rocksdb/db/builder.cc
Haobo Xu bdf1085944 [RocksDB] cleanup EnvOptions
Summary:
This diff simplifies EnvOptions by treating it as POD, similar to Options.
- virtual functions are removed and member fields are accessed directly.
- StorageOptions is removed.
- Options.allow_readahead and Options.allow_readahead_compactions are deprecated.
- Unused global variables are removed: useOsBuffer, useFsReadAhead, useMmapRead, useMmapWrite

Test Plan: make check; db_stress

Reviewers: dhruba

CC: leveldb

Differential Revision: https://reviews.facebook.net/D11175
2013-06-12 11:17:19 -07:00

187 lines
6.1 KiB
C++

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/builder.h"
#include "db/filename.h"
#include "db/dbformat.h"
#include "db/merge_helper.h"
#include "db/table_cache.h"
#include "db/version_edit.h"
#include "leveldb/db.h"
#include "leveldb/env.h"
#include "leveldb/iterator.h"
#include "util/stop_watch.h"
namespace leveldb {
Status BuildTable(const std::string& dbname,
Env* env,
const Options& options,
const EnvOptions& soptions,
TableCache* table_cache,
Iterator* iter,
FileMetaData* meta,
const Comparator* user_comparator,
const SequenceNumber newest_snapshot,
const SequenceNumber earliest_seqno_in_memtable) {
Status s;
meta->file_size = 0;
iter->SeekToFirst();
// If the sequence number of the smallest entry in the memtable is
// smaller than the most recent snapshot, then we do not trigger
// removal of duplicate/deleted keys as part of this builder.
bool purge = options.purge_redundant_kvs_while_flush;
if (earliest_seqno_in_memtable <= newest_snapshot) {
purge = false;
}
std::string fname = TableFileName(dbname, meta->number);
if (iter->Valid()) {
unique_ptr<WritableFile> file;
s = env->NewWritableFile(fname, &file, soptions);
if (!s.ok()) {
return s;
}
TableBuilder* builder = new TableBuilder(options, file.get(), 0);
// the first key is the smallest key
Slice key = iter->key();
meta->smallest.DecodeFrom(key);
MergeHelper merge(user_comparator, options.merge_operator,
options.info_log.get(),
true /* internal key corruption is not ok */);
if (purge) {
ParsedInternalKey ikey;
// Ugly walkaround to avoid compiler error for release build
// TODO: find a clean way to treat in memory key corruption
ikey.type = kTypeValue;
ParsedInternalKey prev_ikey;
std::string prev_value;
std::string prev_key;
// Ugly walkaround to avoid compiler error for release build
// TODO: find a clean way to treat in memory key corruption
auto ok __attribute__((unused)) = ParseInternalKey(key, &ikey);
// in-memory key corruption is not ok;
assert(ok);
if (ikey.type == kTypeMerge) {
// merge values if the first entry is of merge type
merge.MergeUntil(iter, 0 /* don't worry about snapshot */);
prev_key.assign(merge.key().data(), merge.key().size());
ok = ParseInternalKey(Slice(prev_key), &prev_ikey);
assert(ok);
prev_value.assign(merge.value().data(), merge.value().size());
} else {
// store first key-value
prev_key.assign(key.data(), key.size());
prev_value.assign(iter->value().data(), iter->value().size());
ok = ParseInternalKey(Slice(prev_key), &prev_ikey);
assert(ok);
assert(prev_ikey.sequence >= earliest_seqno_in_memtable);
iter->Next();
}
while (iter->Valid()) {
bool iterator_at_next = false;
ParsedInternalKey this_ikey;
Slice key = iter->key();
ok = ParseInternalKey(key, &this_ikey);
assert(ok);
assert(this_ikey.sequence >= earliest_seqno_in_memtable);
if (user_comparator->Compare(prev_ikey.user_key, this_ikey.user_key)) {
// This key is different from previous key.
// Output prev key and remember current key
builder->Add(Slice(prev_key), Slice(prev_value));
if (this_ikey.type == kTypeMerge) {
merge.MergeUntil(iter, 0 /* don't worry about snapshot */);
iterator_at_next = true;
prev_key.assign(merge.key().data(), merge.key().size());
ok = ParseInternalKey(Slice(prev_key), &prev_ikey);
assert(ok);
prev_value.assign(merge.value().data(), merge.value().size());
} else {
prev_key.assign(key.data(), key.size());
prev_value.assign(iter->value().data(), iter->value().size());
ok = ParseInternalKey(Slice(prev_key), &prev_ikey);
assert(ok);
}
} else {
// seqno within the same key are in decreasing order
assert(this_ikey.sequence < prev_ikey.sequence);
// This key is an earlier version of the same key in prev_key.
// Skip current key.
}
if (!iterator_at_next) iter->Next();
}
// output last key
builder->Add(Slice(prev_key), Slice(prev_value));
meta->largest.DecodeFrom(Slice(prev_key));
} else {
for (; iter->Valid(); iter->Next()) {
Slice key = iter->key();
meta->largest.DecodeFrom(key);
builder->Add(key, iter->value());
}
}
// Finish and check for builder errors
if (s.ok()) {
s = builder->Finish();
if (s.ok()) {
meta->file_size = builder->FileSize();
assert(meta->file_size > 0);
}
} else {
builder->Abandon();
}
delete builder;
// Finish and check for file errors
if (s.ok() && !options.disableDataSync) {
if (options.use_fsync) {
StopWatch sw(env, options.statistics, TABLE_SYNC_MICROS);
s = file->Fsync();
} else {
StopWatch sw(env, options.statistics, TABLE_SYNC_MICROS);
s = file->Sync();
}
}
if (s.ok()) {
s = file->Close();
}
if (s.ok()) {
// Verify that the table is usable
Iterator* it = table_cache->NewIterator(ReadOptions(),
soptions,
meta->number,
meta->file_size);
s = it->status();
delete it;
}
}
// Check for input iterator errors
if (!iter->status().ok()) {
s = iter->status();
}
if (s.ok() && meta->file_size > 0) {
// Keep it
} else {
env->DeleteFile(fname);
}
return s;
}
} // namespace leveldb