rocksdb/port/win/env_win.cc
Burton Li d1edf4eced Format env_win coding style by google c++ style guide (#5096)
Summary:
The existing code for env_win src and header file doesn't fully followed the recommended code style (https://google.github.io/styleguide/cppguide.html#Functions). Fix it for better readability.
anand1976 siying
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5096

Differential Revision: D14585358

Pulled By: anand1976

fbshipit-source-id: 7ce35ffe9e922f5c1421b0bbaa5fce7abad57617
2019-03-27 16:38:20 -07:00

1524 lines
45 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "port/win/env_win.h"
#include "port/win/win_thread.h"
#include <algorithm>
#include <ctime>
#include <thread>
#include <errno.h>
#include <process.h> // _getpid
#include <io.h> // _access
#include <direct.h> // _rmdir, _mkdir, _getcwd
#include <sys/types.h>
#include <sys/stat.h>
#include "rocksdb/env.h"
#include "rocksdb/slice.h"
#include "port/port.h"
#include "port/dirent.h"
#include "port/win/win_logger.h"
#include "port/win/io_win.h"
#include "monitoring/iostats_context_imp.h"
#include "monitoring/thread_status_updater.h"
#include "monitoring/thread_status_util.h"
#include <rpc.h> // for uuid generation
#include <windows.h>
#include <shlwapi.h>
#include "strsafe.h"
#include <algorithm>
namespace rocksdb {
ThreadStatusUpdater* CreateThreadStatusUpdater() {
return new ThreadStatusUpdater();
}
namespace {
// Sector size used when physical sector size cannot be obtained from device.
static const size_t kSectorSize = 512;
// RAII helpers for HANDLEs
const auto CloseHandleFunc = [](HANDLE h) { ::CloseHandle(h); };
typedef std::unique_ptr<void, decltype(CloseHandleFunc)> UniqueCloseHandlePtr;
const auto FindCloseFunc = [](HANDLE h) { ::FindClose(h); };
typedef std::unique_ptr<void, decltype(FindCloseFunc)> UniqueFindClosePtr;
void WinthreadCall(const char* label, std::error_code result) {
if (0 != result.value()) {
fprintf(stderr, "pthread %s: %s\n", label, strerror(result.value()));
abort();
}
}
}
namespace port {
WinEnvIO::WinEnvIO(Env* hosted_env)
: hosted_env_(hosted_env),
page_size_(4 * 1024),
allocation_granularity_(page_size_),
perf_counter_frequency_(0),
nano_seconds_per_period_(0),
GetSystemTimePreciseAsFileTime_(NULL) {
SYSTEM_INFO sinfo;
GetSystemInfo(&sinfo);
page_size_ = sinfo.dwPageSize;
allocation_granularity_ = sinfo.dwAllocationGranularity;
{
LARGE_INTEGER qpf;
BOOL ret __attribute__((__unused__));
ret = QueryPerformanceFrequency(&qpf);
assert(ret == TRUE);
perf_counter_frequency_ = qpf.QuadPart;
if (std::nano::den % perf_counter_frequency_ == 0) {
nano_seconds_per_period_ = std::nano::den / perf_counter_frequency_;
}
}
HMODULE module = GetModuleHandle("kernel32.dll");
if (module != NULL) {
GetSystemTimePreciseAsFileTime_ =
(FnGetSystemTimePreciseAsFileTime)GetProcAddress(
module, "GetSystemTimePreciseAsFileTime");
}
}
WinEnvIO::~WinEnvIO() {
}
Status WinEnvIO::DeleteFile(const std::string& fname) {
Status result;
BOOL ret = RX_DeleteFile(RX_FN(fname).c_str());
if(!ret) {
auto lastError = GetLastError();
result = IOErrorFromWindowsError("Failed to delete: " + fname,
lastError);
}
return result;
}
Status WinEnvIO::Truncate(const std::string& fname, size_t size) {
Status s;
int result = rocksdb::port::Truncate(fname, size);
if (result != 0) {
s = IOError("Failed to truncate: " + fname, errno);
}
return s;
}
Status WinEnvIO::GetCurrentTime(int64_t* unix_time) {
time_t time = std::time(nullptr);
if (time == (time_t)(-1)) {
return Status::NotSupported("Failed to get time");
}
*unix_time = time;
return Status::OK();
}
Status WinEnvIO::NewSequentialFile(const std::string& fname,
std::unique_ptr<SequentialFile>* result,
const EnvOptions& options) {
Status s;
result->reset();
// Corruption test needs to rename and delete files of these kind
// while they are still open with another handle. For that reason we
// allow share_write and delete(allows rename).
HANDLE hFile = INVALID_HANDLE_VALUE;
DWORD fileFlags = FILE_ATTRIBUTE_READONLY;
if (options.use_direct_reads && !options.use_mmap_reads) {
fileFlags |= FILE_FLAG_NO_BUFFERING;
}
{
IOSTATS_TIMER_GUARD(open_nanos);
hFile = RX_CreateFile(
RX_FN(fname).c_str(), GENERIC_READ,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL,
OPEN_EXISTING, // Original fopen mode is "rb"
fileFlags, NULL);
}
if (INVALID_HANDLE_VALUE == hFile) {
auto lastError = GetLastError();
s = IOErrorFromWindowsError("Failed to open NewSequentialFile" + fname,
lastError);
} else {
result->reset(new WinSequentialFile(fname, hFile, options));
}
return s;
}
Status WinEnvIO::NewRandomAccessFile(const std::string& fname,
std::unique_ptr<RandomAccessFile>* result,
const EnvOptions& options) {
result->reset();
Status s;
// Open the file for read-only random access
// Random access is to disable read-ahead as the system reads too much data
DWORD fileFlags = FILE_ATTRIBUTE_READONLY;
if (options.use_direct_reads && !options.use_mmap_reads) {
fileFlags |= FILE_FLAG_NO_BUFFERING;
} else {
fileFlags |= FILE_FLAG_RANDOM_ACCESS;
}
/// Shared access is necessary for corruption test to pass
// almost all tests would work with a possible exception of fault_injection
HANDLE hFile = 0;
{
IOSTATS_TIMER_GUARD(open_nanos);
hFile = RX_CreateFile(
RX_FN(fname).c_str(), GENERIC_READ,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
NULL, OPEN_EXISTING, fileFlags, NULL);
}
if (INVALID_HANDLE_VALUE == hFile) {
auto lastError = GetLastError();
return IOErrorFromWindowsError(
"NewRandomAccessFile failed to Create/Open: " + fname, lastError);
}
UniqueCloseHandlePtr fileGuard(hFile, CloseHandleFunc);
// CAUTION! This will map the entire file into the process address space
if (options.use_mmap_reads && sizeof(void*) >= 8) {
// Use mmap when virtual address-space is plentiful.
uint64_t fileSize;
s = GetFileSize(fname, &fileSize);
if (s.ok()) {
// Will not map empty files
if (fileSize == 0) {
return IOError(
"NewRandomAccessFile failed to map empty file: " + fname, EINVAL);
}
HANDLE hMap = RX_CreateFileMapping(hFile, NULL, PAGE_READONLY,
0, // At its present length
0,
NULL); // Mapping name
if (!hMap) {
auto lastError = GetLastError();
return IOErrorFromWindowsError(
"Failed to create file mapping for NewRandomAccessFile: " + fname,
lastError);
}
UniqueCloseHandlePtr mapGuard(hMap, CloseHandleFunc);
const void* mapped_region =
MapViewOfFileEx(hMap, FILE_MAP_READ,
0, // High DWORD of access start
0, // Low DWORD
static_cast<SIZE_T>(fileSize),
NULL); // Let the OS choose the mapping
if (!mapped_region) {
auto lastError = GetLastError();
return IOErrorFromWindowsError(
"Failed to MapViewOfFile for NewRandomAccessFile: " + fname,
lastError);
}
result->reset(new WinMmapReadableFile(fname, hFile, hMap, mapped_region,
static_cast<size_t>(fileSize)));
mapGuard.release();
fileGuard.release();
}
} else {
result->reset(new WinRandomAccessFile(fname, hFile,
std::max(GetSectorSize(fname),
page_size_),
options));
fileGuard.release();
}
return s;
}
Status WinEnvIO::OpenWritableFile(const std::string& fname,
std::unique_ptr<WritableFile>* result,
const EnvOptions& options,
bool reopen) {
const size_t c_BufferCapacity = 64 * 1024;
EnvOptions local_options(options);
result->reset();
Status s;
DWORD fileFlags = FILE_ATTRIBUTE_NORMAL;
if (local_options.use_direct_writes && !local_options.use_mmap_writes) {
fileFlags = FILE_FLAG_NO_BUFFERING | FILE_FLAG_WRITE_THROUGH;
}
// Desired access. We are want to write only here but if we want to memory
// map
// the file then there is no write only mode so we have to create it
// Read/Write
// However, MapViewOfFile specifies only Write only
DWORD desired_access = GENERIC_WRITE;
DWORD shared_mode = FILE_SHARE_READ;
if (local_options.use_mmap_writes) {
desired_access |= GENERIC_READ;
} else {
// Adding this solely for tests to pass (fault_injection_test,
// wal_manager_test).
shared_mode |= (FILE_SHARE_WRITE | FILE_SHARE_DELETE);
}
// This will always truncate the file
DWORD creation_disposition = CREATE_ALWAYS;
if (reopen) {
creation_disposition = OPEN_ALWAYS;
}
HANDLE hFile = 0;
{
IOSTATS_TIMER_GUARD(open_nanos);
hFile = RX_CreateFile(
RX_FN(fname).c_str(),
desired_access, // Access desired
shared_mode,
NULL, // Security attributes
// Posix env says (reopen) ? (O_CREATE | O_APPEND) : O_CREAT | O_TRUNC
creation_disposition,
fileFlags, // Flags
NULL); // Template File
}
if (INVALID_HANDLE_VALUE == hFile) {
auto lastError = GetLastError();
return IOErrorFromWindowsError(
"Failed to create a NewWriteableFile: " + fname, lastError);
}
// We will start writing at the end, appending
if (reopen) {
LARGE_INTEGER zero_move;
zero_move.QuadPart = 0;
BOOL ret = SetFilePointerEx(hFile, zero_move, NULL, FILE_END);
if (!ret) {
auto lastError = GetLastError();
return IOErrorFromWindowsError(
"Failed to create a ReopenWritableFile move to the end: " + fname,
lastError);
}
}
if (options.use_mmap_writes) {
// We usually do not use mmmapping on SSD and thus we pass memory
// page_size
result->reset(new WinMmapFile(fname, hFile, page_size_,
allocation_granularity_, local_options));
} else {
// Here we want the buffer allocation to be aligned by the SSD page size
// and to be a multiple of it
result->reset(new WinWritableFile(fname, hFile,
std::max(GetSectorSize(fname),
GetPageSize()),
c_BufferCapacity, local_options));
}
return s;
}
Status WinEnvIO::NewRandomRWFile(const std::string & fname,
std::unique_ptr<RandomRWFile>* result,
const EnvOptions & options) {
Status s;
// Open the file for read-only random access
// Random access is to disable read-ahead as the system reads too much data
DWORD desired_access = GENERIC_READ | GENERIC_WRITE;
DWORD shared_mode = FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE;
DWORD creation_disposition = OPEN_EXISTING; // Fail if file does not exist
DWORD file_flags = FILE_FLAG_RANDOM_ACCESS;
if (options.use_direct_reads && options.use_direct_writes) {
file_flags |= FILE_FLAG_NO_BUFFERING;
}
/// Shared access is necessary for corruption test to pass
// almost all tests would work with a possible exception of fault_injection
HANDLE hFile = 0;
{
IOSTATS_TIMER_GUARD(open_nanos);
hFile =
RX_CreateFile(RX_FN(fname).c_str(),
desired_access,
shared_mode,
NULL, // Security attributes
creation_disposition,
file_flags,
NULL);
}
if (INVALID_HANDLE_VALUE == hFile) {
auto lastError = GetLastError();
return IOErrorFromWindowsError(
"NewRandomRWFile failed to Create/Open: " + fname, lastError);
}
UniqueCloseHandlePtr fileGuard(hFile, CloseHandleFunc);
result->reset(new WinRandomRWFile(fname, hFile,
std::max(GetSectorSize(fname),
GetPageSize()),
options));
fileGuard.release();
return s;
}
Status WinEnvIO::NewMemoryMappedFileBuffer(
const std::string & fname,
std::unique_ptr<MemoryMappedFileBuffer>* result) {
Status s;
result->reset();
DWORD fileFlags = FILE_ATTRIBUTE_READONLY;
HANDLE hFile = INVALID_HANDLE_VALUE;
{
IOSTATS_TIMER_GUARD(open_nanos);
hFile = RX_CreateFile(
RX_FN(fname).c_str(), GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
NULL,
OPEN_EXISTING, // Open only if it exists
fileFlags,
NULL);
}
if (INVALID_HANDLE_VALUE == hFile) {
auto lastError = GetLastError();
s = IOErrorFromWindowsError(
"Failed to open NewMemoryMappedFileBuffer: " + fname, lastError);
return s;
}
UniqueCloseHandlePtr fileGuard(hFile, CloseHandleFunc);
uint64_t fileSize = 0;
s = GetFileSize(fname, &fileSize);
if (!s.ok()) {
return s;
}
// Will not map empty files
if (fileSize == 0) {
return Status::NotSupported(
"NewMemoryMappedFileBuffer can not map zero length files: " + fname);
}
// size_t is 32-bit with 32-bit builds
if (fileSize > std::numeric_limits<size_t>::max()) {
return Status::NotSupported(
"The specified file size does not fit into 32-bit memory addressing: "
+ fname);
}
HANDLE hMap = RX_CreateFileMapping(hFile, NULL, PAGE_READWRITE,
0, // Whole file at its present length
0,
NULL); // Mapping name
if (!hMap) {
auto lastError = GetLastError();
return IOErrorFromWindowsError(
"Failed to create file mapping for: " + fname, lastError);
}
UniqueCloseHandlePtr mapGuard(hMap, CloseHandleFunc);
void* base = MapViewOfFileEx(hMap, FILE_MAP_WRITE,
0, // High DWORD of access start
0, // Low DWORD
static_cast<SIZE_T>(fileSize),
NULL); // Let the OS choose the mapping
if (!base) {
auto lastError = GetLastError();
return IOErrorFromWindowsError(
"Failed to MapViewOfFile for NewMemoryMappedFileBuffer: " + fname,
lastError);
}
result->reset(new WinMemoryMappedBuffer(hFile, hMap, base,
static_cast<size_t>(fileSize)));
mapGuard.release();
fileGuard.release();
return s;
}
Status WinEnvIO::NewDirectory(const std::string& name,
std::unique_ptr<Directory>* result) {
Status s;
// Must be nullptr on failure
result->reset();
if (!DirExists(name)) {
s = IOErrorFromWindowsError(
"open folder: " + name, ERROR_DIRECTORY);
return s;
}
HANDLE handle = INVALID_HANDLE_VALUE;
// 0 - for access means read metadata
{
IOSTATS_TIMER_GUARD(open_nanos);
handle = RX_CreateFile(
RX_FN(name).c_str(), 0,
FILE_SHARE_DELETE | FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL,
OPEN_EXISTING,
FILE_FLAG_BACKUP_SEMANTICS, // make opening folders possible
NULL);
}
if (INVALID_HANDLE_VALUE == handle) {
auto lastError = GetLastError();
s = IOErrorFromWindowsError("open folder: " + name, lastError);
return s;
}
result->reset(new WinDirectory(handle));
return s;
}
Status WinEnvIO::FileExists(const std::string& fname) {
Status s;
// TODO: This does not follow symbolic links at this point
// which is consistent with _access() impl on windows
// but can be added
WIN32_FILE_ATTRIBUTE_DATA attrs;
if (FALSE == RX_GetFileAttributesEx(RX_FN(fname).c_str(),
GetFileExInfoStandard, &attrs)) {
auto lastError = GetLastError();
switch (lastError) {
case ERROR_ACCESS_DENIED:
case ERROR_NOT_FOUND:
case ERROR_FILE_NOT_FOUND:
case ERROR_PATH_NOT_FOUND:
s = Status::NotFound();
break;
default:
s = IOErrorFromWindowsError("Unexpected error for: " + fname,
lastError);
break;
}
}
return s;
}
Status WinEnvIO::GetChildren(const std::string& dir,
std::vector<std::string>* result) {
Status status;
result->clear();
std::vector<std::string> output;
RX_WIN32_FIND_DATA data;
memset(&data, 0, sizeof(data));
std::string pattern(dir);
pattern.append("\\").append("*");
HANDLE handle = RX_FindFirstFileEx(RX_FN(pattern).c_str(),
// Do not want alternative name
FindExInfoBasic,
&data,
FindExSearchNameMatch,
NULL, // lpSearchFilter
0);
if (handle == INVALID_HANDLE_VALUE) {
auto lastError = GetLastError();
switch (lastError) {
case ERROR_NOT_FOUND:
case ERROR_ACCESS_DENIED:
case ERROR_FILE_NOT_FOUND:
case ERROR_PATH_NOT_FOUND:
status = Status::NotFound();
break;
default:
status = IOErrorFromWindowsError(
"Failed to GetChhildren for: " + dir, lastError);
}
return status;
}
UniqueFindClosePtr fc(handle, FindCloseFunc);
if (result->capacity() > 0) {
output.reserve(result->capacity());
}
// For safety
data.cFileName[MAX_PATH - 1] = 0;
while (true) {
auto x = RX_FILESTRING(data.cFileName, RX_FNLEN(data.cFileName));
output.emplace_back(FN_TO_RX(x));
BOOL ret =- RX_FindNextFile(handle, &data);
// If the function fails the return value is zero
// and non-zero otherwise. Not TRUE or FALSE.
if (ret == FALSE) {
// Posix does not care why we stopped
break;
}
data.cFileName[MAX_PATH - 1] = 0;
}
output.swap(*result);
return status;
}
Status WinEnvIO::CreateDir(const std::string& name) {
Status result;
BOOL ret = RX_CreateDirectory(RX_FN(name).c_str(), NULL);
if (!ret) {
auto lastError = GetLastError();
result = IOErrorFromWindowsError(
"Failed to create a directory: " + name, lastError);
}
return result;
}
Status WinEnvIO::CreateDirIfMissing(const std::string& name) {
Status result;
if (DirExists(name)) {
return result;
}
BOOL ret = RX_CreateDirectory(RX_FN(name).c_str(), NULL);
if (!ret) {
auto lastError = GetLastError();
if (lastError != ERROR_ALREADY_EXISTS) {
result = IOErrorFromWindowsError(
"Failed to create a directory: " + name, lastError);
} else {
result =
Status::IOError(name + ": exists but is not a directory");
}
}
return result;
}
Status WinEnvIO::DeleteDir(const std::string& name) {
Status result;
BOOL ret = RX_RemoveDirectory(RX_FN(name).c_str());
if (!ret) {
auto lastError = GetLastError();
result = IOErrorFromWindowsError("Failed to remove dir: " + name,
lastError);
}
return result;
}
Status WinEnvIO::GetFileSize(const std::string& fname,
uint64_t* size) {
Status s;
WIN32_FILE_ATTRIBUTE_DATA attrs;
if (RX_GetFileAttributesEx(RX_FN(fname).c_str(), GetFileExInfoStandard,
&attrs)) {
ULARGE_INTEGER file_size;
file_size.HighPart = attrs.nFileSizeHigh;
file_size.LowPart = attrs.nFileSizeLow;
*size = file_size.QuadPart;
} else {
auto lastError = GetLastError();
s = IOErrorFromWindowsError("Can not get size for: " + fname, lastError);
}
return s;
}
uint64_t WinEnvIO::FileTimeToUnixTime(const FILETIME& ftTime) {
const uint64_t c_FileTimePerSecond = 10000000U;
// UNIX epoch starts on 1970-01-01T00:00:00Z
// Windows FILETIME starts on 1601-01-01T00:00:00Z
// Therefore, we need to subtract the below number of seconds from
// the seconds that we obtain from FILETIME with an obvious loss of
// precision
const uint64_t c_SecondBeforeUnixEpoch = 11644473600U;
ULARGE_INTEGER li;
li.HighPart = ftTime.dwHighDateTime;
li.LowPart = ftTime.dwLowDateTime;
uint64_t result =
(li.QuadPart / c_FileTimePerSecond) - c_SecondBeforeUnixEpoch;
return result;
}
Status WinEnvIO::GetFileModificationTime(const std::string& fname,
uint64_t* file_mtime) {
Status s;
WIN32_FILE_ATTRIBUTE_DATA attrs;
if (RX_GetFileAttributesEx(RX_FN(fname).c_str(), GetFileExInfoStandard,
&attrs)) {
*file_mtime = FileTimeToUnixTime(attrs.ftLastWriteTime);
} else {
auto lastError = GetLastError();
s = IOErrorFromWindowsError(
"Can not get file modification time for: " + fname, lastError);
*file_mtime = 0;
}
return s;
}
Status WinEnvIO::RenameFile(const std::string& src,
const std::string& target) {
Status result;
// rename() is not capable of replacing the existing file as on Linux
// so use OS API directly
if (!RX_MoveFileEx(RX_FN(src).c_str(), RX_FN(target).c_str(),
MOVEFILE_REPLACE_EXISTING)) {
DWORD lastError = GetLastError();
std::string text("Failed to rename: ");
text.append(src).append(" to: ").append(target);
result = IOErrorFromWindowsError(text, lastError);
}
return result;
}
Status WinEnvIO::LinkFile(const std::string& src,
const std::string& target) {
Status result;
if (!RX_CreateHardLink(RX_FN(target).c_str(), RX_FN(src).c_str(), NULL)) {
DWORD lastError = GetLastError();
if (lastError == ERROR_NOT_SAME_DEVICE) {
return Status::NotSupported("No cross FS links allowed");
}
std::string text("Failed to link: ");
text.append(src).append(" to: ").append(target);
result = IOErrorFromWindowsError(text, lastError);
}
return result;
}
Status WinEnvIO::NumFileLinks(const std::string& fname, uint64_t* count) {
Status s;
HANDLE handle = RX_CreateFile(
RX_FN(fname).c_str(), 0,
FILE_SHARE_DELETE | FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL, OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS, NULL);
if (INVALID_HANDLE_VALUE == handle) {
auto lastError = GetLastError();
s = IOErrorFromWindowsError("NumFileLinks: " + fname, lastError);
return s;
}
UniqueCloseHandlePtr handle_guard(handle, CloseHandleFunc);
FILE_STANDARD_INFO standard_info;
if (0 != GetFileInformationByHandleEx(handle, FileStandardInfo,
&standard_info,
sizeof(standard_info))) {
*count = standard_info.NumberOfLinks;
} else {
auto lastError = GetLastError();
s = IOErrorFromWindowsError("GetFileInformationByHandleEx: " + fname,
lastError);
}
return s;
}
Status WinEnvIO::AreFilesSame(const std::string& first,
const std::string& second, bool* res) {
// For MinGW builds
#if (_WIN32_WINNT == _WIN32_WINNT_VISTA)
Status s = Status::NotSupported();
#else
assert(res != nullptr);
Status s;
if (res == nullptr) {
s = Status::InvalidArgument("res");
return s;
}
// 0 - for access means read metadata
HANDLE file_1 = RX_CreateFile(
RX_FN(first).c_str(), 0,
FILE_SHARE_DELETE | FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL,
OPEN_EXISTING,
FILE_FLAG_BACKUP_SEMANTICS, // make opening folders possible
NULL);
if (INVALID_HANDLE_VALUE == file_1) {
auto lastError = GetLastError();
s = IOErrorFromWindowsError("open file: " + first, lastError);
return s;
}
UniqueCloseHandlePtr g_1(file_1, CloseHandleFunc);
HANDLE file_2 = RX_CreateFile(
RX_FN(second).c_str(), 0,
FILE_SHARE_DELETE | FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL, OPEN_EXISTING,
FILE_FLAG_BACKUP_SEMANTICS, // make opening folders possible
NULL);
if (INVALID_HANDLE_VALUE == file_2) {
auto lastError = GetLastError();
s = IOErrorFromWindowsError("open file: " + second, lastError);
return s;
}
UniqueCloseHandlePtr g_2(file_2, CloseHandleFunc);
FILE_ID_INFO FileInfo_1;
BOOL result = GetFileInformationByHandleEx(file_1, FileIdInfo, &FileInfo_1,
sizeof(FileInfo_1));
if (!result) {
auto lastError = GetLastError();
s = IOErrorFromWindowsError("stat file: " + first, lastError);
return s;
}
FILE_ID_INFO FileInfo_2;
result = GetFileInformationByHandleEx(file_2, FileIdInfo, &FileInfo_2,
sizeof(FileInfo_2));
if (!result) {
auto lastError = GetLastError();
s = IOErrorFromWindowsError("stat file: " + second, lastError);
return s;
}
if (FileInfo_1.VolumeSerialNumber == FileInfo_2.VolumeSerialNumber) {
*res = (0 == memcmp(FileInfo_1.FileId.Identifier,
FileInfo_2.FileId.Identifier,
sizeof(FileInfo_1.FileId.Identifier)));
} else {
*res = false;
}
#endif
return s;
}
Status WinEnvIO::LockFile(const std::string& lockFname,
FileLock** lock) {
assert(lock != nullptr);
*lock = NULL;
Status result;
// No-sharing, this is a LOCK file
const DWORD ExclusiveAccessON = 0;
// Obtain exclusive access to the LOCK file
// Previously, instead of NORMAL attr we set DELETE on close and that worked
// well except with fault_injection test that insists on deleting it.
HANDLE hFile = 0;
{
IOSTATS_TIMER_GUARD(open_nanos);
hFile = RX_CreateFile(RX_FN(lockFname).c_str(),
(GENERIC_READ | GENERIC_WRITE),
ExclusiveAccessON, NULL, CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL, NULL);
}
if (INVALID_HANDLE_VALUE == hFile) {
auto lastError = GetLastError();
result = IOErrorFromWindowsError(
"Failed to create lock file: " + lockFname, lastError);
} else {
*lock = new WinFileLock(hFile);
}
return result;
}
Status WinEnvIO::UnlockFile(FileLock* lock) {
Status result;
assert(lock != nullptr);
delete lock;
return result;
}
Status WinEnvIO::GetTestDirectory(std::string* result) {
std::string output;
const char* env = getenv("TEST_TMPDIR");
if (env && env[0] != '\0') {
output = env;
} else {
env = getenv("TMP");
if (env && env[0] != '\0') {
output = env;
} else {
output = "c:\\tmp";
}
}
CreateDir(output);
output.append("\\testrocksdb-");
output.append(std::to_string(_getpid()));
CreateDir(output);
output.swap(*result);
return Status::OK();
}
Status WinEnvIO::NewLogger(const std::string& fname,
std::shared_ptr<Logger>* result) {
Status s;
result->reset();
HANDLE hFile = 0;
{
IOSTATS_TIMER_GUARD(open_nanos);
hFile = RX_CreateFile(
RX_FN(fname).c_str(), GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_DELETE, // In RocksDb log files are
// renamed and deleted before
// they are closed. This enables
// doing so.
NULL,
CREATE_ALWAYS, // Original fopen mode is "w"
FILE_ATTRIBUTE_NORMAL, NULL);
}
if (INVALID_HANDLE_VALUE == hFile) {
auto lastError = GetLastError();
s = IOErrorFromWindowsError("Failed to open LogFile" + fname, lastError);
} else {
{
// With log files we want to set the true creation time as of now
// because the system
// for some reason caches the attributes of the previous file that just
// been renamed from
// this name so auto_roll_logger_test fails
FILETIME ft;
GetSystemTimeAsFileTime(&ft);
// Set creation, last access and last write time to the same value
SetFileTime(hFile, &ft, &ft, &ft);
}
result->reset(new WinLogger(&WinEnvThreads::gettid, hosted_env_, hFile));
}
return s;
}
uint64_t WinEnvIO::NowMicros() {
if (GetSystemTimePreciseAsFileTime_ != NULL) {
// all std::chrono clocks on windows proved to return
// values that may repeat that is not good enough for some uses.
const int64_t c_UnixEpochStartTicks = 116444736000000000LL;
const int64_t c_FtToMicroSec = 10;
// This interface needs to return system time and not
// just any microseconds because it is often used as an argument
// to TimedWait() on condition variable
FILETIME ftSystemTime;
GetSystemTimePreciseAsFileTime_(&ftSystemTime);
LARGE_INTEGER li;
li.LowPart = ftSystemTime.dwLowDateTime;
li.HighPart = ftSystemTime.dwHighDateTime;
// Subtract unix epoch start
li.QuadPart -= c_UnixEpochStartTicks;
// Convert to microsecs
li.QuadPart /= c_FtToMicroSec;
return li.QuadPart;
}
using namespace std::chrono;
return duration_cast<microseconds>(
high_resolution_clock::now().time_since_epoch()).count();
}
uint64_t WinEnvIO::NowNanos() {
if (nano_seconds_per_period_ != 0) {
// all std::chrono clocks on windows have the same resolution that is only
// good enough for microseconds but not nanoseconds
// On Windows 8 and Windows 2012 Server
// GetSystemTimePreciseAsFileTime(&current_time) can be used
LARGE_INTEGER li;
QueryPerformanceCounter(&li);
// Convert performance counter to nanoseconds by precomputed ratio.
// Directly multiply nano::den with li.QuadPart causes overflow.
// Only do this when nano::den is divisible by perf_counter_frequency_,
// which most likely is the case in reality. If it's not, fall back to
// high_resolution_clock, which may be less precise under old compilers.
li.QuadPart *= nano_seconds_per_period_;
return li.QuadPart;
}
using namespace std::chrono;
return duration_cast<nanoseconds>(
high_resolution_clock::now().time_since_epoch()).count();
}
Status WinEnvIO::GetHostName(char* name, uint64_t len) {
Status s;
DWORD nSize = static_cast<DWORD>(
std::min<uint64_t>(len, std::numeric_limits<DWORD>::max()));
if (!::GetComputerNameA(name, &nSize)) {
auto lastError = GetLastError();
s = IOErrorFromWindowsError("GetHostName", lastError);
} else {
name[nSize] = 0;
}
return s;
}
Status WinEnvIO::GetAbsolutePath(const std::string& db_path,
std::string* output_path) {
// Check if we already have an absolute path
// For test compatibility we will consider starting slash as an
// absolute path
if ((!db_path.empty() && (db_path[0] == '\\' || db_path[0] == '/')) ||
!RX_PathIsRelative(RX_FN(db_path).c_str())) {
*output_path = db_path;
return Status::OK();
}
RX_FILESTRING result;
result.resize(MAX_PATH);
// Hopefully no changes the current directory while we do this
// however _getcwd also suffers from the same limitation
DWORD len = RX_GetCurrentDirectory(MAX_PATH, &result[0]);
if (len == 0) {
auto lastError = GetLastError();
return IOErrorFromWindowsError("Failed to get current working directory",
lastError);
}
result.resize(len);
std::string res = FN_TO_RX(result);
res.swap(*output_path);
return Status::OK();
}
std::string WinEnvIO::TimeToString(uint64_t secondsSince1970) {
std::string result;
const time_t seconds = secondsSince1970;
const int maxsize = 64;
struct tm t;
errno_t ret = localtime_s(&t, &seconds);
if (ret) {
result = std::to_string(seconds);
} else {
result.resize(maxsize);
char* p = &result[0];
int len = snprintf(p, maxsize, "%04d/%02d/%02d-%02d:%02d:%02d ",
t.tm_year + 1900, t.tm_mon + 1, t.tm_mday, t.tm_hour,
t.tm_min, t.tm_sec);
assert(len > 0);
result.resize(len);
}
return result;
}
EnvOptions WinEnvIO::OptimizeForLogWrite(const EnvOptions& env_options,
const DBOptions& db_options) const {
EnvOptions optimized(env_options);
// These two the same as default optimizations
optimized.bytes_per_sync = db_options.wal_bytes_per_sync;
optimized.writable_file_max_buffer_size =
db_options.writable_file_max_buffer_size;
// This adversely affects %999 on windows
optimized.use_mmap_writes = false;
// Direct writes will produce a huge perf impact on
// Windows. Pre-allocate space for WAL.
optimized.use_direct_writes = false;
return optimized;
}
EnvOptions WinEnvIO::OptimizeForManifestWrite(
const EnvOptions& env_options) const {
EnvOptions optimized(env_options);
optimized.use_mmap_writes = false;
optimized.use_direct_reads = false;
return optimized;
}
EnvOptions WinEnvIO::OptimizeForManifestRead(
const EnvOptions& env_options) const {
EnvOptions optimized(env_options);
optimized.use_mmap_writes = false;
optimized.use_direct_reads = false;
return optimized;
}
// Returns true iff the named directory exists and is a directory.
bool WinEnvIO::DirExists(const std::string& dname) {
WIN32_FILE_ATTRIBUTE_DATA attrs;
if (RX_GetFileAttributesEx(RX_FN(dname).c_str(),
GetFileExInfoStandard, &attrs)) {
return 0 != (attrs.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY);
}
return false;
}
size_t WinEnvIO::GetSectorSize(const std::string& fname) {
size_t sector_size = kSectorSize;
if (RX_PathIsRelative(RX_FN(fname).c_str())) {
return sector_size;
}
// obtain device handle
char devicename[7] = "\\\\.\\";
int erresult = strncat_s(devicename, sizeof(devicename), fname.c_str(), 2);
if (erresult) {
assert(false);
return sector_size;
}
HANDLE hDevice = CreateFile(devicename, 0, 0, nullptr, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, nullptr);
if (hDevice == INVALID_HANDLE_VALUE) {
return sector_size;
}
STORAGE_PROPERTY_QUERY spropertyquery;
spropertyquery.PropertyId = StorageAccessAlignmentProperty;
spropertyquery.QueryType = PropertyStandardQuery;
BYTE output_buffer[sizeof(STORAGE_ACCESS_ALIGNMENT_DESCRIPTOR)];
DWORD output_bytes = 0;
BOOL ret = DeviceIoControl(hDevice, IOCTL_STORAGE_QUERY_PROPERTY,
&spropertyquery, sizeof(spropertyquery),
output_buffer,
sizeof(STORAGE_ACCESS_ALIGNMENT_DESCRIPTOR),
&output_bytes, nullptr);
if (ret) {
sector_size = ((STORAGE_ACCESS_ALIGNMENT_DESCRIPTOR *)output_buffer)->BytesPerLogicalSector;
} else {
// many devices do not support StorageProcessAlignmentProperty. Any failure here and we
// fall back to logical alignment
DISK_GEOMETRY_EX geometry = { 0 };
ret = DeviceIoControl(hDevice, IOCTL_DISK_GET_DRIVE_GEOMETRY,
nullptr, 0, &geometry, sizeof(geometry), &output_bytes, nullptr);
if (ret) {
sector_size = geometry.Geometry.BytesPerSector;
}
}
if (hDevice != INVALID_HANDLE_VALUE) {
CloseHandle(hDevice);
}
return sector_size;
}
////////////////////////////////////////////////////////////////////////
// WinEnvThreads
WinEnvThreads::WinEnvThreads(Env* hosted_env)
: hosted_env_(hosted_env), thread_pools_(Env::Priority::TOTAL) {
for (int pool_id = 0; pool_id < Env::Priority::TOTAL; ++pool_id) {
thread_pools_[pool_id].SetThreadPriority(
static_cast<Env::Priority>(pool_id));
// This allows later initializing the thread-local-env of each thread.
thread_pools_[pool_id].SetHostEnv(hosted_env);
}
}
WinEnvThreads::~WinEnvThreads() {
WaitForJoin();
for (auto& thpool : thread_pools_) {
thpool.JoinAllThreads();
}
}
void WinEnvThreads::Schedule(void(*function)(void*), void* arg,
Env::Priority pri, void* tag,
void(*unschedFunction)(void* arg)) {
assert(pri >= Env::Priority::BOTTOM && pri <= Env::Priority::HIGH);
thread_pools_[pri].Schedule(function, arg, tag, unschedFunction);
}
int WinEnvThreads::UnSchedule(void* arg, Env::Priority pri) {
return thread_pools_[pri].UnSchedule(arg);
}
namespace {
struct StartThreadState {
void(*user_function)(void*);
void* arg;
};
void* StartThreadWrapper(void* arg) {
std::unique_ptr<StartThreadState> state(
reinterpret_cast<StartThreadState*>(arg));
state->user_function(state->arg);
return nullptr;
}
}
void WinEnvThreads::StartThread(void(*function)(void* arg), void* arg) {
std::unique_ptr<StartThreadState> state(new StartThreadState);
state->user_function = function;
state->arg = arg;
try {
rocksdb::port::WindowsThread th(&StartThreadWrapper, state.get());
state.release();
std::lock_guard<std::mutex> lg(mu_);
threads_to_join_.push_back(std::move(th));
} catch (const std::system_error& ex) {
WinthreadCall("start thread", ex.code());
}
}
void WinEnvThreads::WaitForJoin() {
for (auto& th : threads_to_join_) {
th.join();
}
threads_to_join_.clear();
}
unsigned int WinEnvThreads::GetThreadPoolQueueLen(Env::Priority pri) const {
assert(pri >= Env::Priority::BOTTOM && pri <= Env::Priority::HIGH);
return thread_pools_[pri].GetQueueLen();
}
uint64_t WinEnvThreads::gettid() {
uint64_t thread_id = GetCurrentThreadId();
return thread_id;
}
uint64_t WinEnvThreads::GetThreadID() const { return gettid(); }
void WinEnvThreads::SleepForMicroseconds(int micros) {
std::this_thread::sleep_for(std::chrono::microseconds(micros));
}
void WinEnvThreads::SetBackgroundThreads(int num, Env::Priority pri) {
assert(pri >= Env::Priority::BOTTOM && pri <= Env::Priority::HIGH);
thread_pools_[pri].SetBackgroundThreads(num);
}
int WinEnvThreads::GetBackgroundThreads(Env::Priority pri) {
assert(pri >= Env::Priority::BOTTOM && pri <= Env::Priority::HIGH);
return thread_pools_[pri].GetBackgroundThreads();
}
void WinEnvThreads::IncBackgroundThreadsIfNeeded(int num, Env::Priority pri) {
assert(pri >= Env::Priority::BOTTOM && pri <= Env::Priority::HIGH);
thread_pools_[pri].IncBackgroundThreadsIfNeeded(num);
}
/////////////////////////////////////////////////////////////////////////
// WinEnv
WinEnv::WinEnv() : winenv_io_(this), winenv_threads_(this) {
// Protected member of the base class
thread_status_updater_ = CreateThreadStatusUpdater();
}
WinEnv::~WinEnv() {
// All threads must be joined before the deletion of
// thread_status_updater_.
delete thread_status_updater_;
}
Status WinEnv::GetThreadList(std::vector<ThreadStatus>* thread_list) {
assert(thread_status_updater_);
return thread_status_updater_->GetThreadList(thread_list);
}
Status WinEnv::DeleteFile(const std::string& fname) {
return winenv_io_.DeleteFile(fname);
}
Status WinEnv::Truncate(const std::string& fname, size_t size) {
return winenv_io_.Truncate(fname, size);
}
Status WinEnv::GetCurrentTime(int64_t* unix_time) {
return winenv_io_.GetCurrentTime(unix_time);
}
Status WinEnv::NewSequentialFile(const std::string& fname,
std::unique_ptr<SequentialFile>* result,
const EnvOptions& options) {
return winenv_io_.NewSequentialFile(fname, result, options);
}
Status WinEnv::NewRandomAccessFile(const std::string& fname,
std::unique_ptr<RandomAccessFile>* result,
const EnvOptions& options) {
return winenv_io_.NewRandomAccessFile(fname, result, options);
}
Status WinEnv::NewWritableFile(const std::string& fname,
std::unique_ptr<WritableFile>* result,
const EnvOptions& options) {
return winenv_io_.OpenWritableFile(fname, result, options, false);
}
Status WinEnv::ReopenWritableFile(const std::string& fname,
std::unique_ptr<WritableFile>* result,
const EnvOptions& options) {
return winenv_io_.OpenWritableFile(fname, result, options, true);
}
Status WinEnv::NewRandomRWFile(const std::string & fname,
std::unique_ptr<RandomRWFile>* result,
const EnvOptions & options) {
return winenv_io_.NewRandomRWFile(fname, result, options);
}
Status WinEnv::NewMemoryMappedFileBuffer(
const std::string& fname,
std::unique_ptr<MemoryMappedFileBuffer>* result) {
return winenv_io_.NewMemoryMappedFileBuffer(fname, result);
}
Status WinEnv::NewDirectory(const std::string& name,
std::unique_ptr<Directory>* result) {
return winenv_io_.NewDirectory(name, result);
}
Status WinEnv::FileExists(const std::string& fname) {
return winenv_io_.FileExists(fname);
}
Status WinEnv::GetChildren(const std::string& dir,
std::vector<std::string>* result) {
return winenv_io_.GetChildren(dir, result);
}
Status WinEnv::CreateDir(const std::string& name) {
return winenv_io_.CreateDir(name);
}
Status WinEnv::CreateDirIfMissing(const std::string& name) {
return winenv_io_.CreateDirIfMissing(name);
}
Status WinEnv::DeleteDir(const std::string& name) {
return winenv_io_.DeleteDir(name);
}
Status WinEnv::GetFileSize(const std::string& fname,
uint64_t* size) {
return winenv_io_.GetFileSize(fname, size);
}
Status WinEnv::GetFileModificationTime(const std::string& fname,
uint64_t* file_mtime) {
return winenv_io_.GetFileModificationTime(fname, file_mtime);
}
Status WinEnv::RenameFile(const std::string& src,
const std::string& target) {
return winenv_io_.RenameFile(src, target);
}
Status WinEnv::LinkFile(const std::string& src,
const std::string& target) {
return winenv_io_.LinkFile(src, target);
}
Status WinEnv::NumFileLinks(const std::string& fname, uint64_t* count) {
return winenv_io_.NumFileLinks(fname, count);
}
Status WinEnv::AreFilesSame(const std::string& first,
const std::string& second, bool* res) {
return winenv_io_.AreFilesSame(first, second, res);
}
Status WinEnv::LockFile(const std::string& lockFname,
FileLock** lock) {
return winenv_io_.LockFile(lockFname, lock);
}
Status WinEnv::UnlockFile(FileLock* lock) {
return winenv_io_.UnlockFile(lock);
}
Status WinEnv::GetTestDirectory(std::string* result) {
return winenv_io_.GetTestDirectory(result);
}
Status WinEnv::NewLogger(const std::string& fname,
std::shared_ptr<Logger>* result) {
return winenv_io_.NewLogger(fname, result);
}
uint64_t WinEnv::NowMicros() {
return winenv_io_.NowMicros();
}
uint64_t WinEnv::NowNanos() {
return winenv_io_.NowNanos();
}
Status WinEnv::GetHostName(char* name, uint64_t len) {
return winenv_io_.GetHostName(name, len);
}
Status WinEnv::GetAbsolutePath(const std::string& db_path,
std::string* output_path) {
return winenv_io_.GetAbsolutePath(db_path, output_path);
}
std::string WinEnv::TimeToString(uint64_t secondsSince1970) {
return winenv_io_.TimeToString(secondsSince1970);
}
void WinEnv::Schedule(void(*function)(void*), void* arg, Env::Priority pri,
void* tag,
void(*unschedFunction)(void* arg)) {
return winenv_threads_.Schedule(function, arg, pri, tag, unschedFunction);
}
int WinEnv::UnSchedule(void* arg, Env::Priority pri) {
return winenv_threads_.UnSchedule(arg, pri);
}
void WinEnv::StartThread(void(*function)(void* arg), void* arg) {
return winenv_threads_.StartThread(function, arg);
}
void WinEnv::WaitForJoin() {
return winenv_threads_.WaitForJoin();
}
unsigned int WinEnv::GetThreadPoolQueueLen(Env::Priority pri) const {
return winenv_threads_.GetThreadPoolQueueLen(pri);
}
uint64_t WinEnv::GetThreadID() const {
return winenv_threads_.GetThreadID();
}
void WinEnv::SleepForMicroseconds(int micros) {
return winenv_threads_.SleepForMicroseconds(micros);
}
// Allow increasing the number of worker threads.
void WinEnv::SetBackgroundThreads(int num, Env::Priority pri) {
return winenv_threads_.SetBackgroundThreads(num, pri);
}
int WinEnv::GetBackgroundThreads(Env::Priority pri) {
return winenv_threads_.GetBackgroundThreads(pri);
}
void WinEnv::IncBackgroundThreadsIfNeeded(int num, Env::Priority pri) {
return winenv_threads_.IncBackgroundThreadsIfNeeded(num, pri);
}
EnvOptions WinEnv::OptimizeForManifestRead(
const EnvOptions& env_options) const {
return winenv_io_.OptimizeForManifestRead(env_options);
}
EnvOptions WinEnv::OptimizeForLogWrite(const EnvOptions& env_options,
const DBOptions& db_options) const {
return winenv_io_.OptimizeForLogWrite(env_options, db_options);
}
EnvOptions WinEnv::OptimizeForManifestWrite(
const EnvOptions& env_options) const {
return winenv_io_.OptimizeForManifestWrite(env_options);
}
} // namespace port
std::string Env::GenerateUniqueId() {
std::string result;
UUID uuid;
UuidCreateSequential(&uuid);
RPC_CSTR rpc_str;
auto status = UuidToStringA(&uuid, &rpc_str);
(void)status;
assert(status == RPC_S_OK);
result = reinterpret_cast<char*>(rpc_str);
status = RpcStringFreeA(&rpc_str);
assert(status == RPC_S_OK);
return result;
}
} // namespace rocksdb