399 lines
11 KiB
C++
399 lines
11 KiB
C++
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree. An additional grant
|
|
// of patent rights can be found in the PATENTS file in the same directory.
|
|
//
|
|
// This code is derived from Benchmark.cpp implemented in Folly, the opensourced
|
|
// Facebook C++ library available at https://github.com/facebook/folly
|
|
// The code has removed any dependence on other folly and boost libraries
|
|
|
|
#include "util/benchharness.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using std::function;
|
|
using std::get;
|
|
using std::make_pair;
|
|
using std::max;
|
|
using std::min;
|
|
using std::pair;
|
|
using std::sort;
|
|
using std::string;
|
|
using std::tuple;
|
|
using std::vector;
|
|
|
|
DEFINE_bool(benchmark, false, "Run benchmarks.");
|
|
|
|
DEFINE_int64(bm_min_usec, 100,
|
|
"Minimum # of microseconds we'll accept for each benchmark.");
|
|
|
|
DEFINE_int64(bm_min_iters, 1,
|
|
"Minimum # of iterations we'll try for each benchmark.");
|
|
|
|
DEFINE_int32(bm_max_secs, 1,
|
|
"Maximum # of seconds we'll spend on each benchmark.");
|
|
|
|
|
|
namespace rocksdb {
|
|
namespace benchmark {
|
|
|
|
BenchmarkSuspender::NanosecondsSpent BenchmarkSuspender::nsSpent;
|
|
|
|
typedef function<uint64_t(unsigned int)> BenchmarkFun;
|
|
static vector<tuple<const char*, const char*, BenchmarkFun>> benchmarks;
|
|
|
|
// Add the global baseline
|
|
BENCHMARK(globalBenchmarkBaseline) {
|
|
asm volatile("");
|
|
}
|
|
|
|
void detail::AddBenchmarkImpl(const char* file, const char* name,
|
|
BenchmarkFun fun) {
|
|
benchmarks.emplace_back(file, name, std::move(fun));
|
|
}
|
|
|
|
/**
|
|
* Given a point, gives density at that point as a number 0.0 < x <=
|
|
* 1.0. The result is 1.0 if all samples are equal to where, and
|
|
* decreases near 0 if all points are far away from it. The density is
|
|
* computed with the help of a radial basis function.
|
|
*/
|
|
static double Density(const double * begin, const double *const end,
|
|
const double where, const double bandwidth) {
|
|
assert(begin < end);
|
|
assert(bandwidth > 0.0);
|
|
double sum = 0.0;
|
|
for (auto i = begin; i < end; i++) {
|
|
auto d = (*i - where) / bandwidth;
|
|
sum += exp(- d * d);
|
|
}
|
|
return sum / (end - begin);
|
|
}
|
|
|
|
/**
|
|
* Computes mean and variance for a bunch of data points. Note that
|
|
* mean is currently not being used.
|
|
*/
|
|
static pair<double, double>
|
|
MeanVariance(const double * begin, const double *const end) {
|
|
assert(begin < end);
|
|
double sum = 0.0, sum2 = 0.0;
|
|
for (auto i = begin; i < end; i++) {
|
|
sum += *i;
|
|
sum2 += *i * *i;
|
|
}
|
|
auto const n = end - begin;
|
|
return make_pair(sum / n, sqrt((sum2 - sum * sum / n) / n));
|
|
}
|
|
|
|
/**
|
|
* Computes the mode of a sample set through brute force. Assumes
|
|
* input is sorted.
|
|
*/
|
|
static double Mode(const double * begin, const double *const end) {
|
|
assert(begin < end);
|
|
// Lower bound and upper bound for result and their respective
|
|
// densities.
|
|
auto
|
|
result = 0.0,
|
|
bestDensity = 0.0;
|
|
|
|
// Get the variance so we pass it down to Density()
|
|
auto const sigma = MeanVariance(begin, end).second;
|
|
if (!sigma) {
|
|
// No variance means constant signal
|
|
return *begin;
|
|
}
|
|
|
|
for (auto i = begin; i < end; i++) {
|
|
assert(i == begin || *i >= i[-1]);
|
|
auto candidate = Density(begin, end, *i, sigma * sqrt(2.0));
|
|
if (candidate > bestDensity) {
|
|
// Found a new best
|
|
bestDensity = candidate;
|
|
result = *i;
|
|
} else {
|
|
// Density is decreasing... we could break here if we definitely
|
|
// knew this is unimodal.
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Given a bunch of benchmark samples, estimate the actual run time.
|
|
*/
|
|
static double EstimateTime(double * begin, double * end) {
|
|
assert(begin < end);
|
|
|
|
// Current state of the art: get the minimum. After some
|
|
// experimentation, it seems taking the minimum is the best.
|
|
|
|
return *std::min_element(begin, end);
|
|
|
|
// What follows after estimates the time as the mode of the
|
|
// distribution.
|
|
|
|
// Select the awesomest (i.e. most frequent) result. We do this by
|
|
// sorting and then computing the longest run length.
|
|
sort(begin, end);
|
|
|
|
// Eliminate outliers. A time much larger than the minimum time is
|
|
// considered an outlier.
|
|
while (end[-1] > 2.0 * *begin) {
|
|
--end;
|
|
if (begin == end) {
|
|
// LOG(INFO) << *begin;
|
|
}
|
|
assert(begin < end);
|
|
}
|
|
|
|
double result = 0;
|
|
|
|
/* Code used just for comparison purposes */ {
|
|
unsigned bestFrequency = 0;
|
|
unsigned candidateFrequency = 1;
|
|
double candidateValue = *begin;
|
|
for (auto current = begin + 1; ; ++current) {
|
|
if (current == end || *current != candidateValue) {
|
|
// Done with the current run, see if it was best
|
|
if (candidateFrequency > bestFrequency) {
|
|
bestFrequency = candidateFrequency;
|
|
result = candidateValue;
|
|
}
|
|
if (current == end) {
|
|
break;
|
|
}
|
|
// Start a new run
|
|
candidateValue = *current;
|
|
candidateFrequency = 1;
|
|
} else {
|
|
// Cool, inside a run, increase the frequency
|
|
++candidateFrequency;
|
|
}
|
|
}
|
|
}
|
|
|
|
result = Mode(begin, end);
|
|
|
|
return result;
|
|
}
|
|
|
|
static double RunBenchmarkGetNSPerIteration(const BenchmarkFun& fun,
|
|
const double globalBaseline) {
|
|
// They key here is accuracy; too low numbers means the accuracy was
|
|
// coarse. We up the ante until we get to at least minNanoseconds
|
|
// timings.
|
|
static const auto minNanoseconds = FLAGS_bm_min_usec * 1000UL;
|
|
|
|
// We do measurements in several epochs and take the minimum, to
|
|
// account for jitter.
|
|
static const unsigned int epochs = 1000;
|
|
// We establish a total time budget as we don't want a measurement
|
|
// to take too long. This will curtail the number of actual epochs.
|
|
const uint64_t timeBudgetInNs = FLAGS_bm_max_secs * 1000000000;
|
|
auto env = Env::Default();
|
|
uint64_t global = env->NowNanos();
|
|
|
|
double epochResults[epochs] = { 0 };
|
|
size_t actualEpochs = 0;
|
|
|
|
for (; actualEpochs < epochs; ++actualEpochs) {
|
|
for (unsigned int n = FLAGS_bm_min_iters; n < (1UL << 30); n *= 2) {
|
|
auto const nsecs = fun(n);
|
|
if (nsecs < minNanoseconds) {
|
|
continue;
|
|
}
|
|
// We got an accurate enough timing, done. But only save if
|
|
// smaller than the current result.
|
|
epochResults[actualEpochs] = max(0.0,
|
|
static_cast<double>(nsecs) / n - globalBaseline);
|
|
// Done with the current epoch, we got a meaningful timing.
|
|
break;
|
|
}
|
|
uint64_t now = env->NowNanos();
|
|
if ((now - global) >= timeBudgetInNs) {
|
|
// No more time budget available.
|
|
++actualEpochs;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If the benchmark was basically drowned in baseline noise, it's
|
|
// possible it became negative.
|
|
return max(0.0, EstimateTime(epochResults, epochResults + actualEpochs));
|
|
}
|
|
|
|
struct ScaleInfo {
|
|
double boundary;
|
|
const char* suffix;
|
|
};
|
|
|
|
static const ScaleInfo kTimeSuffixes[] {
|
|
{ 365.25 * 24 * 3600, "years" },
|
|
{ 24 * 3600, "days" },
|
|
{ 3600, "hr" },
|
|
{ 60, "min" },
|
|
{ 1, "s" },
|
|
{ 1E-3, "ms" },
|
|
{ 1E-6, "us" },
|
|
{ 1E-9, "ns" },
|
|
{ 1E-12, "ps" },
|
|
{ 1E-15, "fs" },
|
|
{ 0, nullptr },
|
|
};
|
|
|
|
static const ScaleInfo kMetricSuffixes[] {
|
|
{ 1E24, "Y" }, // yotta
|
|
{ 1E21, "Z" }, // zetta
|
|
{ 1E18, "X" }, // "exa" written with suffix 'X' so as to not create
|
|
// confusion with scientific notation
|
|
{ 1E15, "P" }, // peta
|
|
{ 1E12, "T" }, // terra
|
|
{ 1E9, "G" }, // giga
|
|
{ 1E6, "M" }, // mega
|
|
{ 1E3, "K" }, // kilo
|
|
{ 1, "" },
|
|
{ 1E-3, "m" }, // milli
|
|
{ 1E-6, "u" }, // micro
|
|
{ 1E-9, "n" }, // nano
|
|
{ 1E-12, "p" }, // pico
|
|
{ 1E-15, "f" }, // femto
|
|
{ 1E-18, "a" }, // atto
|
|
{ 1E-21, "z" }, // zepto
|
|
{ 1E-24, "y" }, // yocto
|
|
{ 0, nullptr },
|
|
};
|
|
|
|
static string HumanReadable(double n, unsigned int decimals,
|
|
const ScaleInfo* scales) {
|
|
if (std::isinf(n) || std::isnan(n)) {
|
|
return std::to_string(n);
|
|
}
|
|
|
|
const double absValue = fabs(n);
|
|
const ScaleInfo* scale = scales;
|
|
while (absValue < scale[0].boundary && scale[1].suffix != nullptr) {
|
|
++scale;
|
|
}
|
|
|
|
const double scaledValue = n / scale->boundary;
|
|
char a[80];
|
|
snprintf(a, sizeof(a), "%.*f%s", decimals, scaledValue, scale->suffix);
|
|
return a;
|
|
}
|
|
|
|
static string ReadableTime(double n, unsigned int decimals) {
|
|
return HumanReadable(n, decimals, kTimeSuffixes);
|
|
}
|
|
|
|
static string MetricReadable(double n, unsigned int decimals) {
|
|
return HumanReadable(n, decimals, kMetricSuffixes);
|
|
}
|
|
|
|
static void PrintBenchmarkResultsAsTable(
|
|
const vector<tuple<const char*, const char*, double> >& data) {
|
|
// Width available
|
|
static const uint columns = 76;
|
|
|
|
// Compute the longest benchmark name
|
|
size_t longestName = 0;
|
|
for (auto i = 1; i < benchmarks.size(); i++) {
|
|
longestName = max(longestName, strlen(get<1>(benchmarks[i])));
|
|
}
|
|
|
|
// Print a horizontal rule
|
|
auto separator = [&](char pad) {
|
|
puts(string(columns, pad).c_str());
|
|
};
|
|
|
|
// Print header for a file
|
|
auto header = [&](const char* file) {
|
|
separator('=');
|
|
printf("%-*srelative time/iter iters/s\n",
|
|
columns - 28, file);
|
|
separator('=');
|
|
};
|
|
|
|
double baselineNsPerIter = std::numeric_limits<double>::max();
|
|
const char* lastFile = "";
|
|
|
|
for (auto& datum : data) {
|
|
auto file = get<0>(datum);
|
|
if (strcmp(file, lastFile)) {
|
|
// New file starting
|
|
header(file);
|
|
lastFile = file;
|
|
}
|
|
|
|
string s = get<1>(datum);
|
|
if (s == "-") {
|
|
separator('-');
|
|
continue;
|
|
}
|
|
bool useBaseline /* = void */;
|
|
if (s[0] == '%') {
|
|
s.erase(0, 1);
|
|
useBaseline = true;
|
|
} else {
|
|
baselineNsPerIter = get<2>(datum);
|
|
useBaseline = false;
|
|
}
|
|
s.resize(columns - 29, ' ');
|
|
auto nsPerIter = get<2>(datum);
|
|
auto secPerIter = nsPerIter / 1E9;
|
|
auto itersPerSec = 1 / secPerIter;
|
|
if (!useBaseline) {
|
|
// Print without baseline
|
|
printf("%*s %9s %7s\n",
|
|
static_cast<int>(s.size()), s.c_str(),
|
|
ReadableTime(secPerIter, 2).c_str(),
|
|
MetricReadable(itersPerSec, 2).c_str());
|
|
} else {
|
|
// Print with baseline
|
|
auto rel = baselineNsPerIter / nsPerIter * 100.0;
|
|
printf("%*s %7.2f%% %9s %7s\n",
|
|
static_cast<int>(s.size()), s.c_str(),
|
|
rel,
|
|
ReadableTime(secPerIter, 2).c_str(),
|
|
MetricReadable(itersPerSec, 2).c_str());
|
|
}
|
|
}
|
|
separator('=');
|
|
}
|
|
|
|
void RunBenchmarks() {
|
|
ASSERT_TRUE(!benchmarks.empty());
|
|
|
|
vector<tuple<const char*, const char*, double>> results;
|
|
results.reserve(benchmarks.size() - 1);
|
|
|
|
// PLEASE KEEP QUIET. MEASUREMENTS IN PROGRESS.
|
|
|
|
auto const globalBaseline = RunBenchmarkGetNSPerIteration(
|
|
get<2>(benchmarks.front()), 0);
|
|
for (auto i = 1; i < benchmarks.size(); i++) {
|
|
double elapsed = 0.0;
|
|
if (strcmp(get<1>(benchmarks[i]), "-") != 0) { // skip separators
|
|
elapsed = RunBenchmarkGetNSPerIteration(get<2>(benchmarks[i]),
|
|
globalBaseline);
|
|
}
|
|
results.emplace_back(get<0>(benchmarks[i]),
|
|
get<1>(benchmarks[i]), elapsed);
|
|
}
|
|
|
|
// PLEASE MAKE NOISE. MEASUREMENTS DONE.
|
|
|
|
PrintBenchmarkResultsAsTable(results);
|
|
}
|
|
|
|
} // namespace benchmark
|
|
} // namespace rocksdb
|