return false;
}
void InitializeOptionsFromFlags(Options* opts) {
printf("Initializing RocksDB Options from command-line flags\n");
Options& options = *opts;
assert(db_.db == nullptr);
options.create_missing_column_families = FLAGS_num_column_families > 1;
options.max_open_files = FLAGS_open_files;
if (FLAGS_cost_write_buffer_to_cache || FLAGS_db_write_buffer_size != 0) {
options.write_buffer_manager.reset(
new WriteBufferManager(FLAGS_db_write_buffer_size, cache_));
}
options.write_buffer_size = FLAGS_write_buffer_size;
options.max_write_buffer_number = FLAGS_max_write_buffer_number;
options.min_write_buffer_number_to_merge =
FLAGS_min_write_buffer_number_to_merge;
options.max_write_buffer_number_to_maintain =
FLAGS_max_write_buffer_number_to_maintain;
options.max_background_compactions = FLAGS_max_background_compactions;
options.max_subcompactions = static_cast<uint32_t>(FLAGS_subcompactions);
options.max_background_flushes = FLAGS_max_background_flushes;
options.compaction_style = FLAGS_compaction_style_e;
options.compaction_pri = FLAGS_compaction_pri_e;
options.allow_mmap_reads = FLAGS_mmap_read;
options.allow_mmap_writes = FLAGS_mmap_write;
options.use_direct_reads = FLAGS_use_direct_reads;
options.use_direct_io_for_flush_and_compaction =
FLAGS_use_direct_io_for_flush_and_compaction;
#ifndef ROCKSDB_LITE
options.compaction_options_fifo = CompactionOptionsFIFO(
FLAGS_fifo_compaction_max_table_files_size_mb * 1024 * 1024,
FLAGS_fifo_compaction_allow_compaction);
#endif // ROCKSDB_LITE
if (FLAGS_prefix_size != 0) {
options.prefix_extractor.reset(
NewFixedPrefixTransform(FLAGS_prefix_size));
}
if (FLAGS_use_uint64_comparator) {
options.comparator = test::Uint64Comparator();
if (FLAGS_key_size != 8) {
fprintf(stderr, "Using Uint64 comparator but key size is not 8.\n");
exit(1);
}
}
if (FLAGS_use_stderr_info_logger) {
options.info_log.reset(new StderrLogger());
}
options.memtable_huge_page_size = FLAGS_memtable_use_huge_page ? 2048 : 0;
options.memtable_prefix_bloom_size_ratio = FLAGS_memtable_bloom_size_ratio;
if (FLAGS_memtable_insert_with_hint_prefix_size > 0) {
options.memtable_insert_with_hint_prefix_extractor.reset(
NewCappedPrefixTransform(
FLAGS_memtable_insert_with_hint_prefix_size));
}
options.bloom_locality = FLAGS_bloom_locality;
options.max_file_opening_threads = FLAGS_file_opening_threads;
options.new_table_reader_for_compaction_inputs =
FLAGS_new_table_reader_for_compaction_inputs;
options.compaction_readahead_size = FLAGS_compaction_readahead_size;
options.random_access_max_buffer_size = FLAGS_random_access_max_buffer_size;
options.writable_file_max_buffer_size = FLAGS_writable_file_max_buffer_size;
options.use_fsync = FLAGS_use_fsync;
options.num_levels = FLAGS_num_levels;
options.target_file_size_base = FLAGS_target_file_size_base;
options.target_file_size_multiplier = FLAGS_target_file_size_multiplier;
options.max_bytes_for_level_base = FLAGS_max_bytes_for_level_base;
options.level_compaction_dynamic_level_bytes =
FLAGS_level_compaction_dynamic_level_bytes;
options.max_bytes_for_level_multiplier =
FLAGS_max_bytes_for_level_multiplier;
if ((FLAGS_prefix_size == 0) && (FLAGS_rep_factory == kPrefixHash ||
FLAGS_rep_factory == kHashLinkedList)) {
fprintf(stderr, "prefix_size should be non-zero if PrefixHash or "
"HashLinkedList memtablerep is used\n");
exit(1);
}
switch (FLAGS_rep_factory) {
case kSkipList:
options.memtable_factory.reset(new SkipListFactory(
FLAGS_skip_list_lookahead));
break;
#ifndef ROCKSDB_LITE
case kPrefixHash:
options.memtable_factory.reset(
NewHashSkipListRepFactory(FLAGS_hash_bucket_count));
break;
case kHashLinkedList:
options.memtable_factory.reset(NewHashLinkListRepFactory(
FLAGS_hash_bucket_count));
break;
case kVectorRep:
options.memtable_factory.reset(
new VectorRepFactory
);
break;
case kCuckoo:
options.memtable_factory.reset(NewHashCuckooRepFactory(
options.write_buffer_size, FLAGS_key_size + FLAGS_value_size));
break;
#else
default:
fprintf(stderr, "Only skip list is supported in lite mode\n");
exit(1);
#endif // ROCKSDB_LITE
}
if (FLAGS_use_plain_table) {
#ifndef ROCKSDB_LITE
if (FLAGS_rep_factory != kPrefixHash &&
FLAGS_rep_factory != kHashLinkedList) {
fprintf(stderr, "Waring: plain table is used with skipList\n");
}
int bloom_bits_per_key = FLAGS_bloom_bits;
if (bloom_bits_per_key < 0) {
bloom_bits_per_key = 0;
}
PlainTableOptions plain_table_options;
plain_table_options.user_key_len = FLAGS_key_size;
plain_table_options.bloom_bits_per_key = bloom_bits_per_key;
plain_table_options.hash_table_ratio = 0.75;
options.table_factory = std::shared_ptr<TableFactory>(
NewPlainTableFactory(plain_table_options));
#else
fprintf(stderr, "Plain table is not supported in lite mode\n");
exit(1);
#endif // ROCKSDB_LITE
} else if (FLAGS_use_cuckoo_table) {
#ifndef ROCKSDB_LITE
if (FLAGS_cuckoo_hash_ratio > 1 || FLAGS_cuckoo_hash_ratio < 0) {
fprintf(stderr, "Invalid cuckoo_hash_ratio\n");
exit(1);
}
rocksdb::CuckooTableOptions table_options;
table_options.hash_table_ratio = FLAGS_cuckoo_hash_ratio;
table_options.identity_as_first_hash = FLAGS_identity_as_first_hash;
options.table_factory = std::shared_ptr<TableFactory>(
NewCuckooTableFactory(table_options));
#else
fprintf(stderr, "Cuckoo table is not supported in lite mode\n");
exit(1);
#endif // ROCKSDB_LITE
} else {
BlockBasedTableOptions block_based_options;
if (FLAGS_use_hash_search) {
if (FLAGS_prefix_size == 0) {
fprintf(stderr,
"prefix_size not assigned when enable use_hash_search \n");
exit(1);
}
block_based_options.index_type = BlockBasedTableOptions::kHashSearch;
} else {
block_based_options.index_type = BlockBasedTableOptions::kBinarySearch;
}
if (cache_ == nullptr) {
block_based_options.no_block_cache = true;
}
block_based_options.cache_index_and_filter_blocks =
FLAGS_cache_index_and_filter_blocks;
block_based_options.pin_l0_filter_and_index_blocks_in_cache =
FLAGS_pin_l0_filter_and_index_blocks_in_cache;
if (FLAGS_cache_high_pri_pool_ratio > 1e-6) { // > 0.0 + eps
block_based_options.cache_index_and_filter_blocks_with_high_priority =
true;
}
block_based_options.block_cache = cache_;
block_based_options.block_cache_compressed = compressed_cache_;
block_based_options.block_size = FLAGS_block_size;
block_based_options.block_restart_interval = FLAGS_block_restart_interval;
block_based_options.index_block_restart_interval =
FLAGS_index_block_restart_interval;
block_based_options.filter_policy = filter_policy_;
block_based_options.format_version = 2;
block_based_options.read_amp_bytes_per_bit = FLAGS_read_amp_bytes_per_bit;
if (FLAGS_read_cache_path != "") {
#ifndef ROCKSDB_LITE
Status rc_status;
// Read cache need to be provided with a the Logger, we will put all
// reac cache logs in the read cache path in a file named rc_LOG
rc_status = FLAGS_env->CreateDirIfMissing(FLAGS_read_cache_path);
std::shared_ptr<Logger> read_cache_logger;
if (rc_status.ok()) {
rc_status = FLAGS_env->NewLogger(FLAGS_read_cache_path + "/rc_LOG",
&read_cache_logger);
}
if (rc_status.ok()) {
PersistentCacheConfig rc_cfg(FLAGS_env, FLAGS_read_cache_path,
FLAGS_read_cache_size,
read_cache_logger);
rc_cfg.enable_direct_reads = FLAGS_read_cache_direct_read;
rc_cfg.enable_direct_writes = FLAGS_read_cache_direct_write;
rc_cfg.writer_qdepth = 4;
rc_cfg.writer_dispatch_size = 4 * 1024;
auto pcache = std::make_shared<BlockCacheTier>(rc_cfg);
block_based_options.persistent_cache = pcache;
rc_status = pcache->Open();
}
if (!rc_status.ok()) {
fprintf(stderr, "Error initializing read cache, %s\n",
rc_status.ToString().c_str());
exit(1);
}
#else
fprintf(stderr, "Read cache is not supported in LITE\n");
exit(1);
#endif
}
options.table_factory.reset(
NewBlockBasedTableFactory(block_based_options));
}
if (FLAGS_max_bytes_for_level_multiplier_additional_v.size() > 0) {
if (FLAGS_max_bytes_for_level_multiplier_additional_v.size() !=
(unsigned int)FLAGS_num_levels) {
fprintf(stderr, "Insufficient number of fanouts specified %d\n",
(int)FLAGS_max_bytes_for_level_multiplier_additional_v.size());
exit(1);
}
options.max_bytes_for_level_multiplier_additional =
FLAGS_max_bytes_for_level_multiplier_additional_v;
}
options.level0_stop_writes_trigger = FLAGS_level0_stop_writes_trigger;
options.level0_file_num_compaction_trigger =
FLAGS_level0_file_num_compaction_trigger;
options.level0_slowdown_writes_trigger =
FLAGS_level0_slowdown_writes_trigger;
options.compression = FLAGS_compression_type_e;
options.compression_opts.level = FLAGS_compression_level;
options.compression_opts.max_dict_bytes = FLAGS_compression_max_dict_bytes;
options.WAL_ttl_seconds = FLAGS_wal_ttl_seconds;
options.WAL_size_limit_MB = FLAGS_wal_size_limit_MB;
options.max_total_wal_size = FLAGS_max_total_wal_size;
if (FLAGS_min_level_to_compress >= 0) {
assert(FLAGS_min_level_to_compress <= FLAGS_num_levels);
options.compression_per_level.resize(FLAGS_num_levels);
for (int i = 0; i < FLAGS_min_level_to_compress; i++) {
options.compression_per_level[i] = kNoCompression;
}
for (int i = FLAGS_min_level_to_compress;
i < FLAGS_num_levels; i++) {
options.compression_per_level[i] = FLAGS_compression_type_e;
}
}
options.soft_rate_limit = FLAGS_soft_rate_limit;
options.hard_rate_limit = FLAGS_hard_rate_limit;
options.soft_pending_compaction_bytes_limit =
FLAGS_soft_pending_compaction_bytes_limit;
options.hard_pending_compaction_bytes_limit =
FLAGS_hard_pending_compaction_bytes_limit;
options.delayed_write_rate = FLAGS_delayed_write_rate;
options.allow_concurrent_memtable_write =
FLAGS_allow_concurrent_memtable_write;
options.enable_write_thread_adaptive_yield =
FLAGS_enable_write_thread_adaptive_yield;
options.write_thread_max_yield_usec = FLAGS_write_thread_max_yield_usec;
options.write_thread_slow_yield_usec = FLAGS_write_thread_slow_yield_usec;
options.rate_limit_delay_max_milliseconds =
FLAGS_rate_limit_delay_max_milliseconds;
options.table_cache_numshardbits = FLAGS_table_cache_numshardbits;
options.max_compaction_bytes = FLAGS_max_compaction_bytes;
options.disable_auto_compactions = FLAGS_disable_auto_compactions;
options.optimize_filters_for_hits = FLAGS_optimize_filters_for_hits;
// fill storage options
options.advise_random_on_open = FLAGS_advise_random_on_open;
options.access_hint_on_compaction_start = FLAGS_compaction_fadvice_e;
options.use_adaptive_mutex = FLAGS_use_adaptive_mutex;
options.bytes_per_sync = FLAGS_bytes_per_sync;
options.wal_bytes_per_sync = FLAGS_wal_bytes_per_sync;
// merge operator options
options.merge_operator = MergeOperators::CreateFromStringId(
FLAGS_merge_operator);
if (options.merge_operator == nullptr && !FLAGS_merge_operator.empty()) {
fprintf(stderr, "invalid merge operator: %s\n",
FLAGS_merge_operator.c_str());
exit(1);
}
options.max_successive_merges = FLAGS_max_successive_merges;
options.report_bg_io_stats = FLAGS_report_bg_io_stats;
// set universal style compaction configurations, if applicable
if (FLAGS_universal_size_ratio != 0) {
options.compaction_options_universal.size_ratio =
FLAGS_universal_size_ratio;
}
if (FLAGS_universal_min_merge_width != 0) {
options.compaction_options_universal.min_merge_width =
FLAGS_universal_min_merge_width;
}
if (FLAGS_universal_max_merge_width != 0) {
options.compaction_options_universal.max_merge_width =
FLAGS_universal_max_merge_width;
}
if (FLAGS_universal_max_size_amplification_percent != 0) {
options.compaction_options_universal.max_size_amplification_percent =
FLAGS_universal_max_size_amplification_percent;
}
if (FLAGS_universal_compression_size_percent != -1) {
options.compaction_options_universal.compression_size_percent =
FLAGS_universal_compression_size_percent;
}
options.compaction_options_universal.allow_trivial_move =
FLAGS_universal_allow_trivial_move;
if (FLAGS_thread_status_per_interval > 0) {
options.enable_thread_tracking = true;
}
if (FLAGS_rate_limiter_bytes_per_sec > 0) {
if (FLAGS_rate_limit_bg_reads &&
!FLAGS_new_table_reader_for_compaction_inputs) {
fprintf(stderr,
"rate limit compaction reads must have "
"new_table_reader_for_compaction_inputs set\n");
exit(1);
}
options.rate_limiter.reset(NewGenericRateLimiter(
FLAGS_rate_limiter_bytes_per_sec, 100 * 1000 /* refill_period_us */,
10 /* fairness */,
FLAGS_rate_limit_bg_reads ? RateLimiter::Mode::kReadsOnly
: RateLimiter::Mode::kWritesOnly));
}
#ifndef ROCKSDB_LITE
if (FLAGS_readonly && FLAGS_transaction_db) {
fprintf(stderr, "Cannot use readonly flag with transaction_db\n");
exit(1);
}
#endif // ROCKSDB_LITE
}
void InitializeOptionsGeneral(Options* opts) {
Options& options = *opts;
options.statistics = dbstats;
options.wal_dir = FLAGS_wal_dir;
options.create_if_missing = !FLAGS_use_existing_db;
options.dump_malloc_stats = FLAGS_dump_malloc_stats;
if (FLAGS_row_cache_size) {
if (FLAGS_cache_numshardbits >= 1) {
options.row_cache =
NewLRUCache(FLAGS_row_cache_size, FLAGS_cache_numshardbits);
} else {
options.row_cache = NewLRUCache(FLAGS_row_cache_size);
}
}
if (FLAGS_enable_io_prio) {
FLAGS_env->LowerThreadPoolIOPriority(Env::LOW);
FLAGS_env->LowerThreadPoolIOPriority(Env::HIGH);
}
options.env = FLAGS_env;
if (FLAGS_num_multi_db <= 1) {
OpenDb(options, FLAGS_db, &db_);
} else {
multi_dbs_.clear();
multi_dbs_.resize(FLAGS_num_multi_db);
auto wal_dir = options.wal_dir;
for (int i = 0; i < FLAGS_num_multi_db; i++) {
if (!wal_dir.empty()) {
options.wal_dir = GetPathForMultiple(wal_dir, i);
}
OpenDb(options, GetPathForMultiple(FLAGS_db, i), &multi_dbs_[i]);
}
options.wal_dir = wal_dir;
}
}
void Open(Options* opts) {
if (!InitializeOptionsFromFile(opts)) {
InitializeOptionsFromFlags(opts);
}
InitializeOptionsGeneral(opts);
}
void OpenDb(const Options& options, const std::string& db_name,
DBWithColumnFamilies* db) {
Status s;
// Open with column families if necessary.
if (FLAGS_num_column_families > 1) {
size_t num_hot = FLAGS_num_column_families;
if (FLAGS_num_hot_column_families > 0 &&
FLAGS_num_hot_column_families < FLAGS_num_column_families) {
num_hot = FLAGS_num_hot_column_families;
} else {
FLAGS_num_hot_column_families = FLAGS_num_column_families;
}
std::vector<ColumnFamilyDescriptor> column_families;
for (size_t i = 0; i < num_hot; i++) {
column_families.push_back(ColumnFamilyDescriptor(
ColumnFamilyName(i), ColumnFamilyOptions(options)));
}
#ifndef ROCKSDB_LITE
if (FLAGS_readonly) {
s = DB::OpenForReadOnly(options, db_name, column_families,
&db->cfh, &db->db);
} else if (FLAGS_optimistic_transaction_db) {
s = OptimisticTransactionDB::Open(options, db_name, column_families,
&db->cfh, &db->opt_txn_db);
if (s.ok()) {
db->db = db->opt_txn_db->GetBaseDB();
}
} else if (FLAGS_transaction_db) {
TransactionDB* ptr;
TransactionDBOptions txn_db_options;
s = TransactionDB::Open(options, txn_db_options, db_name,
column_families, &db->cfh, &ptr);
if (s.ok()) {
db->db = ptr;
}
} else {
s = DB::Open(options, db_name, column_families, &db->cfh, &db->db);
}
#else
s = DB::Open(options, db_name, column_families, &db->cfh, &db->db);
#endif // ROCKSDB_LITE
db->cfh.resize(FLAGS_num_column_families);
db->num_created = num_hot;
db->num_hot = num_hot;
#ifndef ROCKSDB_LITE
} else if (FLAGS_readonly) {
s = DB::OpenForReadOnly(options, db_name, &db->db);
} else if (FLAGS_optimistic_transaction_db) {
s = OptimisticTransactionDB::Open(options, db_name, &db->opt_txn_db);
if (s.ok()) {
db->db = db->opt_txn_db->GetBaseDB();
}
} else if (FLAGS_transaction_db) {
TransactionDB* ptr;
TransactionDBOptions txn_db_options;
s = TransactionDB::Open(options, txn_db_options, db_name, &ptr);
if (s.ok()) {
db->db = ptr;
}
} else if (FLAGS_use_blob_db) {
blob_db::BlobDBOptions blob_db_options;
blob_db::BlobDB* ptr;
s = blob_db::BlobDB::Open(options, blob_db_options, db_name, &ptr);
if (s.ok()) {
db->db = ptr;
}
#endif // ROCKSDB_LITE
} else {
s = DB::Open(options, db_name, &db->db);
}
if (!s.ok()) {
fprintf(stderr, "open error: %s\n", s.ToString().c_str());
exit(1);
}
}
enum WriteMode {
RANDOM, SEQUENTIAL, UNIQUE_RANDOM
};
void WriteSeqDeterministic(ThreadState* thread) {
DoDeterministicCompact(thread, open_options_.compaction_style, SEQUENTIAL);
}
void WriteUniqueRandomDeterministic(ThreadState* thread) {
DoDeterministicCompact(thread, open_options_.compaction_style,
UNIQUE_RANDOM);
}
void WriteSeq(ThreadState* thread) {
DoWrite(thread, SEQUENTIAL);
}
void WriteRandom(ThreadState* thread) {
DoWrite(thread, RANDOM);
}
void WriteUniqueRandom(ThreadState* thread) {
DoWrite(thread, UNIQUE_RANDOM);
}
class KeyGenerator {
public:
KeyGenerator(Random64* rand, WriteMode mode,
uint64_t num, uint64_t num_per_set = 64 * 1024)
: rand_(rand),
mode_(mode),
num_(num),
next_(0) {
if (mode_ == UNIQUE_RANDOM) {
// NOTE: if memory consumption of this approach becomes a concern,
// we can either break it into pieces and only random shuffle a section
// each time. Alternatively, use a bit map implementation
// (https://reviews.facebook.net/differential/diff/54627/)
values_.resize(num_);
for (uint64_t i = 0; i < num_; ++i) {
values_[i] = i;
}
std::shuffle(
values_.begin(), values_.end(),
std::default_random_engine(static_cast<unsigned int>(FLAGS_seed)));
}
}
uint64_t Next() {
switch (mode_) {
case SEQUENTIAL:
return next_++;
case RANDOM:
return rand_->Next() % num_;
case UNIQUE_RANDOM:
assert(next_ + 1 < num_);
return values_[next_++];
}
assert(false);
return std::numeric_limits<uint64_t>::max();
}
private:
Random64* rand_;
WriteMode mode_;
const uint64_t num_;
uint64_t next_;
std::vector<uint64_t> values_;
};
DB* SelectDB(ThreadState* thread) {
return SelectDBWithCfh(thread)->db;
}
DBWithColumnFamilies* SelectDBWithCfh(ThreadState* thread) {
return SelectDBWithCfh(thread->rand.Next());
}
DBWithColumnFamilies* SelectDBWithCfh(uint64_t rand_int) {
if (db_.db != nullptr) {
return &db_;
} else {
return &multi_dbs_[rand_int % multi_dbs_.size()];
}
}
void DoWrite(ThreadState* thread, WriteMode write_mode) {
const int test_duration = write_mode == RANDOM ? FLAGS_duration : 0;
const int64_t num_ops = writes_ == 0 ? num_ : writes_;
size_t num_key_gens = 1;
if (db_.db == nullptr) {
num_key_gens = multi_dbs_.size();
}
std::vector<std::unique_ptr<KeyGenerator>> key_gens(num_key_gens);
int64_t max_ops = num_ops * num_key_gens;
int64_t ops_per_stage = max_ops;
if (FLAGS_num_column_families > 1 && FLAGS_num_hot_column_families > 0) {
ops_per_stage = (max_ops - 1) / (FLAGS_num_column_families /
FLAGS_num_hot_column_families) +
1;
}
Duration duration(test_duration, max_ops, ops_per_stage);
for (size_t i = 0; i < num_key_gens; i++) {
key_gens[i].reset(new KeyGenerator(&(thread->rand), write_mode, num_,
ops_per_stage));
}
if (num_ != FLAGS_num) {
char msg[100];
snprintf(msg, sizeof(msg), "(%" PRIu64 " ops)", num_);
thread->stats.AddMessage(msg);
}
RandomGenerator gen;
WriteBatch batch;
Status s;
int64_t bytes = 0;
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
std::unique_ptr<const char[]> begin_key_guard;
Slice begin_key = AllocateKey(&begin_key_guard);
std::unique_ptr<const char[]> end_key_guard;
Slice end_key = AllocateKey(&end_key_guard);
std::vector<std::unique_ptr<const char[]>> expanded_key_guards;
std::vector<Slice> expanded_keys;
if (FLAGS_expand_range_tombstones) {
expanded_key_guards.resize(range_tombstone_width_);
for (auto& expanded_key_guard : expanded_key_guards) {
expanded_keys.emplace_back(AllocateKey(&expanded_key_guard));
}
}
int64_t stage = 0;
int64_t num_written = 0;
while (!duration.Done(entries_per_batch_)) {
if (duration.GetStage() != stage) {
stage = duration.GetStage();
if (db_.db != nullptr) {
db_.CreateNewCf(open_options_, stage);
} else {
for (auto& db : multi_dbs_) {
db.CreateNewCf(open_options_, stage);
}
}
}
size_t id = thread->rand.Next() % num_key_gens;
DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(id);
batch.Clear();
if (thread->shared->write_rate_limiter.get() != nullptr) {
thread->shared->write_rate_limiter->Request(
entries_per_batch_ * (value_size_ + key_size_), Env::IO_HIGH,
nullptr /* stats */, RateLimiter::OpType::kWrite);
// Set time at which last op finished to Now() to hide latency and
// sleep from rate limiter. Also, do the check once per batch, not
// once per write.
thread->stats.ResetLastOpTime();
}
for (int64_t j = 0; j < entries_per_batch_; j++) {
int64_t rand_num = key_gens[id]->Next();
GenerateKeyFromInt(rand_num, FLAGS_num, &key);
if (use_blob_db_) {
#ifndef ROCKSDB_LITE
Slice val = gen.Generate(value_size_);
int ttl = rand() % 86400;
blob_db::BlobDB* blobdb =
static_cast<blob_db::BlobDB*>(db_with_cfh->db);
s = blobdb->PutWithTTL(write_options_, key, val, ttl);
#endif // ROCKSDB_LITE
} else if (FLAGS_num_column_families <= 1) {
batch.Put(key, gen.Generate(value_size_));
} else {
// We use same rand_num as seed for key and column family so that we
// can deterministically find the cfh corresponding to a particular
// key while reading the key.
batch.Put(db_with_cfh->GetCfh(rand_num), key,
gen.Generate(value_size_));
}
bytes += value_size_ + key_size_;
++num_written;
if (writes_per_range_tombstone_ > 0 &&
num_written / writes_per_range_tombstone_ <
max_num_range_tombstones_ &&
num_written % writes_per_range_tombstone_ == 0) {
int64_t begin_num = key_gens[id]->Next();
if (FLAGS_expand_range_tombstones) {
for (int64_t offset = 0; offset < range_tombstone_width_;
++offset) {
GenerateKeyFromInt(begin_num + offset, FLAGS_num,
&expanded_keys[offset]);
if (use_blob_db_) {
#ifndef ROCKSDB_LITE
s = db_with_cfh->db->Delete(write_options_,
expanded_keys[offset]);
#endif // ROCKSDB_LITE
} else if (FLAGS_num_column_families <= 1) {
batch.Delete(expanded_keys[offset]);
} else {
batch.Delete(db_with_cfh->GetCfh(rand_num),
expanded_keys[offset]);
}
}
} else {
GenerateKeyFromInt(begin_num, FLAGS_num, &begin_key);
GenerateKeyFromInt(begin_num + range_tombstone_width_, FLAGS_num,
&end_key);
if (use_blob_db_) {
#ifndef ROCKSDB_LITE
s = db_with_cfh->db->DeleteRange(
write_options_, db_with_cfh->db->DefaultColumnFamily(),
begin_key, end_key);
#endif // ROCKSDB_LITE
} else if (FLAGS_num_column_families <= 1) {
batch.DeleteRange(begin_key, end_key);
} else {
batch.DeleteRange(db_with_cfh->GetCfh(rand_num), begin_key,
end_key);
}
}
}
}
if (!use_blob_db_) {
#ifndef ROCKSDB_LITE
s = db_with_cfh->db->Write(write_options_, &batch);
#endif // ROCKSDB_LITE
}
thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db,
entries_per_batch_, kWrite);
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
exit(1);
}
}
thread->stats.AddBytes(bytes);
}
Status DoDeterministicCompact(ThreadState* thread,
CompactionStyle compaction_style,
WriteMode write_mode) {
#ifndef ROCKSDB_LITE
ColumnFamilyMetaData meta;
std::vector<DB*> db_list;
if (db_.db != nullptr) {
db_list.push_back(db_.db);
} else {
for (auto& db : multi_dbs_) {
db_list.push_back(db.db);
}
}
std::vector<Options> options_list;
for (auto db : db_list) {
options_list.push_back(db->GetOptions());
if (compaction_style != kCompactionStyleFIFO) {
db->SetOptions({{"disable_auto_compactions", "1"},
{"level0_slowdown_writes_trigger", "400000000"},
{"level0_stop_writes_trigger", "400000000"}});
} else {
db->SetOptions({{"disable_auto_compactions", "1"}});
}
}
assert(!db_list.empty());
auto num_db = db_list.size();
size_t num_levels = static_cast<size_t>(open_options_.num_levels);
size_t output_level = open_options_.num_levels - 1;
std::vector<std::vector<std::vector<SstFileMetaData>>> sorted_runs(num_db);
std::vector<size_t> num_files_at_level0(num_db, 0);
if (compaction_style == kCompactionStyleLevel) {
if (num_levels == 0) {
return Status::InvalidArgument("num_levels should be larger than 1");
}
bool should_stop = false;
while (!should_stop) {
if (sorted_runs[0].empty()) {
DoWrite(thread, write_mode);
} else {
DoWrite(thread, UNIQUE_RANDOM);
}
for (size_t i = 0; i < num_db; i++) {
auto db = db_list[i];
db->Flush(FlushOptions());
db->GetColumnFamilyMetaData(&meta);
if (num_files_at_level0[i] == meta.levels[0].files.size() ||
writes_ == 0) {
should_stop = true;
continue;
}
sorted_runs[i].emplace_back(
meta.levels[0].files.begin(),
meta.levels[0].files.end() - num_files_at_level0[i]);
num_files_at_level0[i] = meta.levels[0].files.size();
if (sorted_runs[i].back().size() == 1) {
should_stop = true;
continue;
}
if (sorted_runs[i].size() == output_level) {
auto& L1 = sorted_runs[i].back();
L1.erase(L1.begin(), L1.begin() + L1.size() / 3);
should_stop = true;
continue;
}
}
writes_ /= static_cast<int64_t>(open_options_.max_bytes_for_level_multiplier);
}
for (size_t i = 0; i < num_db; i++) {
if (sorted_runs[i].size() < num_levels - 1) {
fprintf(stderr, "n is too small to fill %" ROCKSDB_PRIszt " levels\n", num_levels);
exit(1);
}
}
for (size_t i = 0; i < num_db; i++) {
auto db = db_list[i];
auto compactionOptions = CompactionOptions();
auto options = db->GetOptions();
MutableCFOptions mutable_cf_options(options);
for (size_t j = 0; j < sorted_runs[i].size(); j++) {
compactionOptions.output_file_size_limit =
mutable_cf_options.MaxFileSizeForLevel(
static_cast<int>(output_level));
std::cout << sorted_runs[i][j].size() << std::endl;
db->CompactFiles(compactionOptions, {sorted_runs[i][j].back().name,
sorted_runs[i][j].front().name},
static_cast<int>(output_level - j) /*level*/);
}
}
} else if (compaction_style == kCompactionStyleUniversal) {
auto ratio = open_options_.compaction_options_universal.size_ratio;
bool should_stop = false;
while (!should_stop) {
if (sorted_runs[0].empty()) {
DoWrite(thread, write_mode);
} else {
DoWrite(thread, UNIQUE_RANDOM);
}
for (size_t i = 0; i < num_db; i++) {
auto db = db_list[i];
db->Flush(FlushOptions());
db->GetColumnFamilyMetaData(&meta);
if (num_files_at_level0[i] == meta.levels[0].files.size() ||
writes_ == 0) {
should_stop = true;
continue;
}
sorted_runs[i].emplace_back(
meta.levels[0].files.begin(),
meta.levels[0].files.end() - num_files_at_level0[i]);
num_files_at_level0[i] = meta.levels[0].files.size();
if (sorted_runs[i].back().size() == 1) {
should_stop = true;
continue;
}
num_files_at_level0[i] = meta.levels[0].files.size();
}
writes_ = static_cast<int64_t>(writes_* static_cast<double>(100) / (ratio + 200));
}
for (size_t i = 0; i < num_db; i++) {
if (sorted_runs[i].size() < num_levels) {
fprintf(stderr, "n is too small to fill %" ROCKSDB_PRIszt " levels\n", num_levels);
exit(1);
}
}
for (size_t i = 0; i < num_db; i++) {
auto db = db_list[i];
auto compactionOptions = CompactionOptions();
auto options = db->GetOptions();
MutableCFOptions mutable_cf_options(options);
for (size_t j = 0; j < sorted_runs[i].size(); j++) {
compactionOptions.output_file_size_limit =
mutable_cf_options.MaxFileSizeForLevel(
static_cast<int>(output_level));
db->CompactFiles(
compactionOptions,
{sorted_runs[i][j].back().name, sorted_runs[i][j].front().name},
(output_level > j ? static_cast<int>(output_level - j)
: 0) /*level*/);
}
}
} else if (compaction_style == kCompactionStyleFIFO) {
if (num_levels != 1) {
return Status::InvalidArgument(
"num_levels should be 1 for FIFO compaction");
}
if (FLAGS_num_multi_db != 0) {
return Status::InvalidArgument("Doesn't support multiDB");
}
auto db = db_list[0];
std::vector<std::string> file_names;
while (true) {
if (sorted_runs[0].empty()) {
DoWrite(thread, write_mode);
} else {
DoWrite(thread, UNIQUE_RANDOM);
}
db->Flush(FlushOptions());
db->GetColumnFamilyMetaData(&meta);
auto total_size = meta.levels[0].size;
if (total_size >=
db->GetOptions().compaction_options_fifo.max_table_files_size) {
for (auto file_meta : meta.levels[0].files) {
file_names.emplace_back(file_meta.name);
}
break;
}
}
// TODO(shuzhang1989): Investigate why CompactFiles not working
// auto compactionOptions = CompactionOptions();
// db->CompactFiles(compactionOptions, file_names, 0);
auto compactionOptions = CompactRangeOptions();
db->CompactRange(compactionOptions, nullptr, nullptr);
} else {
fprintf(stdout,
"%-12s : skipped (-compaction_stype=kCompactionStyleNone)\n",
"filldeterministic");
return Status::InvalidArgument("None compaction is not supported");
}
// Verify seqno and key range
// Note: the seqno get changed at the max level by implementation
// optimization, so skip the check of the max level.
#ifndef NDEBUG
for (size_t k = 0; k < num_db; k++) {
auto db = db_list[k];
db->GetColumnFamilyMetaData(&meta);
// verify the number of sorted runs
if (compaction_style == kCompactionStyleLevel) {
assert(num_levels - 1 == sorted_runs[k].size());
} else if (compaction_style == kCompactionStyleUniversal) {
assert(meta.levels[0].files.size() + num_levels - 1 ==
sorted_runs[k].size());
} else if (compaction_style == kCompactionStyleFIFO) {
// TODO(gzh): FIFO compaction
db->GetColumnFamilyMetaData(&meta);
auto total_size = meta.levels[0].size;
assert(total_size <=
db->GetOptions().compaction_options_fifo.max_table_files_size);
break;
}
// verify smallest/largest seqno and key range of each sorted run
auto max_level = num_levels - 1;
int level;
for (size_t i = 0; i < sorted_runs[k].size(); i++) {
level = static_cast<int>(max_level - i);
SequenceNumber sorted_run_smallest_seqno = kMaxSequenceNumber;
SequenceNumber sorted_run_largest_seqno = 0;
std::string sorted_run_smallest_key, sorted_run_largest_key;
bool first_key = true;
for (auto fileMeta : sorted_runs[k][i]) {
sorted_run_smallest_seqno =
std::min(sorted_run_smallest_seqno, fileMeta.smallest_seqno);
sorted_run_largest_seqno =
std::max(sorted_run_largest_seqno, fileMeta.largest_seqno);
if (first_key ||
db->DefaultColumnFamily()->GetComparator()->Compare(
fileMeta.smallestkey, sorted_run_smallest_key) < 0) {
sorted_run_smallest_key = fileMeta.smallestkey;
}
if (first_key ||
db->DefaultColumnFamily()->GetComparator()->Compare(
fileMeta.largestkey, sorted_run_largest_key) > 0) {
sorted_run_largest_key = fileMeta.largestkey;
}
first_key = false;
}
if (compaction_style == kCompactionStyleLevel ||
(compaction_style == kCompactionStyleUniversal && level > 0)) {
SequenceNumber level_smallest_seqno = kMaxSequenceNumber;
SequenceNumber level_largest_seqno = 0;
for (auto fileMeta : meta.levels[level].files) {
level_smallest_seqno =
std::min(level_smallest_seqno, fileMeta.smallest_seqno);
level_largest_seqno =
std::max(level_largest_seqno, fileMeta.largest_seqno);
}
assert(sorted_run_smallest_key ==
meta.levels[level].files.front().smallestkey);
assert(sorted_run_largest_key ==
meta.levels[level].files.back().largestkey);
if (level != static_cast<int>(max_level)) {
// compaction at max_level would change sequence number
assert(sorted_run_smallest_seqno == level_smallest_seqno);
assert(sorted_run_largest_seqno == level_largest_seqno);
}
} else if (compaction_style == kCompactionStyleUniversal) {
// level <= 0 means sorted runs on level 0
auto level0_file =
meta.levels[0].files[sorted_runs[k].size() - 1 - i];
assert(sorted_run_smallest_key == level0_file.smallestkey);
assert(sorted_run_largest_key == level0_file.largestkey);
if (level != static_cast<int>(max_level)) {
assert(sorted_run_smallest_seqno == level0_file.smallest_seqno);
assert(sorted_run_largest_seqno == level0_file.largest_seqno);
}
}
}
}
#endif
// print the size of each sorted_run
for (size_t k = 0; k < num_db; k++) {
auto db = db_list[k];
fprintf(stdout,
"---------------------- DB %" ROCKSDB_PRIszt " LSM ---------------------\n", k);
db->GetColumnFamilyMetaData(&meta);
for (auto& levelMeta : meta.levels) {
if (levelMeta.files.empty()) {
continue;
}
if (levelMeta.level == 0) {
for (auto& fileMeta : levelMeta.files) {
fprintf(stdout, "Level[%d]: %s(size: %" PRIu64 " bytes)\n",
levelMeta.level, fileMeta.name.c_str(), fileMeta.size);
}
} else {
fprintf(stdout, "Level[%d]: %s - %s(total size: %" PRIi64 " bytes)\n",
levelMeta.level, levelMeta.files.front().name.c_str(),
levelMeta.files.back().name.c_str(), levelMeta.size);
}
}
}
for (size_t i = 0; i < num_db; i++) {
db_list[i]->SetOptions(
{{"disable_auto_compactions",
std::to_string(options_list[i].disable_auto_compactions)},
{"level0_slowdown_writes_trigger",
std::to_string(options_list[i].level0_slowdown_writes_trigger)},
{"level0_stop_writes_trigger",
std::to_string(options_list[i].level0_stop_writes_trigger)}});
}
return Status::OK();
#else
fprintf(stderr, "Rocksdb Lite doesn't support filldeterministic\n");
return Status::NotSupported(
"Rocksdb Lite doesn't support filldeterministic");
#endif // ROCKSDB_LITE
}
void ReadSequential(ThreadState* thread) {
if (db_.db != nullptr) {
ReadSequential(thread, db_.db);
} else {
for (const auto& db_with_cfh : multi_dbs_) {
ReadSequential(thread, db_with_cfh.db);
}
}
}
void ReadSequential(ThreadState* thread, DB* db) {
ReadOptions options(FLAGS_verify_checksum, true);
options.tailing = FLAGS_use_tailing_iterator;
Iterator* iter = db->NewIterator(options);
int64_t i = 0;
int64_t bytes = 0;
for (iter->SeekToFirst(); i < reads_ && iter->Valid(); iter->Next()) {
bytes += iter->key().size() + iter->value().size();
thread->stats.FinishedOps(nullptr, db, 1, kRead);
++i;
if (thread->shared->read_rate_limiter.get() != nullptr &&
i % 1024 == 1023) {
thread->shared->read_rate_limiter->Request(1024, Env::IO_HIGH,
nullptr /* stats */,
RateLimiter::OpType::kRead);
}
}
delete iter;
thread->stats.AddBytes(bytes);
if (FLAGS_perf_level > rocksdb::PerfLevel::kDisable) {
thread->stats.AddMessage(get_perf_context()->ToString());
}
}
void ReadReverse(ThreadState* thread) {
if (db_.db != nullptr) {
ReadReverse(thread, db_.db);
} else {
for (const auto& db_with_cfh : multi_dbs_) {
ReadReverse(thread, db_with_cfh.db);
}
}
}
void ReadReverse(ThreadState* thread, DB* db) {
Iterator* iter = db->NewIterator(ReadOptions(FLAGS_verify_checksum, true));
int64_t i = 0;
int64_t bytes = 0;
for (iter->SeekToLast(); i < reads_ && iter->Valid(); iter->Prev()) {
bytes += iter->key().size() + iter->value().size();
thread->stats.FinishedOps(nullptr, db, 1, kRead);
++i;
if (thread->shared->read_rate_limiter.get() != nullptr &&
i % 1024 == 1023) {
thread->shared->read_rate_limiter->Request(1024, Env::IO_HIGH,
nullptr /* stats */,
RateLimiter::OpType::kRead);
}
}
delete iter;
thread->stats.AddBytes(bytes);
}
void ReadRandomFast(ThreadState* thread) {
int64_t read = 0;
int64_t found = 0;
int64_t nonexist = 0;
ReadOptions options(FLAGS_verify_checksum, true);
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
std::string value;
DB* db = SelectDBWithCfh(thread)->db;
int64_t pot = 1;
while (pot < FLAGS_num) {
pot <<= 1;
}
Duration duration(FLAGS_duration, reads_);
do {
for (int i = 0; i < 100; ++i) {
int64_t key_rand = thread->rand.Next() & (pot - 1);
GenerateKeyFromInt(key_rand, FLAGS_num, &key);
++read;
auto status = db->Get(options, key, &value);
if (status.ok()) {
++found;
} else if (!status.IsNotFound()) {
fprintf(stderr, "Get returned an error: %s\n",
status.ToString().c_str());
abort();
}
if (key_rand >= FLAGS_num) {
++nonexist;
}
}
if (thread->shared->read_rate_limiter.get() != nullptr) {
thread->shared->read_rate_limiter->Request(
100, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
}
thread->stats.FinishedOps(nullptr, db, 100, kRead);
} while (!duration.Done(100));
char msg[100];
snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found, "
"issued %" PRIu64 " non-exist keys)\n",
found, read, nonexist);
thread->stats.AddMessage(msg);
if (FLAGS_perf_level > rocksdb::PerfLevel::kDisable) {
thread->stats.AddMessage(get_perf_context()->ToString());
}
}
int64_t GetRandomKey(Random64* rand) {
uint64_t rand_int = rand->Next();
int64_t key_rand;
if (read_random_exp_range_ == 0) {
key_rand = rand_int % FLAGS_num;
} else {
const uint64_t kBigInt = static_cast<uint64_t>(1U) << 62;
long double order = -static_cast<long double>(rand_int % kBigInt) /
static_cast<long double>(kBigInt) *
read_random_exp_range_;
long double exp_ran = std::exp(order);
uint64_t rand_num =
static_cast<int64_t>(exp_ran * static_cast<long double>(FLAGS_num));
// Map to a different number to avoid locality.
const uint64_t kBigPrime = 0x5bd1e995;
// Overflow is like %(2^64). Will have little impact of results.
key_rand = static_cast<int64_t>((rand_num * kBigPrime) % FLAGS_num);
}
return key_rand;
}
void ReadRandom(ThreadState* thread) {
int64_t read = 0;
int64_t found = 0;
int64_t bytes = 0;
ReadOptions options(FLAGS_verify_checksum, true);
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
std::string value;
PinnableSlice pinnable_val;
Duration duration(FLAGS_duration, reads_);
while (!duration.Done(1)) {
DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread);
// We use same key_rand as seed for key and column family so that we can
// deterministically find the cfh corresponding to a particular key, as it
// is done in DoWrite method.
int64_t key_rand = GetRandomKey(&thread->rand);
GenerateKeyFromInt(key_rand, FLAGS_num, &key);
read++;
Status s;
if (FLAGS_num_column_families > 1) {
s = db_with_cfh->db->Get(options, db_with_cfh->GetCfh(key_rand), key,
&value);
} else {
if (LIKELY(FLAGS_pin_slice == 1)) {
pinnable_val.Reset();
s = db_with_cfh->db->Get(options,
db_with_cfh->db->DefaultColumnFamily(), key,
&pinnable_val);
} else {
s = db_with_cfh->db->Get(
options, db_with_cfh->db->DefaultColumnFamily(), key, &value);
}
}
if (s.ok()) {
found++;
bytes += key.size() +
(FLAGS_pin_slice == 1 ? pinnable_val.size() : value.size());
} else if (!s.IsNotFound()) {
fprintf(stderr, "Get returned an error: %s\n", s.ToString().c_str());
abort();
}
if (thread->shared->read_rate_limiter.get() != nullptr &&
read % 256 == 255) {
thread->shared->read_rate_limiter->Request(
256, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
}
thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kRead);
}
char msg[100];
snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)\n",
found, read);
thread->stats.AddBytes(bytes);
thread->stats.AddMessage(msg);
if (FLAGS_perf_level > rocksdb::PerfLevel::kDisable) {
thread->stats.AddMessage(get_perf_context()->ToString());
}
}
// Calls MultiGet over a list of keys from a random distribution.
// Returns the total number of keys found.
void MultiReadRandom(ThreadState* thread) {
int64_t read = 0;
int64_t num_multireads = 0;
int64_t found = 0;
ReadOptions options(FLAGS_verify_checksum, true);
std::vector<Slice> keys;
std::vector<std::unique_ptr<const char[]> > key_guards;
std::vector<std::string> values(entries_per_batch_);
while (static_cast<int64_t>(keys.size()) < entries_per_batch_) {
key_guards.push_back(std::unique_ptr<const char[]>());
keys.push_back(AllocateKey(&key_guards.back()));
}
Duration duration(FLAGS_duration, reads_);
while (!duration.Done(1)) {
DB* db = SelectDB(thread);
for (int64_t i = 0; i < entries_per_batch_; ++i) {
GenerateKeyFromInt(GetRandomKey(&thread->rand), FLAGS_num, &keys[i]);
}
std::vector<Status> statuses = db->MultiGet(options, keys, &values);
assert(static_cast<int64_t>(statuses.size()) == entries_per_batch_);
read += entries_per_batch_;
num_multireads++;
for (int64_t i = 0; i < entries_per_batch_; ++i) {
if (statuses[i].ok()) {
++found;
} else if (!statuses[i].IsNotFound()) {
fprintf(stderr, "MultiGet returned an error: %s\n",
statuses[i].ToString().c_str());
abort();
}
}
if (thread->shared->read_rate_limiter.get() != nullptr &&
num_multireads % 256 == 255) {
thread->shared->read_rate_limiter->Request(
256 * entries_per_batch_, Env::IO_HIGH, nullptr /* stats */,
RateLimiter::OpType::kRead);
}
thread->stats.FinishedOps(nullptr, db, entries_per_batch_, kRead);
}
char msg[100];
snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)",
found, read);
thread->stats.AddMessage(msg);
}
void IteratorCreation(ThreadState* thread) {
Duration duration(FLAGS_duration, reads_);
ReadOptions options(FLAGS_verify_checksum, true);
while (!duration.Done(1)) {
DB* db = SelectDB(thread);
Iterator* iter = db->NewIterator(options);
delete iter;
thread->stats.FinishedOps(nullptr, db, 1, kOthers);
}
}
void IteratorCreationWhileWriting(ThreadState* thread) {
if (thread->tid > 0) {
IteratorCreation(thread);
} else {
BGWriter(thread, kWrite);
}
}
void SeekRandom(ThreadState* thread) {
int64_t read = 0;
int64_t found = 0;
int64_t bytes = 0;
ReadOptions options(FLAGS_verify_checksum, true);
options.tailing = FLAGS_use_tailing_iterator;
Iterator* single_iter = nullptr;
std::vector<Iterator*> multi_iters;
if (db_.db != nullptr) {
single_iter = db_.db->NewIterator(options);
} else {
for (const auto& db_with_cfh : multi_dbs_) {
multi_iters.push_back(db_with_cfh.db->NewIterator(options));
}
}
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
Duration duration(FLAGS_duration, reads_);
char value_buffer[256];
while (!duration.Done(1)) {
if (!FLAGS_use_tailing_iterator) {
if (db_.db != nullptr) {
delete single_iter;
single_iter = db_.db->NewIterator(options);
} else {
for (auto iter : multi_iters) {
delete iter;
}
multi_iters.clear();
for (const auto& db_with_cfh : multi_dbs_) {
multi_iters.push_back(db_with_cfh.db->NewIterator(options));
}
}
}
// Pick a Iterator to use
Iterator* iter_to_use = single_iter;
if (single_iter == nullptr) {
iter_to_use = multi_iters[thread->rand.Next() % multi_iters.size()];
}
GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
iter_to_use->Seek(key);
read++;
if (iter_to_use->Valid() && iter_to_use->key().compare(key) == 0) {
found++;
}
for (int j = 0; j < FLAGS_seek_nexts && iter_to_use->Valid(); ++j) {
// Copy out iterator's value to make sure we read them.
Slice value = iter_to_use->value();
memcpy(value_buffer, value.data(),
std::min(value.size(), sizeof(value_buffer)));
bytes += iter_to_use->key().size() + iter_to_use->value().size();
if (!FLAGS_reverse_iterator) {
iter_to_use->Next();
} else {
iter_to_use->Prev();
}
assert(iter_to_use->status().ok());
}
if (thread->shared->read_rate_limiter.get() != nullptr &&
read % 256 == 255) {
thread->shared->read_rate_limiter->Request(
256, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
}
thread->stats.FinishedOps(&db_, db_.db, 1, kSeek);
}
delete single_iter;
for (auto iter : multi_iters) {
delete iter;
}
char msg[100];
snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)\n",
found, read);
thread->stats.AddBytes(bytes);
thread->stats.AddMessage(msg);
if (FLAGS_perf_level > rocksdb::PerfLevel::kDisable) {
thread->stats.AddMessage(get_perf_context()->ToString());
}
}
void SeekRandomWhileWriting(ThreadState* thread) {
if (thread->tid > 0) {
SeekRandom(thread);
} else {
BGWriter(thread, kWrite);
}
}
void SeekRandomWhileMerging(ThreadState* thread) {
if (thread->tid > 0) {
SeekRandom(thread);
} else {
BGWriter(thread, kMerge);
}
}
void DoDelete(ThreadState* thread, bool seq) {
WriteBatch batch;
Duration duration(seq ? 0 : FLAGS_duration, deletes_);
int64_t i = 0;
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
while (!duration.Done(entries_per_batch_)) {
DB* db = SelectDB(thread);
batch.Clear();
for (int64_t j = 0; j < entries_per_batch_; ++j) {
const int64_t k = seq ? i + j : (thread->rand.Next() % FLAGS_num);
GenerateKeyFromInt(k, FLAGS_num, &key);
batch.Delete(key);
}
auto s = db->Write(write_options_, &batch);
thread->stats.FinishedOps(nullptr, db, entries_per_batch_, kDelete);
if (!s.ok()) {
fprintf(stderr, "del error: %s\n", s.ToString().c_str());
exit(1);
}
i += entries_per_batch_;
}
}
void DeleteSeq(ThreadState* thread) {
DoDelete(thread, true);
}
void DeleteRandom(ThreadState* thread) {
DoDelete(thread, false);
}
void ReadWhileWriting(ThreadState* thread) {
if (thread->tid > 0) {
ReadRandom(thread);
} else {
BGWriter(thread, kWrite);
}
}
void ReadWhileMerging(ThreadState* thread) {
if (thread->tid > 0) {
ReadRandom(thread);
} else {
BGWriter(thread, kMerge);
}
}
void BGWriter(ThreadState* thread, enum OperationType write_merge) {
// Special thread that keeps writing until other threads are done.
RandomGenerator gen;
int64_t bytes = 0;
std::unique_ptr<RateLimiter> write_rate_limiter;
if (FLAGS_benchmark_write_rate_limit > 0) {
write_rate_limiter.reset(
NewGenericRateLimiter(FLAGS_benchmark_write_rate_limit));
}
// Don't merge stats from this thread with the readers.
thread->stats.SetExcludeFromMerge();
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
uint32_t written = 0;
bool hint_printed = false;
while (true) {
DB* db = SelectDB(thread);
{
MutexLock l(&thread->shared->mu);
if (FLAGS_finish_after_writes && written == writes_) {
fprintf(stderr, "Exiting the writer after %u writes...\n", written);
break;
}
if (thread->shared->num_done + 1 >= thread->shared->num_initialized) {
// Other threads have finished
if (FLAGS_finish_after_writes) {
// Wait for the writes to be finished
if (!hint_printed) {
fprintf(stderr, "Reads are finished. Have %d more writes to do\n",
(int)writes_ - written);
hint_printed = true;
}
} else {
// Finish the write immediately
break;
}
}
}
GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
Status s;
if (write_merge == kWrite) {
s = db->Put(write_options_, key, gen.Generate(value_size_));
} else {
s = db->Merge(write_options_, key, gen.Generate(value_size_));
}
written++;
if (!s.ok()) {
fprintf(stderr, "put or merge error: %s\n", s.ToString().c_str());
exit(1);
}
bytes += key.size() + value_size_;
thread->stats.FinishedOps(&db_, db_.db, 1, kWrite);
if (FLAGS_benchmark_write_rate_limit > 0) {
write_rate_limiter->Request(
entries_per_batch_ * (value_size_ + key_size_), Env::IO_HIGH,
nullptr /* stats */, RateLimiter::OpType::kWrite);
}
}
thread->stats.AddBytes(bytes);
}
// Given a key K and value V, this puts (K+"0", V), (K+"1", V), (K+"2", V)
// in DB atomically i.e in a single batch. Also refer GetMany.
Status PutMany(DB* db, const WriteOptions& writeoptions, const Slice& key,
const Slice& value) {
std::string suffixes[3] = {"2", "1", "0"};
std::string keys[3];
WriteBatch batch;
Status s;
for (int i = 0; i < 3; i++) {
keys[i] = key.ToString() + suffixes[i];
batch.Put(keys[i], value);
}
s = db->Write(writeoptions, &batch);
return s;
}
// Given a key K, this deletes (K+"0", V), (K+"1", V), (K+"2", V)
// in DB atomically i.e in a single batch. Also refer GetMany.
Status DeleteMany(DB* db, const WriteOptions& writeoptions,
const Slice& key) {
std::string suffixes[3] = {"1", "2", "0"};
std::string keys[3];
WriteBatch batch;
Status s;
for (int i = 0; i < 3; i++) {
keys[i] = key.ToString() + suffixes[i];
batch.Delete(keys[i]);
}
s = db->Write(writeoptions, &batch);
return s;
}
// Given a key K and value V, this gets values for K+"0", K+"1" and K+"2"
// in the same snapshot, and verifies that all the values are identical.
// ASSUMES that PutMany was used to put (K, V) into the DB.
Status GetMany(DB* db, const ReadOptions& readoptions, const Slice& key,
std::string* value) {
std::string suffixes[3] = {"0", "1", "2"};
std::string keys[3];
Slice key_slices[3];
std::string values[3];
ReadOptions readoptionscopy = readoptions;
readoptionscopy.snapshot = db->GetSnapshot();
Status s;
for (int i = 0; i < 3; i++) {
keys[i] = key.ToString() + suffixes[i];
key_slices[i] = keys[i];
s = db->Get(readoptionscopy, key_slices[i], value);
if (!s.ok() && !s.IsNotFound()) {
fprintf(stderr, "get error: %s\n", s.ToString().c_str());
values[i] = "";
// we continue after error rather than exiting so that we can
// find more errors if any
} else if (s.IsNotFound()) {
values[i] = "";
} else {
values[i] = *value;
}
}
db->ReleaseSnapshot(readoptionscopy.snapshot);
if ((values[0] != values[1]) || (values[1] != values[2])) {
fprintf(stderr, "inconsistent values for key %s: %s, %s, %s\n",
key.ToString().c_str(), values[0].c_str(), values[1].c_str(),
values[2].c_str());
// we continue after error rather than exiting so that we can
// find more errors if any
}
return s;
}
// Differs from readrandomwriterandom in the following ways:
// (a) Uses GetMany/PutMany to read/write key values. Refer to those funcs.
// (b) Does deletes as well (per FLAGS_deletepercent)
// (c) In order to achieve high % of 'found' during lookups, and to do
// multiple writes (including puts and deletes) it uses upto
// FLAGS_numdistinct distinct keys instead of FLAGS_num distinct keys.
// (d) Does not have a MultiGet option.
void RandomWithVerify(ThreadState* thread) {
ReadOptions options(FLAGS_verify_checksum, true);
RandomGenerator gen;
std::string value;
int64_t found = 0;
int get_weight = 0;
int put_weight = 0;
int delete_weight = 0;
int64_t gets_done = 0;
int64_t puts_done = 0;
int64_t deletes_done = 0;
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
// the number of iterations is the larger of read_ or write_
for (int64_t i = 0; i < readwrites_; i++) {
DB* db = SelectDB(thread);
if (get_weight == 0 && put_weight == 0 && delete_weight == 0) {
// one batch completed, reinitialize for next batch
get_weight = FLAGS_readwritepercent;
delete_weight = FLAGS_deletepercent;
put_weight = 100 - get_weight - delete_weight;
}
GenerateKeyFromInt(thread->rand.Next() % FLAGS_numdistinct,
FLAGS_numdistinct, &key);
if (get_weight > 0) {
// do all the gets first
Status s = GetMany(db, options, key, &value);
if (!s.ok() && !s.IsNotFound()) {
fprintf(stderr, "getmany error: %s\n", s.ToString().c_str());
// we continue after error rather than exiting so that we can
// find more errors if any
} else if (!s.IsNotFound()) {
found++;
}
get_weight--;
gets_done++;
thread->stats.FinishedOps(&db_, db_.db, 1, kRead);
} else if (put_weight > 0) {
// then do all the corresponding number of puts
// for all the gets we have done earlier
Status s = PutMany(db, write_options_, key, gen.Generate(value_size_));
if (!s.ok()) {
fprintf(stderr, "putmany error: %s\n", s.ToString().c_str());
exit(1);
}
put_weight--;
puts_done++;
thread->stats.FinishedOps(&db_, db_.db, 1, kWrite);
} else if (delete_weight > 0) {
Status s = DeleteMany(db, write_options_, key);
if (!s.ok()) {
fprintf(stderr, "deletemany error: %s\n", s.ToString().c_str());
exit(1);
}
delete_weight--;
deletes_done++;
thread->stats.FinishedOps(&db_, db_.db, 1, kDelete);
}
}
char msg[100];
snprintf(msg, sizeof(msg),
"( get:%" PRIu64 " put:%" PRIu64 " del:%" PRIu64 " total:%" \
PRIu64 " found:%" PRIu64 ")",
gets_done, puts_done, deletes_done, readwrites_, found);
thread->stats.AddMessage(msg);
}
// This is different from ReadWhileWriting because it does not use
// an extra thread.
void ReadRandomWriteRandom(ThreadState* thread) {
ReadOptions options(FLAGS_verify_checksum, true);
RandomGenerator gen;
std::string value;
int64_t found = 0;
int get_weight = 0;
int put_weight = 0;
int64_t reads_done = 0;
int64_t writes_done = 0;
Duration duration(FLAGS_duration, readwrites_);
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
// the number of iterations is the larger of read_ or write_
while (!duration.Done(1)) {
DB* db = SelectDB(thread);
GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
if (get_weight == 0 && put_weight == 0) {
// one batch completed, reinitialize for next batch
get_weight = FLAGS_readwritepercent;
put_weight = 100 - get_weight;
}
if (get_weight > 0) {
// do all the gets first
Status s = db->Get(options, key, &value);
if (!s.ok() && !s.IsNotFound()) {
fprintf(stderr, "get error: %s\n", s.ToString().c_str());
// we continue after error rather than exiting so that we can
// find more errors if any
} else if (!s.IsNotFound()) {
found++;
}
get_weight--;
reads_done++;
thread->stats.FinishedOps(nullptr, db, 1, kRead);
} else if (put_weight > 0) {
// then do all the corresponding number of puts
// for all the gets we have done earlier
Status s = db->Put(write_options_, key, gen.Generate(value_size_));
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
exit(1);
}
put_weight--;
writes_done++;
thread->stats.FinishedOps(nullptr, db, 1, kWrite);
}
}
char msg[100];
snprintf(msg, sizeof(msg), "( reads:%" PRIu64 " writes:%" PRIu64 \
" total:%" PRIu64 " found:%" PRIu64 ")",
reads_done, writes_done, readwrites_, found);
thread->stats.AddMessage(msg);
}
//
// Read-modify-write for random keys
void UpdateRandom(ThreadState* thread) {
ReadOptions options(FLAGS_verify_checksum, true);
RandomGenerator gen;
std::string value;
int64_t found = 0;
int64_t bytes = 0;
Duration duration(FLAGS_duration, readwrites_);
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
// the number of iterations is the larger of read_ or write_
while (!duration.Done(1)) {
DB* db = SelectDB(thread);
GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
auto status = db->Get(options, key, &value);
if (status.ok()) {
++found;
bytes += key.size() + value.size();
} else if (!status.IsNotFound()) {
fprintf(stderr, "Get returned an error: %s\n",
status.ToString().c_str());
abort();
}
Status s = db->Put(write_options_, key, gen.Generate(value_size_));
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
exit(1);
}
bytes += key.size() + value_size_;
thread->stats.FinishedOps(nullptr, db, 1, kUpdate);
}
char msg[100];
snprintf(msg, sizeof(msg),
"( updates:%" PRIu64 " found:%" PRIu64 ")", readwrites_, found);
thread->stats.AddBytes(bytes);
thread->stats.AddMessage(msg);
}
// Read-modify-write for random keys.
// Each operation causes the key grow by value_size (simulating an append).
// Generally used for benchmarking against merges of similar type
void AppendRandom(ThreadState* thread) {
ReadOptions options(FLAGS_verify_checksum, true);
RandomGenerator gen;
std::string value;
int64_t found = 0;
int64_t bytes = 0;
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
// The number of iterations is the larger of read_ or write_
Duration duration(FLAGS_duration, readwrites_);
while (!duration.Done(1)) {
DB* db = SelectDB(thread);
GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
auto status = db->Get(options, key, &value);
if (status.ok()) {
++found;
bytes += key.size() + value.size();
} else if (!status.IsNotFound()) {
fprintf(stderr, "Get returned an error: %s\n",
status.ToString().c_str());
abort();
} else {
// If not existing, then just assume an empty string of data
value.clear();
}
// Update the value (by appending data)
Slice operand = gen.Generate(value_size_);
if (value.size() > 0) {
// Use a delimiter to match the semantics for StringAppendOperator
value.append(1,',');
}
value.append(operand.data(), operand.size());
// Write back to the database
Status s = db->Put(write_options_, key, value);
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
exit(1);
}
bytes += key.size() + value.size();
thread->stats.FinishedOps(nullptr, db, 1, kUpdate);
}
char msg[100];
snprintf(msg, sizeof(msg), "( updates:%" PRIu64 " found:%" PRIu64 ")",
readwrites_, found);
thread->stats.AddBytes(bytes);
thread->stats.AddMessage(msg);
}
// Read-modify-write for random keys (using MergeOperator)
// The merge operator to use should be defined by FLAGS_merge_operator
// Adjust FLAGS_value_size so that the keys are reasonable for this operator
// Assumes that the merge operator is non-null (i.e.: is well-defined)
//
// For example, use FLAGS_merge_operator="uint64add" and FLAGS_value_size=8
// to simulate random additions over 64-bit integers using merge.
//
// The number of merges on the same key can be controlled by adjusting
// FLAGS_merge_keys.
void MergeRandom(ThreadState* thread) {
RandomGenerator gen;
int64_t bytes = 0;
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
// The number of iterations is the larger of read_ or write_
Duration duration(FLAGS_duration, readwrites_);
while (!duration.Done(1)) {
DB* db = SelectDB(thread);
GenerateKeyFromInt(thread->rand.Next() % merge_keys_, merge_keys_, &key);
Status s = db->Merge(write_options_, key, gen.Generate(value_size_));
if (!s.ok()) {
fprintf(stderr, "merge error: %s\n", s.ToString().c_str());
exit(1);
}
bytes += key.size() + value_size_;
thread->stats.FinishedOps(nullptr, db, 1, kMerge);
}
// Print some statistics
char msg[100];
snprintf(msg, sizeof(msg), "( updates:%" PRIu64 ")", readwrites_);
thread->stats.AddBytes(bytes);
thread->stats.AddMessage(msg);
}
// Read and merge random keys. The amount of reads and merges are controlled
// by adjusting FLAGS_num and FLAGS_mergereadpercent. The number of distinct
// keys (and thus also the number of reads and merges on the same key) can be
// adjusted with FLAGS_merge_keys.
//
// As with MergeRandom, the merge operator to use should be defined by
// FLAGS_merge_operator.
void ReadRandomMergeRandom(ThreadState* thread) {
ReadOptions options(FLAGS_verify_checksum, true);
RandomGenerator gen;
std::string value;
int64_t num_hits = 0;
int64_t num_gets = 0;
int64_t num_merges = 0;
size_t max_length = 0;
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
// the number of iterations is the larger of read_ or write_
Duration duration(FLAGS_duration, readwrites_);
while (!duration.Done(1)) {
DB* db = SelectDB(thread);
GenerateKeyFromInt(thread->rand.Next() % merge_keys_, merge_keys_, &key);
bool do_merge = int(thread->rand.Next() % 100) < FLAGS_mergereadpercent;
if (do_merge) {
Status s = db->Merge(write_options_, key, gen.Generate(value_size_));
if (!s.ok()) {
fprintf(stderr, "merge error: %s\n", s.ToString().c_str());
exit(1);
}
num_merges++;
thread->stats.FinishedOps(nullptr, db, 1, kMerge);
} else {
Status s = db->Get(options, key, &value);
if (value.length() > max_length)
max_length = value.length();
if (!s.ok() && !s.IsNotFound()) {
fprintf(stderr, "get error: %s\n", s.ToString().c_str());
// we continue after error rather than exiting so that we can
// find more errors if any
} else if (!s.IsNotFound()) {
num_hits++;
}
num_gets++;
thread->stats.FinishedOps(nullptr, db, 1, kRead);
}
}
char msg[100];
snprintf(msg, sizeof(msg),
"(reads:%" PRIu64 " merges:%" PRIu64 " total:%" PRIu64
" hits:%" PRIu64 " maxlength:%" ROCKSDB_PRIszt ")",
num_gets, num_merges, readwrites_, num_hits, max_length);
thread->stats.AddMessage(msg);
}
void WriteSeqSeekSeq(ThreadState* thread) {
writes_ = FLAGS_num;
DoWrite(thread, SEQUENTIAL);
// exclude writes from the ops/sec calculation
thread->stats.Start(thread->tid);
DB* db = SelectDB(thread);
std::unique_ptr<Iterator> iter(
db->NewIterator(ReadOptions(FLAGS_verify_checksum, true)));
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
for (int64_t i = 0; i < FLAGS_num; ++i) {
GenerateKeyFromInt(i, FLAGS_num, &key);
iter->Seek(key);
assert(iter->Valid() && iter->key() == key);
thread->stats.FinishedOps(nullptr, db, 1, kSeek);
for (int j = 0; j < FLAGS_seek_nexts && i + 1 < FLAGS_num; ++j) {
if (!FLAGS_reverse_iterator) {
iter->Next();
} else {
iter->Prev();
}
GenerateKeyFromInt(++i, FLAGS_num, &key);
assert(iter->Valid() && iter->key() == key);
thread->stats.FinishedOps(nullptr, db, 1, kSeek);
}
iter->Seek(key);
assert(iter->Valid() && iter->key() == key);
thread->stats.FinishedOps(nullptr, db, 1, kSeek);
}
}
#ifndef ROCKSDB_LITE
// This benchmark stress tests Transactions. For a given --duration (or
// total number of --writes, a Transaction will perform a read-modify-write
// to increment the value of a key in each of N(--transaction-sets) sets of
// keys (where each set has --num keys). If --threads is set, this will be
// done in parallel.
//
// To test transactions, use --transaction_db=true. Not setting this
// parameter
// will run the same benchmark without transactions.
//
// RandomTransactionVerify() will then validate the correctness of the results
// by checking if the sum of all keys in each set is the same.
void RandomTransaction(ThreadState* thread) {
ReadOptions options(FLAGS_verify_checksum, true);
Duration duration(FLAGS_duration, readwrites_);
ReadOptions read_options(FLAGS_verify_checksum, true);
uint16_t num_prefix_ranges = static_cast<uint16_t>(FLAGS_transaction_sets);
uint64_t transactions_done = 0;
if (num_prefix_ranges == 0 || num_prefix_ranges > 9999) {
fprintf(stderr, "invalid value for transaction_sets\n");
abort();
}
TransactionOptions txn_options;
txn_options.lock_timeout = FLAGS_transaction_lock_timeout;
txn_options.set_snapshot = FLAGS_transaction_set_snapshot;
RandomTransactionInserter inserter(&thread->rand, write_options_,
read_options, FLAGS_num,
num_prefix_ranges);
if (FLAGS_num_multi_db > 1) {
fprintf(stderr,
"Cannot run RandomTransaction benchmark with "
"FLAGS_multi_db > 1.");
abort();
}
while (!duration.Done(1)) {
bool success;
// RandomTransactionInserter will attempt to insert a key for each
// # of FLAGS_transaction_sets
if (FLAGS_optimistic_transaction_db) {
success = inserter.OptimisticTransactionDBInsert(db_.opt_txn_db);
} else if (FLAGS_transaction_db) {
TransactionDB* txn_db = reinterpret_cast<TransactionDB*>(db_.db);
success = inserter.TransactionDBInsert(txn_db, txn_options);
} else {
success = inserter.DBInsert(db_.db);
}
if (!success) {
fprintf(stderr, "Unexpected error: %s\n",
inserter.GetLastStatus().ToString().c_str());
abort();
}
thread->stats.FinishedOps(nullptr, db_.db, 1, kOthers);
transactions_done++;
}
char msg[100];
if (FLAGS_optimistic_transaction_db || FLAGS_transaction_db) {
snprintf(msg, sizeof(msg),
"( transactions:%" PRIu64 " aborts:%" PRIu64 ")",
transactions_done, inserter.GetFailureCount());
} else {
snprintf(msg, sizeof(msg), "( batches:%" PRIu64 " )", transactions_done);
}
thread->stats.AddMessage(msg);
if (FLAGS_perf_level > rocksdb::PerfLevel::kDisable) {
thread->stats.AddMessage(get_perf_context()->ToString());
}
}
// Verifies consistency of data after RandomTransaction() has been run.
// Since each iteration of RandomTransaction() incremented a key in each set
// by the same value, the sum of the keys in each set should be the same.
void RandomTransactionVerify() {
if (!FLAGS_transaction_db && !FLAGS_optimistic_transaction_db) {
// transactions not used, nothing to verify.
return;
}
Status s =
RandomTransactionInserter::Verify(db_.db,
static_cast<uint16_t>(FLAGS_transaction_sets));
if (s.ok()) {
fprintf(stdout, "RandomTransactionVerify Success.\n");
} else {
fprintf(stdout, "RandomTransactionVerify FAILED!!\n");
}
}
#endif // ROCKSDB_LITE
// Writes and deletes random keys without overwriting keys.
//
// This benchmark is intended to partially replicate the behavior of MyRocks
// secondary indices: All data is stored in keys and updates happen by
// deleting the old version of the key and inserting the new version.
void RandomReplaceKeys(ThreadState* thread) {
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
std::vector<uint32_t> counters(FLAGS_numdistinct, 0);
size_t max_counter = 50;
RandomGenerator gen;
Status s;
DB* db = SelectDB(thread);
for (int64_t i = 0; i < FLAGS_numdistinct; i++) {
GenerateKeyFromInt(i * max_counter, FLAGS_num, &key);
s = db->Put(write_options_, key, gen.Generate(value_size_));
if (!s.ok()) {
fprintf(stderr, "Operation failed: %s\n", s.ToString().c_str());
exit(1);
}
}
db->GetSnapshot();
std::default_random_engine generator;
std::normal_distribution<double> distribution(FLAGS_numdistinct / 2.0,
FLAGS_stddev);
Duration duration(FLAGS_duration, FLAGS_num);
while (!duration.Done(1)) {
int64_t rnd_id = static_cast<int64_t>(distribution(generator));
int64_t key_id = std::max(std::min(FLAGS_numdistinct - 1, rnd_id),
static_cast<int64_t>(0));
GenerateKeyFromInt(key_id * max_counter + counters[key_id], FLAGS_num,
&key);
s = FLAGS_use_single_deletes ? db->SingleDelete(write_options_, key)
: db->Delete(write_options_, key);
if (s.ok()) {
counters[key_id] = (counters[key_id] + 1) % max_counter;
GenerateKeyFromInt(key_id * max_counter + counters[key_id], FLAGS_num,
&key);
s = db->Put(write_options_, key, Slice());
}
if (!s.ok()) {
fprintf(stderr, "Operation failed: %s\n", s.ToString().c_str());
exit(1);
}
thread->stats.FinishedOps(nullptr, db, 1, kOthers);
}
char msg[200];
snprintf(msg, sizeof(msg),
"use single deletes: %d, "
"standard deviation: %lf\n",
FLAGS_use_single_deletes, FLAGS_stddev);
thread->stats.AddMessage(msg);
}
void TimeSeriesReadOrDelete(ThreadState* thread, bool do_deletion) {
ReadOptions options(FLAGS_verify_checksum, true);
int64_t read = 0;
int64_t found = 0;
int64_t bytes = 0;
Iterator* iter = nullptr;
// Only work on single database
assert(db_.db != nullptr);
iter = db_.db->NewIterator(options);
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
char value_buffer[256];
while (true) {
{
MutexLock l(&thread->shared->mu);
if (thread->shared->num_done >= 1) {
// Write thread have finished
break;
}
}
if (!FLAGS_use_tailing_iterator) {
delete iter;
iter = db_.db->NewIterator(options);
}
// Pick a Iterator to use
int64_t key_id = thread->rand.Next() % FLAGS_key_id_range;
GenerateKeyFromInt(key_id, FLAGS_num, &key);
// Reset last 8 bytes to 0
char* start = const_cast<char*>(key.data());
start += key.size() - 8;
memset(start, 0, 8);
++read;
bool key_found = false;
// Seek the prefix
for (iter->Seek(key); iter->Valid() && iter->key().starts_with(key);
iter->Next()) {
key_found = true;
// Copy out iterator's value to make sure we read them.
if (do_deletion) {
bytes += iter->key().size();
if (KeyExpired(timestamp_emulator_.get(), iter->key())) {
thread->stats.FinishedOps(&db_, db_.db, 1, kDelete);
db_.db->Delete(write_options_, iter->key());
} else {
break;
}
} else {
bytes += iter->key().size() + iter->value().size();
thread->stats.FinishedOps(&db_, db_.db, 1, kRead);
Slice value = iter->value();
memcpy(value_buffer, value.data(),
std::min(value.size(), sizeof(value_buffer)));
assert(iter->status().ok());
}
}
found += key_found;
if (thread->shared->read_rate_limiter.get() != nullptr) {
thread->shared->read_rate_limiter->Request(
1, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
}
}
delete iter;
char msg[100];
snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)", found,
read);
thread->stats.AddBytes(bytes);
thread->stats.AddMessage(msg);
if (FLAGS_perf_level > rocksdb::PerfLevel::kDisable) {
thread->stats.AddMessage(get_perf_context()->ToString());
}
}
void TimeSeriesWrite(ThreadState* thread) {
// Special thread that keeps writing until other threads are done.
RandomGenerator gen;
int64_t bytes = 0;
// Don't merge stats from this thread with the readers.
thread->stats.SetExcludeFromMerge();
std::unique_ptr<RateLimiter> write_rate_limiter;
if (FLAGS_benchmark_write_rate_limit > 0) {
write_rate_limiter.reset(
NewGenericRateLimiter(FLAGS_benchmark_write_rate_limit));
}
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
Duration duration(FLAGS_duration, writes_);
while (!duration.Done(1)) {
DB* db = SelectDB(thread);
uint64_t key_id = thread->rand.Next() % FLAGS_key_id_range;
// Write key id
GenerateKeyFromInt(key_id, FLAGS_num, &key);
// Write timestamp
char* start = const_cast<char*>(key.data());
char* pos = start + 8;
int bytes_to_fill =
std::min(key_size_ - static_cast<int>(pos - start), 8);
uint64_t timestamp_value = timestamp_emulator_->Get();
if (port::kLittleEndian) {
for (int i = 0; i < bytes_to_fill; ++i) {
pos[i] = (timestamp_value >> ((bytes_to_fill - i - 1) << 3)) & 0xFF;
}
} else {
memcpy(pos, static_cast<void*>(&timestamp_value), bytes_to_fill);
}
timestamp_emulator_->Inc();
Status s;
s = db->Put(write_options_, key, gen.Generate(value_size_));
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
exit(1);
}
bytes = key.size() + value_size_;
thread->stats.FinishedOps(&db_, db_.db, 1, kWrite);
thread->stats.AddBytes(bytes);
if (FLAGS_benchmark_write_rate_limit > 0) {
write_rate_limiter->Request(
entries_per_batch_ * (value_size_ + key_size_), Env::IO_HIGH,
nullptr /* stats */, RateLimiter::OpType::kWrite);
}
}
}
void TimeSeries(ThreadState* thread) {
if (thread->tid > 0) {
bool do_deletion = FLAGS_expire_style == "delete" &&
thread->tid <= FLAGS_num_deletion_threads;
TimeSeriesReadOrDelete(thread, do_deletion);
} else {
TimeSeriesWrite(thread);
thread->stats.Stop();
thread->stats.Report("timeseries write");
}
}
void Compact(ThreadState* thread) {
DB* db = SelectDB(thread);
db->CompactRange(CompactRangeOptions(), nullptr, nullptr);
}
void CompactAll() {
if (db_.db != nullptr) {
db_.db->CompactRange(CompactRangeOptions(), nullptr, nullptr);
}
for (const auto& db_with_cfh : multi_dbs_) {
db_with_cfh.db->CompactRange(CompactRangeOptions(), nullptr, nullptr);
}
}
void ResetStats() {
if (db_.db != nullptr) {
db_.db->ResetStats();
}
for (const auto& db_with_cfh : multi_dbs_) {
db_with_cfh.db->ResetStats();
}
}
void PrintStats(const char* key) {
if (db_.db != nullptr) {
PrintStats(db_.db, key, false);
}
for (const auto& db_with_cfh : multi_dbs_) {
PrintStats(db_with_cfh.db, key, true);
}
}
void PrintStats(DB* db, const char* key, bool print_header = false) {
if (print_header) {
fprintf(stdout, "\n==== DB: %s ===\n", db->GetName().c_str());
}
std::string stats;
if (!db->GetProperty(key, &stats)) {
stats = "(failed)";
}
fprintf(stdout, "\n%s\n", stats.c_str());
}
};
int db_bench_tool(int argc, char** argv) {
rocksdb::port::InstallStackTraceHandler();
static bool initialized = false;
if (!initialized) {
SetUsageMessage(std::string("\nUSAGE:\n") + std::string(argv[0]) +
" [OPTIONS]...");
initialized = true;
}
ParseCommandLineFlags(&argc, &argv, true);
FLAGS_compaction_style_e = (rocksdb::CompactionStyle) FLAGS_compaction_style;
#ifndef ROCKSDB_LITE
if (FLAGS_statistics && !FLAGS_statistics_string.empty()) {
fprintf(stderr,
"Cannot provide both --statistics and --statistics_string.\n");
exit(1);
}
if (!FLAGS_statistics_string.empty()) {
std::unique_ptr<Statistics> custom_stats_guard;
dbstats.reset(NewCustomObject<Statistics>(FLAGS_statistics_string,
&custom_stats_guard));
custom_stats_guard.release();
if (dbstats == nullptr) {
fprintf(stderr, "No Statistics registered matching string: %s\n",
FLAGS_statistics_string.c_str());
exit(1);
}
}
#endif // ROCKSDB_LITE
if (FLAGS_statistics) {
dbstats = rocksdb::CreateDBStatistics();
}
FLAGS_compaction_pri_e = (rocksdb::CompactionPri)FLAGS_compaction_pri;
std::vector<std::string> fanout = rocksdb::StringSplit(
FLAGS_max_bytes_for_level_multiplier_additional, ',');
for (size_t j = 0; j < fanout.size(); j++) {
FLAGS_max_bytes_for_level_multiplier_additional_v.push_back(
#ifndef CYGWIN
std::stoi(fanout[j]));
#else
stoi(fanout[j]));
#endif
}
FLAGS_compression_type_e =
StringToCompressionType(FLAGS_compression_type.c_str());
#ifndef ROCKSDB_LITE
std::unique_ptr<Env> custom_env_guard;
if (!FLAGS_hdfs.empty() && !FLAGS_env_uri.empty()) {
fprintf(stderr, "Cannot provide both --hdfs and --env_uri.\n");
exit(1);
} else if (!FLAGS_env_uri.empty()) {
FLAGS_env = NewCustomObject<Env>(FLAGS_env_uri, &custom_env_guard);
if (FLAGS_env == nullptr) {
fprintf(stderr, "No Env registered for URI: %s\n", FLAGS_env_uri.c_str());
exit(1);
}
}
#endif // ROCKSDB_LITE
if (!FLAGS_hdfs.empty()) {
FLAGS_env = new rocksdb::HdfsEnv(FLAGS_hdfs);
}
if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "NONE"))
FLAGS_compaction_fadvice_e = rocksdb::Options::NONE;
else if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "NORMAL"))
FLAGS_compaction_fadvice_e = rocksdb::Options::NORMAL;
else if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "SEQUENTIAL"))
FLAGS_compaction_fadvice_e = rocksdb::Options::SEQUENTIAL;
else if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "WILLNEED"))
FLAGS_compaction_fadvice_e = rocksdb::Options::WILLNEED;
else {
fprintf(stdout, "Unknown compaction fadvice:%s\n",
FLAGS_compaction_fadvice.c_str());
}
FLAGS_rep_factory = StringToRepFactory(FLAGS_memtablerep.c_str());
// The number of background threads should be at least as much the
// max number of concurrent compactions.
FLAGS_env->SetBackgroundThreads(FLAGS_max_background_compactions);
FLAGS_env->SetBackgroundThreads(FLAGS_max_background_flushes,
rocksdb::Env::Priority::HIGH);
// Choose a location for the test database if none given with --db=<path>
if (FLAGS_db.empty()) {
std::string default_db_path;
rocksdb::Env::Default()->GetTestDirectory(&default_db_path);
default_db_path += "/dbbench";
FLAGS_db = default_db_path;
}
if (FLAGS_stats_interval_seconds > 0) {
// When both are set then FLAGS_stats_interval determines the frequency
// at which the timer is checked for FLAGS_stats_interval_seconds
FLAGS_stats_interval = 1000;
}
rocksdb::Benchmark benchmark;
benchmark.Run();
return 0;
}
} // namespace rocksdb
#endif